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Introduction

Since the invention of the personal computer, software developers have used assembly 
language to create innovative solutions for a wide variety of algorithmic challenges. 
During the early days of the PC era, it was common practice to code large portions of 
a program or complete applications using x86 assembly language. Even as the use of 
high-level languages such as C, C++, and C# became more prevalent, many software 
developers continued to employ assembly language to code performance-critical 
sections of their programs. And while compilers have improved remarkably over the 
years in terms of generating machine code that is both spatially and temporally efficient, 
situations still exist where it makes sense for software developers to exploit the benefits of 
assembly language programming.

The inclusion of single-instruction multiple-data (SIMD) architectures in modern 
x86 processors provides another reason for the continued interest in assembly language 
programming. A SIMD-capable processor includes computational resources that 
facilitate concurrent calculations using multiple data values, which can significantly 
improve the performance of applications that must deliver real-time responsiveness. 
SIMD architectures are also well-suited for computationally-intense problem domains 
such as image processing, audio and video encoding, computer-aided design, computer 
graphics, and data mining. Unfortunately, many high-level languages and development 
tools are unable to fully (or even partially) exploit the SIMD capabilities of a modern x86 
processor. Assembly language, on the other hand, enables the software developer to take 
full advantage of a processor’s entire computational resource suite.

Modern X86 Assembly Language Programming
Modern X86 Assembly Language Programming is an edifying text on the subject of x86 
assembly language programming. Its primary purpose is to teach you how to code 
functions using x86 assembly language that can be invoked from a high-level language. 
The book includes informative material that explains the internal architecture of an x86 
processor as viewed from the perspective of an application program. It also contains 
an abundance of sample code that is structured to help you quickly understand x86 
assembly language programming and the computational resources of the x86 platform. 
Major topics of the book include the following:

 X86 32-bit core architecture, data types, internal registers, •
memory addressing modes, and the basic instruction set

 X87 core architecture, register stack, special purpose registers, •
floating-point encodings, and instruction set
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 MMX technology and the fundamentals of packed integer •
arithmetic

 Streaming SIMD extensions (SSE) and Advanced Vector •
Extensions (AVX), including internal registers, packed integer and 
floating-point arithmetic, and associated instruction sets

 X86 64-bit core architecture, data types, internal registers, •
memory addressing modes, and the basic instruction set

 64-bit extensions to SSE and AVX technologies•

 X86 microarchitecture and assembly language optimization •
techniques

Before proceeding I should also explicitly mention some of the topics that are 
not covered. This book does not examine legacy aspects of x86 assembly language 
programming such as 16-bit real-mode applications or segmented memory models. 
Except for a few historical observations and comparisons, all of the discussions and 
sample code emphasize x86 protected-mode programming using a flat linear memory 
model. This book does not discuss x86 instructions or architectural features that are 
managed by operating systems or require elevated privileges. It also doesn’t explore how 
to use x86 assembly language to develop software that is intended for operating systems 
or device drivers. However, if your ultimate goal is to use x86 assembly language to create 
software for one of these environments, you will need to thoroughly understand the 
material presented in this book.

While it is still theoretically possible to write an entire application program using 
assembly language, the demanding requirements of contemporary software development 
make such an approach impractical and ill advised. Instead, this book concentrates on 
creating x86 assembly language modules and functions that are callable from C++. All of 
the sample code and programing examples presented in this book use Microsoft Visual 
C++ and Microsoft Macro Assembler. Both of these tools are included with Microsoft’s 
Visual Studio development tool.

Target Audience
The target audience for this book is software developers, including:

 Software developers who are creating application programs •
for Windows-based platforms and want to learn how to write 
performance-enhancing algorithms and functions using x86 
assembly language.

 Software developers who are creating application programs for •
non-Windows environments and want to learn x86 assembly 
language programming.
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 Software developers who have a basic understanding of x86 •
assembly language programming and want to learn how to use 
the x86’s SSE and AVX instruction sets.

 Software developers and computer science students who want or •
need to gain a better understanding of the x86 platform, including 
its internal architecture and instruction sets.

The principal audience for Modern X86 Assembly Language Programming is Windows 
software developers since the sample code uses Visual C++ and Microsoft Macro Assembler. 
It is important to note, however, that this is not a book on how to use the Microsoft 
development tools. Software developers who are targeting non-Windows platforms also can 
learn from the book since most of the informative content is organized and communicated 
independent of any specific operating system. In order to understand the book’s subject 
material and sample code, a background that includes some programming experience 
using C or C++ will be helpful. Prior experience with Visual Studio or knowledge of a 
particular Windows API is not a prerequisite to benefit from the book.

Outline of Book
The primary objective of this book is to help you learn x86 assembly language 
programming. In order to achieve this goal, you must also thoroughly understand the 
internal architecture and execution environment of an x86 processor. The book’s chapters 
and content are organized with this in mind. The following paragraphs summarize the 
book’s major topics and each chapter’s content.

X86-32 Core Architecture—Chapter 1 covers the core architecture of the x86-32 
platform. It includes a discussion of the platform’s fundamental data types, internal 
architecture, instruction operands, and memory addressing modes. This chapter 
also presents an overview of the core x86-32 instruction set. Chapter 2 explains the 
fundamentals of x86-32 assembly language programming using the core x86-32 
instruction set and common programming constructs. All of the sample code discussed 
in Chapter 2 (and subsequent chapters) is packaged as working programs, which means 
that you can run, modify, or otherwise experiment with the code in order to enhance your 
learning experience.

X87 Floating-Point Unit—Chapter 3 surveys the architecture of the x87 floating-
point unit (FPU) and includes operational descriptions of the x87 FPU’s register stack, 
control word register, status word register, and instruction set. This chapter also delves 
into the binary encodings that are used to represent floating-point numbers and certain 
special values. Chapter 4 contains an assortment of sample code that demonstrates how 
to perform floating-point calculations using the x87 FPU instruction set. Readers who 
need to maintain an existing x87 FPU code base or are targeting processors that lack the 
scalar floating-point capabilities of x86-SSE and x86-AVX (e.g., Intel’s Quark) will benefit 
the most from this chapter.

MMX Technology—Chapter 5 describes the x86’s first SIMD extension, which is 
called MMX technology. It examines the architecture of MMX technology including its 
register set, operand types, and instruction set. This chapter also discusses a number 
of related topics, including SIMD processing concepts and the mechanics of packed-
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integer arithmetic. Chapter 6 includes sample code that illustrates basic MMX operations, 
including packed-integer arithmetic (both wraparound and saturated), integer array 
processing, and how to properly handle transitions between MMX and x87 FPU code.

Streaming SIMD Extensions—Chapter 7 focuses on the architecture of Streaming 
SIMD Extensions (SSE). X86-SSE adds a new set of 128-bit wide registers to the x86 
platform and incorporates several instruction set additions that support computations 
using packed integers, packed floating-point (both single and double precision), and text 
strings. Chapter 7 also discusses the scalar floating-point capabilities of x86-SSE, which 
can be used to both simplify and improve the performance of algorithms that require 
scalar floating-point arithmetic. Chapters 8 - 11 contain an extensive collection of sample 
code that highlights use of the x86-SSE instruction set. Included in this chapter are several 
examples that demonstrate using the packed-integer capabilities of x86-SSE to perform 
common image-processing tasks, such as histogram construction and pixel thresholding. 
These chapters also include sample code that illustrates how to use the packed floating-
point, scalar floating-point, and text string-processing instructions of x86-SSE.

Advanced Vector Extensions—Chapter 12 explores the x86’s most recent SIMD 
extension, which is called Advanced Vector Extensions (AVX). This chapter explains the 
x86-AVX execution environment, its data types and register sets, and the new three-
operand instruction syntax. It also discusses the data broadcast, gather, and permute 
capabilities of x86-AVX along with several x86-AVX concomitant extensions, including 
fused-multiply-add (FMA), half-precision floating-point, and new general-purpose 
register instructions. Chapters 13 - 16 contain sample code that depicts use of the various 
x86-AVX computational resources. Examples include using the x86-AVX instruction set 
with packed integers, packed floating-point, and scalar floating-point operands. These 
chapters also contain sample code that explicates use of the data broadcast, gather, 
permute, and FMA instructions.

X86-64 Core Architecture—Chapter 17 peruses the x86-64 platform and includes 
a discussion of the platform’s core architecture, supported data types, general purpose 
registers, and status flags. It also explains the enhancements made to the x86-32 platform 
in order to support 64-bit operands and memory addressing. The chapter concludes with 
a discussion of the x86-64 instruction set, including those instructions that have been 
deprecated or are no longer available. Chapter 18 explores the fundamentals x86-64 
assembly language programming using a variety of sample code. Examples include how 
to perform integer calculations using operands of various sizes, memory addressing 
modes, scalar floating-point arithmetic, and common programming constructs. Chapter 
18 also explains the calling convention that must be observed in order to invoke an x86-64 
assembly language function from C++.

X86-64 SSE and AVX—Chapter 19 describes the enhancements to x86-SSE and x86-
AVX that are available on the x86-64 platform. This includes a discussion of the respective 
execution environments and extended data register sets. Chapter 20 contains sample 
code that highlights use of the x86-SSE and x86-AVX instruction sets with the x86-64 core 
architecture.

Advanced Topics—The last two chapters of this book consider advanced topics and 
optimization techniques related to x86 assembly language programming. Chapter 21 
examines key elements of an x86 processor’s microarchitecture, including its front-end 
pipelines, out-of-order execution model, and internal execution units. It also includes 
a discussion of programming techniques that you can employ to write x86 assembly 
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language code that is both spatially and temporally efficient. Chapter 22 contains sample 
code that illustrates several advanced assembly language programming techniques.

Appendices—The final section of the book includes several appendices. Appendix 
A contains a brief tutorial on how to use Microsoft’s Visual C++ and Macro Assembler. 
Appendix B summarizes the x86-32 and x86-64 calling conventions that assembly 
language functions must observe in order to be invoked from a Visual C++ function. 
Appendix C contains a list of references and resources that you can consult for more 
information about x86 assembly language programming.

Sample Code Requirements
You can download the sample code for this book from the Apress website at  
http://www.apress.com/9781484200650. The following hardware and software is required to 
build and run the sample code:

 A PC with an x86 processor that is based on a recent •
microarchitecture. All of the x86-32, x87 FPU, MMX, and  
x86-SSE sample code can be executed using a processor based 
on the Nehalem (or later) microarchitecture. PCs with processors 
based on earlier microarchitectures also can be used to run 
many of the sample code programs. The AVX and AXV2 sample 
code requires a processor based on the Sandy Bridge or Haswell 
microarchitecture, respectively.

 Microsoft Windows 8.x or Windows 7 with Service Pack 1. A 64-bit •
version of Windows is required to run the x86-64 sample code.

 Visual Studio Professional 2013 or Visual Studio Express •
2013 for Windows Desktop. The Express edition can be freely 
downloaded from the following Microsoft website: http://msdn.
microsoft.com/en-us/vstudio. Update 3 is recommended for both 
Visual Studio editions.

Caution ■  the primary purpose of the sample code is to elucidate the topics and  
technologies presented in this book. Minimal attention is given to important software  
engineering concerns such as robust error handling, security risks, numerical stability, 
rounding errors, or ill-conditioned functions. You are responsible for addressing these issues 
should you decide to use any of the sample code in your own programs.
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Terminology and Conventions
The following paragraphs define the meaning of common terms and expressions used 
throughout this book. A function, subroutine, or procedure is a self-contained unit of 
executable code that accepts zero or more arguments, performs an operation, and 
optionally returns a value. Functions are typically invoked using the processor’s call 
instruction. A thread is the smallest unit of execution that is managed and scheduled by 
an operating system. A task or process is a collection of one or more threads that share the 
same logical memory space. An application or program is a complete software package 
that contains at least one task.

The terms x86-32 and x86-64 are used respectively to describe 32-bit and 64-bit 
aspects, resources, or capabilities of a processor; x86 is employed for features that are 
common to both 32-bit and 64-bit architectures. The expressions x86-32 mode and  
x86-64 mode denote a specific processor execution environment with the primary 
difference being the latter mode’s support of 64-bit registers, operands, and memory 
addressing. Common capabilities of the x86’s SIMD extensions are described using 
the terms x86-SSE for Streaming SIMD Extensions or x86-AVX for Advanced Vector 
Extensions. When discussing aspects or instructions of a specific SIMD enhancement, the 
original acronyms (e.g., SSE, SSE2, SSE3, SSSE3, SSE4, AVX, and AVX2) are used.

Additional Resources
An extensive set of x86-related documentation is available from both Intel and AMD. 
Appendix C lists a number of resources that both aspiring and experienced x86 assembly 
language programmers will find useful. Of all the resources listed Appendix C, the 
most important tome is Volume 2 of the reference manual entitled Intel 64 and IA-32 
Architectures Software Developer’s Manual—Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 
3C (Order Number: 325462). This volume contains comprehensive information for each 
processor instruction, including detailed operational descriptions, lists of valid operands, 
affected status flags, and potential exceptions. You are strongly encouraged to consult this 
documentation when developing your own x86 assembly language functions in order to 
verify correct instruction usage.
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Chapter 1

X86-32 Core Architecture

This chapter examines the x86-32 core architecture from the perspective of an application 
program. I begin with a brief historical overview of the x86 platform in order to provide 
a frame of reference for subsequent discussions. This is followed by a review of the x86’s 
data types, including fundamental, numeric, and packed types. Next, I delve into the 
details of the x86-32’s internal architecture, including its execution units, general-purpose 
registers, status flags, instruction operands, and memory addressing modes. The chapter 
concludes with an overview of the x86-32 instruction set.

Unlike high-level languages such as C and C++, assembly language programming 
requires the software developer to comprehend certain architectural aspects of the target 
processor before attempting to write any code. The topics discussed in this chapter will 
help fulfill this requirement and serve as a foundation for understanding the sample code 
presented in Chapter 2. This chapter also provides the base material that is necessary to 
understand the x86-64 core architecture, which is discussed in Chapter 17.

Historical Overview
Before you examine the technical details of the core x86-32 platform, a brief history 
lesson might be helpful in understanding how the architecture has evolved over the 
years. In the review that follows, I focus on the noteworthy processors and architectural 
enhancements that have affected how software developers use x86 assembly language. 
Readers who are interested in a more comprehensive chronicle of the x86’s lineage 
should consult the resources listed in Appendix C.

The original embodiment of the x86-32 platform was the Intel 80386 microprocessor, 
which was introduced in 1985. The 80386 extended the architecture of its 16-bit 
predecessors to include 32-bit wide registers and data types, flat memory model options, 
a 4 GB logical address space, and paged virtual memory. The 80486 processor improved 
the performance of the 80386 with the inclusion of on-chip memory caches and optimized 
instructions. Unlike the 80386 with its separate 80387 floating-point unit (FPU), most 
versions of the 80486 CPU also included an integrated x87 FPU.

Expansion of the x86-32 microarchitectures continued with the introduction of the 
first Pentium brand processor in 1993. Known as the P5 microarchitecture, performance 
enhancements included a dual-instruction execution pipeline, 64-bit external data 
bus, and separate on-chip code and data caches. (A microarchitecture defines the 
organization of a processor’s internal components, including its register files, execution 
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units, instruction pipelines, data buses, and memory caches. Microarchitectures are often 
used by multiple processor product lines as described in this section.) Later versions 
of the P5 microarchitecture incorporated a new computational resource called MMX 
technology, which supports single-instruction multiple-data (SIMD) operations on 
packed integers using 64-bit wide registers (1997).

The P6 microarchitecture, first used on the Pentium Pro (1995) and later on 
the Pentium II (1997), extended the x86-32 platform using a three-way superscalar 
design. This means that the processor is able (on average) to decode, dispatch, and 
execute three distinct instructions during each clock cycle. Other P6 augmentations 
included support for out-of-order instruction executions, improved branch-prediction 
algorithms, and speculative instruction executions. The Pentium III, also based on 
the P6 microarchitecture, was launched in 1999 and included a new SIMD technology 
called streaming SIMD extensions (SSE). SSE added eight 128-bit wide registers to the 
x86-32 platform and instructions that support packed single-precision (32-bit)  
floating-point arithmetic.

In 2000 Intel introduced a new microarchitecture called Netburst that included 
SSE2, which extended the floating-point capabilities of SSE to cover packed double-
precision (64-bit) values. SSE2 also incorporated additional instructions that enabled the 
128-bit SSE registers to be used for packed integer calculations and scalar floating-point 
operations. Processors based on the Netburst architecture included several variations  
of the Pentium 4. In 2004 the Netburst microarchitecture was upgraded to include SSE3 
and hyper-threading technology. SSE3 adds packed integer and packed floating-point  
instructions to the x86 platform while hyper-threading technology parallelizes the 
processor’s front-end instruction pipelines in order to improve performance. SSE3-capable 
processors include 90 nm (and smaller) versions of the Pentium 4 and the server-oriented 
Xeon product lines.

In 2006 Intel launched a new microarchitecture called Core. The Core 
microarchitecture included redesigns of many Netburst front-end pipelines and 
execution units in order to improve performance and reduce power consumption. It 
also incorporated a number of x86-SSE enhancements, including SSSE3 and SSE4.1. 
These extensions added new packed integer and packed floating-point instructions 
to the platform but no new registers or data types. Processors based on the Core 
microarchitecture include CPUs from the Core 2 Duo and Core 2 Quad series and the 
Xeon 3000/5000 series.

A microarchitecture called Nehalem followed Core in late 2008. The Nehalem 
microarchitecture re-introduced hyper-threading to the x86 platform, which had been 
excluded from the Core microarchitecture. It also incorporates SSE4.2. This final x86-SSE 
enhancement adds several application-specific accelerator instructions to the x86-SSE 
instruction set. SSE4.2 also includes four new instructions that facilitate text-string 
processing using the 128-bit wide x86-SSE registers. Processors based on the Nehalem 
microarchitecture include first generation Core i3, i5, and i7 CPUs. It also includes CPUs 
from the Xeon 3000, 5000, and 7000 series.

In 2011 Intel launched a new microarchitecture called Sandy Bridge. The Sandy 
Bridge microarchitecture introduced a new x86 SIMD technology called Advanced Vector 
Extensions (AVX). AVX adds packed floating-point operations (both single-precision and 
double-precision) using 256-bit wide registers. AVX also supports a new three-operand 
instruction syntax, which helps reduce the number of register-to-register data transfers 
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that a function must perform. Processors based on the Sandy Bridge microarchitecture 
include second- and third-generation Core i3, i5, and i7 CPUs along with Xeon series E3, 
E5, and E7 CPUs.

In 2013 Intel unveiled its Haswell microarchitecture. Haswell includes AVX2, which 
extends AVX to support packed-integer operations using its 256-bit wide registers. 
AVX2 also supports enhanced data transfer capabilities with its new set of broadcast, 
gather, and permute instructions. Another feature of the Haswell microarchitecture is 
its inclusion of fused-multiply-add (FMA) operations. FMA enables software to perform 
successive product-sum calculations using a single floating-point rounding operation. 
The Haswell microarchitecture also encompasses several new general-purpose register 
instructions. Processors based on the Haswell microarchitecture include fourth-
generation Core i3, i5, and i7 CPUs and Xeon E3 (v3) series CPUs.

X86 platform extensions over the past several years have not been limited to SIMD 
enhancements. In 2003 AMD introduced its Opteron processor, which extended the x86’s 
core architecture from 32 bits to 64 bits. Intel followed suit in 2004 by adding essentially 
the same 64-bit extensions to its processors, starting with certain versions of the 
Pentium 4. All Intel processors based on the Core, Nehalem, Sandy Bridge, and Haswell 
microarchitectures support the x86-64 execution environment.

Intel has also introduced several specialized microarchitectures that have been 
optimized for specific applications. The first of these is called Bonnell and was the basis 
for the original Atom processor in 2008. Atom processors built on this microarchitecture 
included support for SSSE3. In 2013 Intel introduced its Silvermont System on a Chip 
(SoC) microarchitecture, which is optimized for portable devices such as smartphones 
and tablet PCs. The Silvermont microarchitecture is also used in processors that are 
tailored for small servers, storage devices, network communications equipment, and 
embedded systems. Processors based on the Silvermont microarchitecture include 
SSE4.2 but lack x86-AVX. In 2013 Intel also introduced an ultra-low power SoC 
microarchitecture called Quark, which targets Internet-of-Things (IoT) and wearable 
computing devices. Processors based on the Quark microarchitecture only support 
the core x86-32 and x87 FPU instruction sets; they do not include x86-64 processing 
capabilities or any of the SIMD resources provided by MMX, x86-SSE, and x86-AVX.

Processors from AMD have also evolved over the past few years. In 2003 AMD 
introduced a series of processors based on its K8 microarchitecture. Original versions 
of the K8 included support for MMX, SSE, and SSE2, while later versions added SSE3. 
In 2007 the K10 microarchitecture was launched and included a SIMD enhancement 
called SSE4a. SSE4a contains several mask shift and streaming store instructions 
that are not available on processors from Intel. Following the K10, AMD introduced 
a new microarchitecture called Bulldozer in 2011. The Bulldozer microarchitecture 
includes SSSE3, SSE4.1, SSE4.2, SSE4a, and AVX. It also adds FMA4, which is a four-
operand version of fused-multiply-add. Like SSE4a, FMA4 is not available on Intel from 
processors. A 2012 update to the Bulldozer microarchitecture called Piledriver includes 
support for both FMA4 and the three-operand version of FMA, which is called FMA3 by 
some CPU feature-detection utilities and third-party documentation sources.
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Data Types
The x86-32 core architecture supports a wide variety of data types, which are primarily 
derived from a small set of fundamental data types. The data types that are most often 
manipulated by an application program include signed and unsigned integers, scalar 
single-precision and double-precision floating-point values, characters and text strings, 
and packed values. This section examines these types in greater detail along with a few 
miscellaneous data types supported by the x86.

Fundamental Data Types
A fundamental data type is an elementary unit of data that is manipulated by the processor  
during program execution. The x86 platform supports a comprehensive set of fundamental 
data types ranging in length from 8 bits (1 byte) to 256 bits (32 bytes). Table 1-1 shows 
these types along with typical uses.

Table 1-1. X86 Fundamental Data Types

Data Type Length in Bits Typical Use

Byte 8 Character, integers, Binary Coded Decimal 
(BCD) values

Word 16 Character, integers

Doubleword 32 Integers, single-precision floating-point

Quadword 64 Integers, double-precision floating-point, 
packed integers

Quintword 80 Double extended-precision floating-point, 
packed BCD

Double Quadword 128 Packed integers, packed floating-point

Quad Quadword 256 Packed integers, packed floating-point

Not surprisingly, most of the fundamental data types are sized using integer powers 
of two. The sole exception is the 80-bit quintword, which is used by the x87 FPU to 
support double extended-precision floating-point and packed BCD values.

The bits of a fundamental data type are numbered from right to left with zero and 
length – 1 used to identify the least and most significant bits, respectively. Fundamental 
data types larger than a single byte are stored in consecutive memory locations starting 
with the least-significant byte at the lowest memory address. This type of in-memory data 
arrangement is called little endian. Figure 1-1 illustrates the bit-numbering and byte-
ordering schemes that are used by the fundamental data types.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1 ■ X86-32 Core arChiteCture

5

A properly-aligned fundamental data type is one whose address is evenly divisible 
by its size in bytes. For example, a doubleword is properly aligned when it is stored at a 
memory location with an address that is evenly divisible by four. Similarly, quadwords 
are properly aligned at addresses evenly divisible by eight. Unless specifically enabled by 
the operating system, an x86 processor normally does not require proper alignment of 
multi-byte fundamental data types in memory. A notable exception to this rule are the 
x86-SSE and x86-AVX instruction sets, which usually require proper alignment of double 
quadword and quad quadword operands. Chapters 7 and 12 discuss the alignment 
requirements for x86-SSE and x86-AVX operands in greater detail. Regardless of any 
hardware-enforced memory alignment restrictions, it is strongly recommended that 
all multi-byte fundamental data types be properly aligned whenever possible in order 
to avoid potential performance penalties that can occur when the processor accesses 
misaligned data.

Numerical Data Types
A numerical data type is an elementary value such as an integer or floating-point 
number. All numerical data types recognized by the CPU are represented using one of the 
fundamental data types discussed in the previous section. Numerical data types can be 
divided into two subtypes: scalar and packed.
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Figure 1-1. Bit-numbering and byte-ordering schemes used by the fundamental data types
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Scalar data types are used to perform calculations with discrete values. The x86 
platform supports a set of scalar data types that resemble the basic data types available 
in C/C++. These are illustrated in Table 1-2. The x86-32 instruction set intrinsically 
supports operations on 8-, 16-, and 32-bit scalar integers, both signed and unsigned. 
A few instructions are also capable of manipulating 64-bit values. Comprehensive 
support for 64-bit values, however, requires x86-64 mode.

Table 1-2. X86 Numerical Data Types

Type Size in Bits Equivalent C/C++ Type

Signed integers 8 char

16 short

32 int, long

64 long long

Unsigned integers 8 unsigned char

16 unsigned short

32 unsigned int, unsigned long

64 unsigned long long

Floating-point 32 float

64 double

80 long double

The x87 FPU supports three different scalar floating-point encodings ranging in 
length from 32 to 80 bits. X86 assembly language functions can readily use any of the 
supported encodings. It should be noted, however, that C/C++ support for the 80-bit 
double extended-precision floating-point data encoding is not universal. Some compilers 
use the 64-bit encoding for both double and long double. Chapter 3 examines the x87 
FPU and its supported data types in greater detail.

Packed Data Types
The x86 platform supports a variety of packed data types, which are employed to perform 
SIMD calculations using either integers or floating-point values. For example, a 64-bit 
wide packed data type can be used to hold eight 8-bit integers, four 16-bit integers, or 
two 32-bit integers. A 256-bit wide packed data type can hold a variety of data elements 
including 32 8-bit integers, 8 single-precision floating-point values, or 4 double-precision 
floating-point values. Table 1-3 lists the valid packed data type sizes along with the 
corresponding data element types and maximum possible number of data elements.
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As discussed earlier in this chapter, a number of SIMD enhancements have been 
added to the x86 platform over the years, starting with MMX technology and most 
recently with the addition of AVX2. One challenge of these periodic SIMD enhancements 
is that the packed data types described in Table 1-3 and their associated instruction sets 
are not universally supported by all processors. Developers need to keep this in mind 
when coding software modules using x86 assembly language. Fortunately, methods are 
available to determine at run-time the specific SIMD features that a processor supports.

Miscellaneous Data Types
The x86 platform also supports several miscellaneous data types including strings, bit 
fields, bit strings, and binary-coded decimal values.

An x86 string is contiguous block of bytes, words, or doublewords. X86 strings are used 
to support text-based data types and processing operations. For example, the C/C++ data 
types char and wchar_t are usually implemented using an x86 byte or word, respectively. 
X86 strings are also employed to perform processing operations on arrays, bitmaps, and 
similar contiguous-block data types. The x86 instruction set includes instructions that can 
perform compare, load, move, scan, and store operations using strings.

A bit field is a contiguous sequence of bits and is used as a mask value by some 
instructions. A bit field can start at any bit position of a byte and contain up to 32 bits.

Table 1-3. X86 Packed Data Types

Packed Size (Bits) Data Element Type Number of Items

64 8-bit integers 8

16-bit integers 4

32-bit integers 2

128 8-bit integers 16

16-bit integers 8

32-bit integers 4

64-bit integers 2

Single-precision floating-point 4

Double-precision floating-point 2

256 8-bit integers 32

16-bit integers 16

32-bit integers 8

64-bit integers 4

Single-precision floating-point 8

Double-precision floating-point 4
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A bit string is a contiguous sequence of bits containing up to 2^32 – 1 bits. The x86 
instruction set includes instructions that can clear, set, scan, and test individual bits 
within a bit string.

Finally, a binary-coded-decimal (BCD) type is a representation of a decimal digit  
(0 – 9) using a 4-bit unsigned integer. The x86-32 instruction set includes instructions  
that perform basic arithmetic using packed (two BCD digits per byte) and unpacked  
(one BCD digit per byte) BCD values. The x87 FPU is also capable of loading and storing 
80-bit packed BCD values to and from memory.

Internal Architecture
From the perspective of a running program, the internal architecture of an x86-32 
processor can be logically partitioned into several distinct execution units. These include 
the core execution unit, the x87 FPU, and the SIMD execution units. By definition, an 
executing task must use the computational resources provided by the core execution unit. 
Using the x87 FPU or any of the SIMD execution units is optional. Figure 1-2 illustrates 
the internal architecture of an x86-32 processor.
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Figure 1-2. X86-32 internal architecture
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The remainder of this section examines the x86-32 core execution unit in greater 
detail. It starts an exploration of the unit’s register sets, including its segment registers, 
general-purpose registers, status flags register, and instruction pointer. This is followed 
by a discussion of instruction operands and memory addressing modes. The remaining 
execution units are examined later in this book. Chapter 3 explores the internal 
architecture of the x87 FPU, while Chapters 5, 7, and 12 delve into the architectural 
intricacies of MMX, x86-SSE, and x86-AVX, respectively.

Segment Registers
The x86-32 core execution unit uses segment registers to define a logical memory model 
for program execution and data storage. An x86 processor contains six segment registers 
that designate blocks of memory for code, data, and stack space. When operating in 
x86-32 protected mode, a segment register contains a segment selector, which is used 
as an index into a segment descriptor table that defines the segment’s operational 
characteristics. A segment’s operational characteristics include its size, type (code or 
data), and access rights (read or write). Segment register initialization and management 
is normally handled by the operating system. Most x86-32 application programs are 
written without any direct knowledge of how the segment registers are programmed.

General-Purpose Registers
The x86-32 core execution unit contains eight 32-bit general-purpose registers. These 
registers are primarily used to perform logical, arithmetic, and address calculations. They 
also can be employed for temporary storage and as pointers to data items that are stored 
in memory. Figure 1-3 shows the complete set of general-purpose registers along with the 
names that are used to specify a register as an instruction operand. Besides supporting 
32-bit operands, the general-purpose registers also can perform calculations using 8-bit 
or 16-bit operands. For example, a function can use registers AL, BL, CL, and DL to 
perform 8-bit calculations in the low-order bytes of registers EAX, EBX, ECX, and EDX, 
respectively. Similarly, the registers AX, BX, CX, and DX can be used to carry out 16-bit 
calculations in the low-order words.
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Despite their designation as general-purpose registers, the x86-32 instruction set 
imposes some noteworthy restrictions on how they can be used. Many instructions either 
require or implicitly use specific registers as operands. For example, some variations of 
the imul (Signed Multiply) and idiv (Signed Divide) instructions use the EDX register to 
hold the high-order doubleword of a product or dividend. The string instructions require 
that the addresses of the source and destination operands be placed in the ESI and EDI 
registers, respectively. String instructions that include a repeat prefix must use ECX as 
the count register, while variable bit shift and rotate instructions must load the bit count 
value into the CL register.

The processor uses the ESP register to support stack-related operations such as 
function calls and returns. The stack itself is simply a contiguous block of memory that 
is assigned to a process or thread by the operating system. Application programs can 
also use the stack to pass function arguments and store temporary data. Register ESP 
always points to the stack’s top-most item. While it is possible to use the ESP register as a 
general-purpose register, such use is impractical and strongly discouraged. Register EBP 
is typically used as a base pointer to access data items that are stored on the stack (ESP 
can also be used as a base pointer to access data items on the stack). When not employed 
as a base pointer, EBP can be used as a general-purpose register.

The mandatory or implicit use of specific registers by some instructions is a legacy 
design pattern that dates back to the 8086, ostensibly to improve code density. What this 
means from a modern programing perspective is that certain register usage conventions 
tend be observed when writing x86-32 assembly code. Table 1-4 lists the general-purpose 
registers and their conventional uses.
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EDX
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EDI

EBP
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SP

BX
BLBH

CX
CLCH
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8-Bit and 16-Bit 
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Figure 1-3. X86-32 general-purpose registers
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A couple of items to note: The usage conventions shown in Table 1-4 are common 
practices, but are not compulsory. The x86-32 instruction set does not, for example, 
prevent an executing task from using the ECX register as a memory pointer despite 
its conventional use as a counter. Also, x86 assemblers do not enforce these usage 
conventions. Given the limited number general-purpose registers available in x86-32 
mode, it is frequently necessary to use a general-purpose register in a non-conventional 
manner. Finally, it should be noted that the usage conventions outlined in Table 1-4 
are not the same as a calling convention defined by a high-level language such as C++. 
Calling conventions must be observed and are discussed further in Chapter 2.

EFLAGS Register
The EFLAGS register contains a series of status bits that the processor uses to indicate the 
results of logical and arithmetic operations. It also contains a collection of system control 
bits that are primarily used by operating systems. Table 1-5 shows the organization of the 
bits in the EFLAGS register.

Table 1-4. Conventional Uses for General-Purpose Registers

Register Conventional Use

EAX Accumulator

EBX Memory pointer, base register

ECX Loop control, counter

EDX Integer multiplication, integer division

ESI String instruction source pointer, index register

EDI String instruction destination pointer, index register

ESP Stack pointer

EBP Stack frame base pointer
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For application programs, the most important bits in the EFLAGS register are the 
following status flags: auxiliary carry flag (AF), carry flag (CF), overflow flag (OF), parity 
flag (PF), sign flag (SF), and zero flag (ZF). The auxiliary carry flag denotes a carry or 
borrow condition during binary-coded decimal addition or subtraction. The carry flag is 
set by the processor to signify an overflow condition when performing unsigned integer 
arithmetic. It is also used by some register rotate and shift instructions. The overflow flag 
signals that the result of a signed integer operation is too small or too large. The parity flag 

Table 1-5. EFLAGS Register

Bit Name Symbol Use

0 Carry Flag CF Status

1 Reserved 1

2 Parity Flag PF Status

3 Reserved 0

4 Auxiliary Carry Flag AF Status

5 Reserved 0

6 Zero Flag ZF Status

7 Sign Flag SF Status

8 Trap Flag TF System

9 Interrupt Enable Flag IF System

10 Direction Flag DF Control

11 Overflow Flag OF Status

12 I/O Privilege Level Bit 0 IOPL System

13 I/O Privilege Level Bit 1 IOPL System

14 Nested Task NT System

15 Reserved 0

16 Resume Flag RF System

17 Virtual 8086 Mode VM System

18 Alignment Check AC System

19 Virtual Interrupt Flag VIF System

20 Virtual Interrupt Pending VIP System

21 ID Flag ID System

22 - 31 Reserved 0
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indicates whether the least-significant byte of a result contains an even number of 1 bits. 
The sign and zero flags are set by logical and arithmetic instructions to signify a negative, 
zero, or positive result.

The EFLAGS register also contains a control bit called the direction flag (DF). An 
application program can set or reset the direction flag, which defines the auto increment 
direction (0 = low-to-high addresses, 1 = high-to-low addresses) of the EDI and ESI 
registers during execution of the string instructions. The remaining bits in the EFLAGS 
register are used exclusively by the operating system to manage interrupts, restrict I/O 
operations, and support program debugging. They should never be modified by an 
application program. Reserved bits should also never be modified and no assumptions 
should ever be made regarding the state of any reserved bit.

Instruction Pointer
The instruction pointer register (EIP) contains the offset of the next instruction to be 
executed. The EIP register is implicitly manipulated by control-transfer instructions.  
For example, the call (Call Procedure) instruction pushes the contents of the EIP register 
onto the stack and transfers program control to the address designated by the specified 
operand. The ret (Return from Procedure) instruction transfers program control by 
popping the top-most item off the stack into the EIP register.

The jmp (Jump) and jcc (Jump if Condition is Met) instructions also transfer program 
control by modifying the contents of the EIP register. Unlike the call and ret instructions, 
all x86-32 jump instructions are executed independent of the stack. It should also be noted 
that it is not possible for an executing task to directly access the EIP register.

Instruction Operands
Most x86-32 instructions use operands, which designate the specific values that an 
instruction will act upon. Nearly all instructions require one or more source operands 
along with a single destination operand. Most instructions also require the programmer 
to explicitly specify the source and destination operands. There are, however, a number of 
instructions where the operands are either implicitly specified or forced by the instruction.

There are three basic types of operands: immediate, register, and memory. An 
immediate operand is a constant value that is encoded as part of the instruction. These 
are typically used to specify constant arithmetic, logical, or offset values. Only source 
operands can be used as immediate operands. Register operands are contained in a 
general-purpose register. A memory operand specifies a location in memory, which can 
contain any of the data types described earlier in this chapter. An instruction can specify 
either the source or destination operand as a memory operand, but not both. Table 1-6 
contains several examples of instructions that employ the various operand types.
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The mul (Unsigned Multiply) instruction that is shown in Table 1-6 is an example of 
implicit operand use. In this instance, implicit register EAX and explicit register EBX are 
used as the source operands; the implicit register pair EDX:EAX is used as the destination 
operand. The multiplicative product’s high-order and low-order doublewords are stored 
in EDX and EAX, respectively.

The word ptr text that is used in the final memory example is an assembler operator 
that acts like a C++ cast operator. In this instance, the value 12 is subtracted from a 16-bit 
value whose memory location is specified by the contents of the EDI register. Without 
the operator, the assembly language statement is ambiguous since the assembler can’t 
ascertain the size of the operand pointed to by the EDI register. In this case, the value 
could also be an 8-bit or 32-bit sized operand. The programming chapters of this book 
contain additional information regarding assembler operator and directive use.

Memory Addressing Modes
The x86-32 instruction set supports using up to four separate components to specify a 
memory operand. The four components include a fixed displacement value, a base register, 
an index register, and a scale factor. Subsequent to each instruction fetch that specifies a 
memory operand, the processor calculates an effective address in order to determine the 
final memory address of the operand. An effective address is calculated as follows:

Effective Address = BaseReg + IndexReg * ScaleFactor + Disp

Table 1-6. Examples of Instruction Operands

Type Example Equivalent C/C++ Statement

Immediate mov eax,42 eax = 42

imul ebx,11h ebx *= 0x11

xor dl,55h dl ^= 0x55

add esi,8 esi += 8

Register mov eax,ebx eax = ebx

inc ecx ecx += 1

add ebx,esi ebx += esi

mul ebx edx:eax = eax * ebx

Memory mov eax,[ebx] eax = *ebx

add eax,[val1] eax += *val1

or ecx,[ebx+esi] ecx |= *(ebx + esi)

sub word ptr [edi],12 *(short*)edi -= 12
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The base register (BaseReg) can be any general-purpose register; the index register 
(IndexReg) can be any general-purpose register except ESP; displacement (Disp) values are 
constant offsets that are encoded within the instruction; valid scale factors (ScaleFactor) 
include 1, 2, 4, and 8. The size of the final effective address (EffectiveAddress) is always 32 
bits. It is not necessary for an instruction to explicitly specify all of the components that the 
processor uses to calculate an effective address. The x86-32 instruction set supports eight 
different memory-operand addressing forms, as listed in Table 1-7.

Table 1-7. Memory Operand Addressing Forms

Addressing Form Example

Disp mov eax,[MyVal]

BaseReg mov eax,[ebx]

BaseReg + Disp mov eax,[ebx+12]

Disp + IndexReg * SF mov eax,[MyArray+esi*4]

BaseReg + IndexReg mov eax,[ebx+esi]

BaseReg + IndexReg + Disp mov eax,[ebx+esi+12]

BaseReg + IndexReg * SF mov eax,[ebx+esi*4]

BaseReg + IndexReg * SF + Disp mov eax,[ebx+esi*4+20]

Table 1-7 also shows examples of how to use the various memory-operand addressing 
forms with the mov (Move) instruction. In these examples, the doubleword value at the 
memory location specified by the effective address is copied into the EAX register.

Most of the addressing forms shown in Table 1-7 can be used to reference common data 
types and structures. For example, the simple displacement form is often used to access a 
global or static variable. The base register form is analogous to a C++ pointer and is used to 
reference a single value. Individual fields within a structure can be specified using a based 
register and a displacement. The index register forms are useful for accessing an element 
within an array. The scale factors facilitate easy access to the elements of arrays that contain 
fundamental data types such as integers, single-precision floating-point values, and double-
precision floating point values. Finally, the use of a base register in combination with an index 
register is useful for accessing the elements of a two-dimensional array.

Instruction Set Overview
The following section presents a brief overview of the x86-32 instruction set. The purpose 
of this section is to provide you with a general understanding of the x86-32 instruction 
set. The instruction descriptions are deliberately succinct since complete details of each 
instruction including execution particulars, valid operands, affected flags, and exceptions 
are readily available in Intel’s and AMD’s reference manuals. Appendix C contains a 
list of these manuals. The programming examples of Chapter 2 also contain additional 
comments regarding the use of these instructions.
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Many x86-32 instructions update one or more of the status flags in the EFLAGS register. 
As discussed earlier in this chapter, the status flags provide additional information about the 
results of an operation. The jcc, cmovcc (Conditional Move), and setcc (Set Byte on Condition) 
instructions use what are called condition codes to test the status flags either individually or 
in multiple-flag combinations. Table 1-8 lists the condition codes, mnemonic suffixes, and 
the corresponding flags used by these instructions. Note that in the column labeled “Test 
Condition” and in the impending instruction descriptions, the C++ operators ==, !=, &&, and || 
are used to signify equality, inequality, logical AND, and logical OR, respectively.

Table 1-8. Condition Codes, Mnemonic Suffixes, and Test Conditions

Condition Code Mnemonic Suffix Test Condition

Above

Neither below or equal

A

NBE

CF == 0 && ZF == 0

Above or equal

Not below

AE

NB

CF == 0

Below

Neither above nor equal

B

NAE

CF == 1

Below or equal

Not above

BE

NA

CF == 1 || ZF == 1

Equal

Zero

E

Z

ZF == 1

Not equal

Not zero

NE

NZ

ZF == 0

Greater

Neither less nor equal

G

NLE

ZF == 0 && SF == OF

Greater or equal

Not less

GE

NL

SF == OF

Less

Neither greater nor equal

L

NGE

SF != OF

Less or equal

Not greater

LE

NG

ZF == 1 || SF != OF

Sign S SF == 1

Not sign NS SF == 0

(continued)
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Condition Code Mnemonic Suffix Test Condition

Carry C CF == 1

Not carry NC CF == 0

Overflow O OF == 1

Not overflow NO OF == 0

Parity

Parity even

P

PE

PF == 1

Not parity

Parity odd

NP

PO

PF == 0

Table 1-8. (continued)

Many of the condition codes shown in Table 1-8 include alternate mnemonics, 
which are used to improve program readability. When using one of the aforementioned 
conditional instructions, condition-codes containing the words “above” and “below” 
are employed for unsigned-integer operands, while the words “greater” and “less” are 
used for signed-integer operands. If the condition code definitions in Table 1-7 seem a 
little confusing or abstract, don’t worry. You’ll see a plethora of condition code examples 
throughout this book.

In order to assist you in understanding the x86-32 instruction set, the instructions 
have been grouped into the following functional categories:

Data transfer•	

Data comparison•	

Data conversion•	

Binary arithmetic•	

Logical•	

Rotate and shift•	

Byte set and bit strings•	

String•	

Flags•	

Control transfer•	

Miscellaneous•	

In the instruction descriptions that follow, GPR is used as an abbreviation for 
general-purpose register.
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Binary Arithmetic
The binary arithmetic group contains instructions that perform addition, subtraction, 
multiplication, and division using signed and unsigned integers. It also contains 
instructions that are used to perform adjustments on packed and unpacked BCD values. 
Table 1-10 describes the binary arithmetic instructions.

Data Transfer
The data-transfer group contains instructions that copy or exchange data between two 
general-purpose registers or between a general-purpose register and memory. Both 
conditional and unconditional data moves are supported. The group also includes 
instructions that push data onto or pop data from the stack. Table 1-9 summarizes the 
data-transfer instructions.

Table 1-9. Data-Transfer Instructions

Mnemonic Description

mov Copies data from/to a GPR or memory location to/from a GPR 
or memory location. The instruction also can be used to copy an 
immediate value to a GPR or memory location.

cmovcc Conditionally copies data from a memory location or GPR to a GPR. 
The cc in the mnemonic denotes a condition code from Table 1-8.

push Pushes a GPR, memory location, or immediate value onto the stack. 
This instruction subtracts four from ESP and copies the specified 
operand to the memory location pointed to by ESP.

pop Pops the top-most item from the stack. This instruction copies the 
contents of the memory location pointed to by ESP to the specified 
GPR or memory location; it then adds four to ESP.

pushad Pushes the contents of all eight GPRs onto the stack.

popad Pops the stack to restore the contents of all GPRs. The stack value for 
ESP is ignored.

xchg Exchanges data between two GPRs or a GPR and a memory location. 
The processor uses a locked bus cycle if the register-memory form of 
the instruction is used.

xadd Exchanges data between two GPRs or a GPR and a memory location. 
The sum of the two operands is then saved to the destination operand.

movsx Sign-extends the contents of a GPR or memory location and copies 
the result value to a GPR.

movzx Zero-extends the contents of a GPR or memory location and copies 
the result to a GPR.
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Table 1-10. Binary Arithmetic Instructions

Mnemonic Description

add Adds the source operand and destination operand. This instruction can be 
used for both signed and unsigned integers.

adc Adds the source operand, destination operand, and the state of EFLAGS.CY. 
This instruction can be used for both signed and unsigned integers.

sub Subtracts the source operand from the destination operand. This 
instruction can be used for both signed and unsigned integers.

sbb Subtracts the sum of the source operand and EFLAGS.CY from the destination 
operand. This instruction can be used for both signed and unsigned integers.

imul Performs a signed multiply between two operands. This instruction 
supports multiple forms, including a single source operand (with AL, AX, 
or EAX as an implicit operand), an explicit source and destination operand, 
and a three-operand variant (immediate source, memory/register source, 
and GPR destination).

mul Performs an unsigned multiply between the source operand and the AL, AX, or 
EAX register. The results are saved in the AX, DX:AX, or EDX:EAX registers.

idiv Performs a signed division using AX, DX:AX, or EDX:EAX as the dividend 
and the source operand as the divisor. The resultant quotient and 
remainder are saved in register pair AL:AH, AX:DX, or EAX:EDX.

div Performs an unsigned division using AX, DX:AX, or EDX:EAX as the 
dividend and the source operand as the divisor. The resultant quotient and 
remainder are saved in register pair AL:AH, AX:DX, or EAX:EDX.

inc Adds one to the specified operand. This instruction does not affect the value 
of EFLAGS.CY.

dec Subtracts one from the specified operand. This instruction does not affect 
the value EFLAGS.CY.

neg Computes the two’s complement value of the specified operand.

daa Adjusts the contents of the AL register following an add instruction using 
packed BCD values in order to produce a correct BCD result.

das Adjusts the contents of the AL register following a sub instruction using 
packed BCD values in order to produce a correct BCD result.

aaa Adjusts the contents of the AL register following an add instruction using 
unpacked BCD values in order to produce a correct BCD result.

aas Adjusts the contents of the AL register following a sub instruction using 
unpacked BCD values in order to produce a correct BCD result.

aam Adjusts the contents of the AX register following a mul instruction using 
unpacked BCD values in order to produce a correct BCD result.

aad Adjusts the contents of the AX register to prepare for an unpacked BCD 
division. This instruction is applied before a div instruction that uses 
unpacked BCD values.
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Data Comparison
The data-comparison group contains instructions that compare two operands and set 
various status flags, which indicate the results of the comparison. Table 1-11 lists the 
data-comparison instructions.

Table 1-11. Data-Comparison Instructions

Mnemonic Description

cmp Compares two operands by subtracting the source operand from the 
destination and then sets the status flags. The results of the subtraction 
are discarded. The cmp instruction is typically used before a jcc, cmovcc, 
or setcc instruction.

cmpxchg Compares the contents of register AL, AX, or EAX with the destination 
operand and performs an exchange based on the results.

cmpxchg8b Compares EDX:EAX with an 8-byte memory operand and performs an 
exchange based on the results.

Data Conversion
The data-conversion group contains instructions that are used to sign-extend an integer value 
in the AL, AX, or EAX register. A sign-extension operation replicates a source operand’s sign bit 
to the high-order bits of the destination operand. For example, sign-extending the 8-bit value 
0xe9 (-23) to 16-bits yields 0xffe9. This group also contains instructions that support little-endian 
to big-endian conversions. Table 1-12 details the data-conversion instructions.

Table 1-12. Data-Conversion Instructions

Mnemonic Description

cbw Sign-extends register AL and saves the results in register AX.

cwde Sign-extends register AX and saves the results in register EAX.

cwd Sign-extends register AX and saves the results in register pair DX:AX.

cdq Sign-extends register EAX and saves the results in register pair EDX:EAX.

bswap Reverses the bytes of a value in a 32-bit GPR, which converts the original 
value from little-endian ordering to big-endian ordering or vice versa.

movbe Loads the source operand into a temporary register, reverses the 
bytes, and saves the result to the destination operand. This instruction 
converts the source operand from little-endian to big-endian format or 
vice versa. One of the operands must be a memory location; the other 
operand must be a GPR.

xlatb Converts the value contained in the AL register to another value using a 
lookup table pointed to by the EBX register.
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Logical
The logical group contains instructions that perform bitwise logical operations on the 
specified operands. The processor updates status flags EFLAGS.PF, EFLAGS.SF, and 
EFLAGS.ZF to reflect the results of these instructions except where noted. Table 1-13 
summarizes the instructions in the logical group.

Table 1-13. Logical Instructions

Mnemonic Description

and Calculates the bitwise AND of the source and destination operands.

or Calculates the bitwise inclusive OR of the source and destination operands.

xor Calculates the bitwise exclusive OR of the source and destination operands.

not Calculates the one’s complement of the specified operand. This instruction  
does not affect the status flags.

test Calculates the bitwise AND of the source and destination operand and  
discards the results. This instruction is used to non-destructively  
set the status flags.

Rotate and Shift
The rotate and shift group contains instructions that perform operand rotations and 
shifts. Several forms of these instructions are available that support either single-bit or 
multiple-bit operations. Multiple-bit rotations and shifts use the CL register to specify the 
bit count. Rotate operations can be performed with or without the carry flag. Table 1-14 
lists the rotate and shift instructions.

Table 1-14. Rotate and Shift Instructions

Mnemonic Description

rcl Rotates the specified operand to the left. EFLAGS.CY flag is included 
as part of the rotation.

rcr Rotates the specified operand to the right. EFLAGS.CY flag is included 
as part of the rotation.

rol Rotates the specified operand to the left.

ror Rotates the specified operand to the right.

sal/shl Performs an arithmetic left shift of the specified operand.

sar Performs an arithmetic right shift of the specified operand.

shr Performs a logical right shift of the specified operand.

shld Performs a double-precision logical left shift using two operands.

shrd Performs a double-precision logical right shift using two operands.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1 ■ X86-32 Core arChiteCture

22

Byte Set and Bit String
The byte set and bit string instruction group contains instructions that conditionally set 
a byte value. This group also contains the instructions that process bit strings. Table 1-15 
describes the byte set and bit string instructions.

Table 1-15. Byte Set and Bit String Instructions

Mnemonic Description

setcc Sets the destination byte operand to 1 if the condition code specified by 
cc is true; otherwise the destination byte operand is set to 0.

bt Copies the designated test bit to EFLAGS.CY.

bts Copies the designated test bit to EFLAGS.CY. The test bit is then set to 1.

btr Copies the designated test bit to EFLAGS.CY. The test bit is then set to 0.

btc Copies the designated test bit to EFLAGS.CY. The test bit is then set to 0.

bsf Scans the source operand and saves to the destination operand the 
index of the least-significant bit that is set to 1. If the value of the source 
operand is zero, EFLAGS.ZF is set to 1; otherwise, EFLAGS.ZF is set to 0.

bsr Scans the source operand and saves to the destination operand the 
index of the most-significant bit that is set to 1. If the value of the source 
operand is zero, EFLAGS.ZF is set to 1; otherwise, EFLAGS.ZF is set to 0.

String
The string-instruction group contains instructions that perform compares, loads, moves, 
scans, and stores of text strings or blocks of memory. All of the string instructions use 
register ESI as the source pointer and register EDI as the destination pointer. The string 
instructions also increment or decrement these registers depending on the value of the 
direction flag (EFLAGS.DF). Repeated execution of a string instruction using register ECX 
as a counter is possible with a rep, repe/ repz, or repne / repnz prefix. Table 1-16 lists the 
string instructions.
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Flag Manipulation
The flag-manipulation group contains instructions that can be used to manipulate some 
of the status flags in the EFLAGS register. Table 1-17 lists these instructions.

Table 1-16. String Instructions

Mnemonic Description

cmpsb
cmpsw
cmpsd

Compares the values at the memory locations pointed to by registers ESI 
and EDI; sets the status flags to indicate the results.

lodsb
lodsw
lodsd

Loads the value at the memory location pointed to by register ESI into the 
Al, AX, or EAX register.

movsb
movsw
movsd

Copies the value of the memory location specified by register ESI to the 
memory location specified by register EDI.

scasb
scasw
scasd

Compares the value of the memory location specified by register EDI with 
the value contained in register AL, AX, or EAX; sets the status flags based 
on the comparison results.

stosb
stosw
stosd

Stores the contents of register AL, AX, or EAX to the memory location 
specified by register EDI.

rep Repeats the specified string instruction while the condition ECX != 0 is true.

repe
repz

Repeats the specified string instruction while the condition ECX != 0 && 
ZF == 1 is true.

repne
repnz

Repeats the specified string instruction while the condition ECX != 0 && 
ZF == 0 is true.

Table 1-17. Flag-Manipulation Instructions

Mnemonic Description

clc Sets EFLAGS.CY to 0.

stc Sets EFLAGS.CY to 1.

cmc Toggles the state of EFLAGS.CY.

std Sets EFLAGS.DF to 1.

cld Sets EFLAGS.DF to 0.

(continued)
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Control Transfer
The control-transfer group contains instructions that perform jumps, function calls 
and returns, and looping constructs. Table 1-18 summarizes the control-transfer 
instructions.

Mnemonic Description

lahf Loads register AH with the values of the status flags. The bits of register AH  
(most significant to least significant) are loaded as follows: EFLAGS.SF, 
EFLAGS. ZF, 0, EFLAGS.AF, 0, EFLAGS.PF, 1, EFLAGS.CF.

sahf Stores register AH to the status flags. The bits of register AH (most 
significant to least significant) are stored to the status flags as follows: 
EFLAGS.SF, EFLAGS.ZF, 0, EFLAGS.AF, 0, EFLAGS.PF, 1, EFLAGS.CF (a zero 
or one indicates the actual value used instead of the corresponding bit in 
register AH).

pushfd Pushes the EFLAGS register onto the stack.

popfd Pops the top most value from the stack and copies it to the EFLAGS 
register. Note that the reserved bits in the EFLAGS register are not 
affected by this instruction.

Table 1-17. (continued)

Table 1-18. Control-Transfer Instructions

Mnemonic Description

jmp Performs an unconditional jump to the memory location specified by 
the operand.

jcc Performs a conditional jump to the memory location specified by the 
operand if the identified condition is true. The cc denotes a condition-
code mnemonic  fromTable 1-8.

call Pushes the contents of register EIP onto the stack and then performs  
an unconditional jump to the memory location that is specified  
by the operand.

ret Pops the target address off the stack and then performs an 
unconditional jump to that address.

enter Creates a stack frame that enables to a function’s parameters and local 
data by initializing the EBP and ESP registers.

leave Removes the stack frame that was created using an enter instruction 
by restoring the caller’s EBP and ESP registers.

(continued)
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Miscellaneous
The miscellaneous group contains instructions that do not fit into one of the preceding 
categories. These instructions are described in Table 1-19.

Mnemonic Description

jecxz Performs a jump to the specified memory location if the condition  
ECX == 0 is true.

loop Subtracts one from register ECX and jumps to the specified memory 
location if the condition ECX == 0 is true.

loope
loopz

Subtracts one from register ECX and jumps to the specified memory 
location if the condition ECX != 0 && ZF == 1 is true.

loopne
loopnz

Subtracts one from register ECX and jumps to the specified memory 
location if the condition ECX != 0 && ZF == 0 is true.

Table 1-18. (continued)

Table 1-19. Miscellaneous Instructions

Mnemonic Description

bound Performs a validation check of an array index. If an out-of-bounds 
condition is detected, the processor generates an interrupt.

lea Computes the effective address of the source operand and saves it to 
the destination operand, which must be a general-purpose register.

nop Advances the instruction pointer (EIP) to the next instruction. No other 
registers or flags are modified.

cpuid Obtains processor identification and feature information. This 
instruction can be used to ascertain at run-time which SIMD 
extensions are available. It also can be used to determine specific 
hardware features that the processor supports.

Summary
This chapter examined the core architecture of the x86-32 platform, including its data types 
and internal architecture. It also reviewed those portions of the x86-32 instruction set that 
are most useful in application programs. If this is your first encounter with the internal 
architecture of x86 platform or assembly language programming, some of the presented 
material may seem a little esoteric. As mentioned in the Introduction, all of the chapters 
in this book are either instructional or structured for hands-on learning. The next chapter 
focuses on the practical aspects of x86 assembly language programming using sample code 
and concise examples that expand on many of the concepts discussed here.
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Chapter 2

X86-32 Core Programming

The previous chapter focused on the fundamentals of the x86-32 platform, including its 
data types, execution environment, and instruction set. This chapter concentrates on 
the basics of x86-32 assembly language programming. More specifically, you’ll examine 
how to code x86 assembly language functions that can be called from a C++ program. 
You’ll also learn about the semantics and syntax of x86 an assembly language source code 
file. The sample programs and accompanying remarks of this chapter are intended to 
complement the instructive material presented in Chapter 1.

This chapter’s content is organized as follows. The first section describes how to code 
a simple assembly language function. You’ll explore the essentials of passing arguments 
and return values between functions written in C++ and x86 assembly language. You’ll 
also consider some of the issues related to x86-32 instruction set use and learn a little bit 
about the Visual Studio development tools.

The next section discusses the fundamentals of x86-32 assembly language 
programming. It presents additional details regarding passing arguments and using 
return values between functions, including function prologs and epilogs. This section 
also reviews several universal x86 assembly language programming topics, including 
memory addressing modes, variable use, and conditional instructions. Following the 
section on assembly language fundamentals is a section that discusses array use. Virtually 
all applications employ arrays to some degree and the content of this section illustrates 
assembly language programming techniques using one-dimensional and  
two-dimensional arrays.

Many application programs also use structures to create and manage user-defined 
data types. Structure use is illustrated in the next section and includes a discussion 
of several issues that developers need to be aware of when using structures between 
C++ and assembly-language functions. The final section of this chapter demonstrates 
using the x86’s string instructions. These instructions are commonly used to perform 
operations with text strings, but they also can be used to process the elements of an array.

It should be noted that the primary purpose of the sample code presented in 
this chapter is to illustrate x86-32 instruction set use and basic assembly language 
programming techniques. All of the assembly language code is straightforward, but not 
necessarily optimal since understanding optimized assembly language code can be 
challenging, especially for beginners. The sample code that’s discussed in later chapters 
places more emphasis on efficient coding techniques. Chapters 21 and 22 also review a 
number of strategies that can be used to create efficient assembly language code.
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Getting Started
This section examines a couple of simple programs that illustrate how to pass data 
between a C++ function and an x86-32 assembly language function. You’ll also learn how 
to use a few common x86-32 assembly language instructions and some basic assembler 
directives. As mentioned in the Introduction, all of the sample code discussed in this 
book was created using Microsoft’s Visual C++ and Macro Assembler (MASM), which are 
included with Visual Studio. Before you take a look at the first sample program, you need 
to learn a few requisites about these development tools.

Visual Studio uses entities called solutions and projects to help simplify application 
development. A solution is a collection of one or more projects that are used to build 
an application. Projects are container objects that help organize an application’s files, 
including source code, resources, icons, bitmaps, HTML, and XML. A Visual Studio 
project is usually created for each buildable component (e.g. executable file, dynamic-
linked library, static library, etc.) of an application. You can open and load any of the 
sample programs into the Visual Studio development environment by double-clicking 
on its solution (.sln) file. You’ll explore Visual Studio use a bit more later in this section. 
Appendix A also contains a brief tutorial on how to create a Visual Studio solution and 
project that includes both C++ and x86 assembly language files.

First Assembly Language Function
The first x86-32 assembly language program that you’ll examine is called CalcSum. This 
sample program demonstrates some basic assembly language concepts, including 
argument passing, stack use, and return values. It also illustrates how to use several 
common assembler directives.

Before diving into the specifics of sample program CalcSum, let’s review what 
happens when a C++ function calls another function. Like many programming languages, 
C++ uses a stack-oriented architecture to support argument passing and local variable 
storage. In Listing 2-1, the function CalcSumTest calculates and returns the sum of 
three integer values. Prior to the calling of this function from _tmain, the values of a, b, 
and c are pushed onto the stack from right to left. Upon entry into CalcSumTest, a stack 
frame pointer is initialized that facilitates access to the three integer arguments that 
were pushed onto the stack in _tmain. The function also allocates any local stack space 
it needs. Next, CalcSumTest calculates the sum, copies this value into a pre-designated 
return value register, releases any previously-allocated local stack space, and returns to 
_tmain. It should be noted that while the preceding discussion is conceptually accurate,  
a modern C++ compiler is likely to eliminate some if not all of the stack-related operations 
using either local or whole-program optimization.

Listing 2-1. CalcSumTest.cpp

#include "stdafx.h"
 
int CalcSumTest(int a, int b, int c)
{
    return a + b + c;
}
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int _tmain(int argc, _TCHAR* argv[])
{
    int a = 17, b = 11, c = 14;
    int sum = CalcSumTest(a, b, c);
 
    printf("  a:   %d\n", a);
    printf("  b:   %d\n", b);
    printf("  c:   %d\n", c);
    printf("  sum: %d\n", sum);
    return 0;
}
 

The same function-calling procedure outlined in the previous paragraph is also 
used to invoke an assembly language function from C++. Listings 2-2 and 2-3 show the 
C++ and x86 assembly language code for the sample program CalcSum. In this example, 
the assembly language function is named CalcSum_. Since CalcSum_ is your first x86-32 
assembly language function, it makes sense to methodically examine Listings 2-2 and 2-3.

Listing 2-2. CalcSum.cpp

#include "stdafx.h"
 
extern "C" int CalcSum_(int a, int b, int c);
 
int _tmain(int argc, _TCHAR* argv[])
{
    int a = 17, b = 11, c = 14;
    int sum = CalcSum_(a, b, c);
 
    printf("  a:   %d\n", a);
    printf("  b:   %d\n", b);
    printf("  c:   %d\n", c);
    printf("  sum: %d\n", sum);
    return 0;
}

Listing 2-3. CalcSum_.asm

    .model flat,c
    .code
 
; extern "C" int CalcSum_(int a, int b, int c)
;
; Description:  This function demonstrates passing arguments between
;               a C++ function and an assembly language function.
;
; Returns:      a + b + c
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CalcSum_ proc
 
; Initialize a stack frame pointer
        push ebp
        mov ebp,esp
 
; Load the argument values
        mov eax,[ebp+8]                     ; eax = 'a'
        mov ecx,[ebp+12]                    ; ecx = 'b'
        mov edx,[ebp+16]                    ; edx = 'c'
 
; Calculate the sum
        add eax,ecx                         ; eax = 'a' + 'b'
        add eax,edx                         ; eax = 'a' + 'b' + 'c'
 
; Restore the caller's stack frame pointer
        pop ebp
        ret
 
CalcSum_ endp
        end 

Note ■  in the sample code, all assembly language file, function, and public variable 
names include a trailing underscore for easier recognition.

The file CalcSum.cpp looks straightforward but includes a few lines that warrant 
some explanatory comments. The #include "stdafx.h" statement specifies a  
project-specific header file that contains references to frequently used system items. 
Visual Studio automatically generates this file whenever a new C++ console application 
project is created. The line extern "C" int CalcSum_(int a, int, b, int c) is  a 
C++ declaration statement that defines the parameters and return value for the assembly 
language function CalcSum_. It also instructs the compiler to use the C-style naming 
convention for the function CalcSum_, instead of a C++ decorated name (a C++ decorated 
name includes extra characters that help support overloading). The remaining lines in 
CalcSum.cpp perform standard console output using the printf function.

The first few lines of CalcSum_.asm are MASM directives. A MASM directive is 
a statement that instructs the assembler how to perform certain actions. The.model 
flat,c directive tells the assembler to produce code for a flat memory model and to 
use C-style names for public symbols. The .code statement defines the starting point of 
a memory block that contains executable code. You’ll learn how to use other directives 
throughout this chapter. The next few lines are comments; any character that appears 
on a line after a semicolon is ignored by the assembler. The statement CalcSum_ proc 
indicates the start of the function (or procedure). Toward the end of the source file, the 
statement CalcSum_ endp marks the end of the function. It should be noted that the 
proc and endp statements are not executable instructions but assembler directives that 
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denote the beginning and end of a function. The final end statement is another assembler 
directive that signifies the end of statements for the file; the assembler ignores any text 
that appears after the end directive.

The first x86-32 assembly-language instruction of CalcSum_ is push ebp (Push 
Doubleword onto the Stack). This instruction saves the contents of the caller’s EBP register 
on the stack. The next instruction, mov ebp,esp (Move), copies the contents of ESP to 
EBP, which initializes EBP as a stack frame pointer for CalcSum_ and enables access to the 
function’s arguments. Figure 2-1 illustrates the contents of the stack following execution 
of the mov ebp,esp instruction. The saving of the caller’s EBP register and initialization of 
the stack frame pointer form part of a code block known as the function prolog. Function 
prologs are discussed in greater detail later in this chapter.

c

b

a

Return address

Old EBP EBP, ESP

.

.

.

High Memory

Low Memory

+4

+8

+12

+16

�

Figure 2-1. Contents of the stack after initialization of the stack frame pointer. Offsets of 
data on the stack are relative to registers EBP and ESP

Following initialization of the stack frame pointer, the argument values arguments 
a, b, and c are loaded into registers EAX, ECX, and EDX, respectively, using a series of 
mov instructions. The source operand of each mov instruction uses the BaseReg+Disp 
form of memory addressing to reference each value on the stack (see Chapter 1 for 
more information on memory addressing modes). After loading the argument values 
into registers, calculation of the required sum can commence. The add eax,ecx (Add) 
instruction sums registers EAX and ECX, which contain the argument values a and b, and 
saves the result to register EAX. The next instruction add eax,edx adds c to the previously 
computed sum and saves the result in EAX.

An x86-32 assembly language function must use the EAX register to return a 32-bit 
integer value to its calling function. In the current program, no additional instructions are 
required to achieve this since EAX already contains the correct value. The pop ebp (Pop 
a Value from the Stack) instruction restores the caller’s EBP register and is considered 
part of the function’s epilog code. Function epilogs are discussed in greater detail later in 
this chapter. The final ret (Return from Procedure) instruction transfers program control 
back to the calling function _tmain. Output 2-1 shows the results of running the sample 
program CalcSum.
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Output 2-1. Sample Program Calcsum

a:   17
b:   11
c:   14
sum: 42
 

You can view the source code files and run the sample program using Visual Studio 
by performing the following steps:

1. Using the Windows File Explorer, double-click on the 
following Visual Studio solution file:  
Chapter02\CalcSum\CalcSum.sln.

2. If necessary, select VIEW ➤ Solution Explorer to open the 
Solution Explorer Window.

3. In the Solution Explorer Window tree control, expand the 
nodes labeled CalcSum and Source Files.

4. Double-click on CalcSum.cpp and CalcSum_.asm to open the 
files in the editor.

5. To run the program, select DEBUG ➤ Start Without Debugging.

You’ll learn a few more details about Visual Studio use throughout this chapter.

Integer Multiplication and Division
The next sample program that you’ll examine is called IntegerMulDiv. This program 
demonstrates how to perform signed-integer multiplication and division using the imul 
(Signed Multiply) and idiv (Signed Divide) instructions, respectively. It also illustrates 
how to pass data between a C++ function and an assembly language function using 
pointers. You can open the Visual Studio solution file using Windows Explorer by 
doubling-click on the Chapter02\IntegerMulDiv\IntegerMulDiv.sln file.

Listing 2-4 shows the C++ source code for IntegerMulDiv.cpp. Near the top of this 
file is a declaration statement for the assembly language function that will calculate 
the required results. The function IntegerMuDiv_ defines five parameters: two integer 
data values and three integer pointers for the results. This function also returns an 
integer value that indicates a division-by-zero error condition. The remaining lines in 
the file IntegerMulDiv.cpp contain code that exercise the assembly language function 
IntegerMulDiv_ using several test cases.
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Listing 2-4. IntegerMulDiv.cpp

#include "stdafx.h"
 
extern "C" int IntegerMulDiv_(int a, int b, int* prod, int* quo, int* rem);
 
int _tmain(int argc, _TCHAR* argv[])
{
    int a = 21, b = 9;
    int prod = 0, quo = 0, rem = 0;
    int rc;
 
    rc = IntegerMulDiv_(a, b, &prod, &quo, &rem);
    printf(" Input1 - a:   %4d  b:    %4d\n", a, b);
    printf("Output1 - rc:  %4d  prod: %4d\n", rc, prod);
    printf("          quo: %4d  rem:  %4d\n\n", quo, rem);
 
    a = -29;
    prod = quo = rem = 0;
    rc = IntegerMulDiv_(a, b, &prod, &quo, &rem);
    printf(" Input2 - a:   %4d  b:    %4d\n", a, b);
    printf("Output2 - rc:  %4d  prod: %4d\n", rc, prod);
    printf("          quo: %4d  rem:  %4d\n\n", quo, rem);
 
    b = 0;
    prod = quo = rem = 0;
    rc = IntegerMulDiv_(a, b, &prod, &quo, &rem);
    printf(" Input3 - a:   %4d  b:    %4d\n", a, b);
    printf("Output3 - rc:  %4d  prod: %4d\n", rc, prod);
    printf("          quo: %4d  rem:  %4d\n\n", quo, rem);
    return 0;
}
 

Listing 2-5 contains the assembly language function IntegerMulDiv_. The first few 
lines of this function are similar to the first few lines of sample program you studied in the 
previous section; they contain assembler directives that define the memory model and 
the start of a code block. The function prolog contains the necessary instructions to save 
the caller’s EBP register and initialize a stack frame pointer. It also includes a push ebx 
instruction, which saves the caller’s EBX register on the stack. According to the Visual C++ 
calling convention that is defined for 32-bit programs, a called function must preserve 
the values of the following registers: EBX, ESI, EDI, and EBP. These registers are called 
non-volatile registers. The volatile registers EAX, ECX, and EDX need not be preserved 
across function calls. You’ll learn more about the Visual C++ calling convention and its 
requirements throughout the remainder of this chapter.
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Listing 2-5. IntegerMulDiv_.asm

        .model flat,c
        .code
 
; extern "C" int IntegerMulDiv_(int a, int b, int* prod, int* quo, int*
 rem);
;
; Description:  This function demonstrates use of the imul and idiv
;               instructions. It also illustrates pointer usage.
;
; Returns:      0 Error (divisor is zero)
;               1 Success (divisor is zero)
;
; Computes:     *prod = a * b;
;               *quo = a / b
;               *rem = a % b
 
IntegerMulDiv_ proc
 
; Function prolog
        push ebp
        mov ebp,esp
        push ebx
 
; Make sure the divisor is not zero
        xor eax,eax                         ;set error return code
        mov ecx,[ebp+8]                     ;ecx = 'a'
        mov edx,[ebp+12]                    ;edx = 'b'
        or edx,edx
        jz InvalidDivisor                   ;jump if 'b' is zero
 
; Calculate product and save result
        imul edx,ecx                        ;edx = 'a' * 'b'
        mov ebx,[ebp+16]                    ;ebx = 'prod'
        mov [ebx],edx                       ;save product
 
; Calculate quotient and remainder, save results
        mov eax,ecx                         ;eax = 'a'
        cdq                                 ;edx:eax contains dividend
        idiv dword ptr [ebp+12]             ;eax = quo, edx = rem
 
        mov ebx,[ebp+20]                    ;ebx = 'quo'
        mov [ebx],eax                       ;save quotient
        mov ebx,[ebp+24]                    ;ebx = 'rem'
        mov [ebx],edx                       ;save remainder
        mov eax,1                           ;set success return code
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; Function epilog
InvalidDivisor:
        pop ebx
        pop ebp
        ret
IntegerMulDiv_ endp
        end
 

Figure 2-2 shows the contents of the stack subsequent to the push ebx instruction. 
Following the function prolog, the argument values a and b are loaded into registers ECX 
and EDX, respectively. An or edx,edx (Logical Inclusive OR) instruction follows. This 
instruction performs a bitwise inclusive OR of EDX with itself, which updates the status flags 
in the EFLAGS register while preserving the original value in register EDX. The argument 
b is being tested in order to avoid a division-by-zero condition. The jz InvalidDivisor 
(Jump if Zero) instruction that follows is a conditional jump instruction that gets performed 
only if EFLAGS.ZF == 1 is true. The destination operand of this conditional jump instruction 
is a label that specifies the target of the jump (i.e. the next instruction to be executed) if the 
zero flag is set. In the current sample program, the target label InvalidDivisior: is located 
toward the end of the listing just before the first epilog instruction.

rem

quo

prod

b

a

EBP

.

.

.

High Memory

Low Memory

+4

+8

+12

+16

Return Address

Old EBP

Old EBX ESP

+24

+20

�

�

Figure 2-2. Stack contents after execution of push ebx. Offsets shown are relative to 
register EBP

If the value of b is not zero, program execution continues with the imul edx,ecx 
instruction. This instruction multiplies the contents of EDX and ECX using signed-integer 
multiplication, truncates the product to 32-bits, and saves this value in register EDX  
(the one-operand form of  imul with 32-bit operands saves the complete quadword 
product in register pair EDX:EAX). The next instruction, mov ebx,[ebp+16], loads the 
pointer prod into register EBX. This is followed by a mov [ebx],edx instruction that saves 
the previously-calculated multiplicative product to the required memory location.
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The next block of x86-32 instructions in IntegerMulDiv_ calculates a / b and a % b 
using signed-integer division. On an x86 processor, signed-integer division using 32-bit 
wide operands must be performed using a 64-bit wide dividend that is loaded in register 
pair EDX:EAX. The cdq (Convert Doubleword to Quadword) instruction sign-extends 
the contents of EAX, which contains argument a due to the preceding mov eax,ecx 
instruction, into register pair EDX:EAX. The next instruction, idiv dword ptr [ebp+12], 
performs the signed integer division. Note that the idiv instruction specifies only a single 
source operand: the 32-bit (or doubleword) divisor. The contents of register pair EDX:EAX 
is always used as the dividend. It should be noted that the idiv instruction can also be 
used to perform 8-bit and 16-bit signed integer division, which explains the dword ptr 
operator that’s used in the current example. Following execution of the idiv instruction, 
registers EAX and EDX contain the quotient and remainder, respectively. These values are 
then saved to the memory locations specified by the pointers quo and rem.

The final block of code in function IntegerMulDiv_ contains the epilog. Before 
execution of the ret instruction, the caller’s EBX and EBP registers must be restored using pop 
instructions. If an assembly language function fails to properly restore a non-volatile registers 
that it altered, a program crash is likely to occur. This same disastrous outcome is virtually 
guaranteed to happen if ESP points to an unremoved data item on the stack or contains an 
invalid value. The results of the sample program IntegerMulDiv are shown in Output 2-2.

Output 2-2. Sample Program IntegerMulDiv

 Input1 - a:     21  b:       9
Output1 - rc:     1  prod:  189
          quo:    2  rem:     3
 
 Input2 - a:    -29  b:       9
Output2 - rc:     1  prod: -261
          quo:   -3  rem:    -2
 
 Input3 - a:    -29  b:       0
Output3 - rc:     0  prod:    0
          quo:    0  rem:     0

X86-32 Programming Fundamentals
The sample code of the previous section introduced x86-32 assembly language 
programming. In this section, you’ll continue exploring by focusing on the fundamentals 
of x86-32 assembly language programming. You’ll begin by taking a closer look at the 
calling convention that x86-32 assembly language functions must observe in order to be 
callable from C++. This is followed by a sample program that illustrates how to employ 
commonly-used memory addressing modes. Integer addition using various-sized 
operands is the primary emphasis of the next sample program while the final sample 
program surveys condition codes and conditional instructions. The title of this section 
includes the word “fundamentals” and should provide a clue as to its importance. All of 
the presented material encompasses essential topics that aspiring x86 assembly language 
programmers need to fully understand.
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Calling Convention
When writing functions using C++, programmers frequently declare one or more local 
variables that hold temporary values or intermediate results. For example, in Listing 2-6  
you see that the function LocalVars contains three local variables: val1, val2, and 
val3. If the C++ compiler determines that memory is needed on the stack to hold these 
variables or other temporary values, it is usually allocated and released in the function’s 
prolog and epilog, respectively. Assembly-language functions can use this same 
technique to allocate space on the stack for local variables or other transient uses.

Listing 2-6. LocalVars.cpp

double LocalVars(int a, int b)
{
    int val1 = a * a;
    int val2 = b * b;
    double val3 = sqrt(val1 + val2);
 
    return val3;
}
 

The next sample program that you’ll study is called CallingConvention and 
its purpose is twofold. First, it illustrates some additional aspects of the C++ calling 
convention, including allocation of space on the stack for local variable storage. 
Second, the sample program demonstrates proper use of a few more commonly-used 
x86-32 assembly language instructions. The C++ and assembly language listings for 
CallingConvention.cpp and CallingConvention_.asm are shown in Listings 2-7 
and 2-8. The Visual Studio solution file is named Chapter02\CallingConvention\
CallingConvention.sln.

Listing 2-7. CallingConvention.cpp

#include "stdafx.h"
 
extern "C" void CalculateSums_(int a, int b, int c, int* s1, int* s2, int*
 s3);
 
int _tmain(int argc, _TCHAR* argv[])
{
    int a = 3, b = 5, c = 8;
    int s1a, s2a, s3a;
 
    CalculateSums_(a, b, c, &s1a, &s2a, &s3a);
 
    // Compute the sums again so we can verify the results
    // of CalculateSums_().
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    int s1b = a + b + c;
    int s2b = a * a + b * b + c * c;
    int s3b = a * a * a + b * b * b + c * c * c;
 
    printf("Input:  a:   %4d b:   %4d c:   %4d\n", a, b, c);
    printf("Output: s1a: %4d s2a: %4d s3a: %4d\n", s1a, s2a, s3a);
    printf("        s1b: %4d s2b: %4d s3b: %4d\n", s1b, s2b, s3b);
 
    return 0;
}

Listing 2-8. CallingConvention_.asm

        .model flat,c
        .code
 
; extern "C" void CalculateSums_(int a, int b, int c, int* s1, int* s2, int* 
s3);
;
; Description:  This function demonstrates a complete assembly
;               language prolog and epilog.
;
; Returns:  None.
;
; Computes:     *s1 = a + b + c
;               *s2 = a * a + b * b + c * c
;               *s3 = a * a * a + b * b * b + c * c * c
 
CalculateSums_  proc
 
; Function prolog
        push ebp
        mov ebp,esp
        sub esp,12                          ;Allocate local storage space
        push ebx
        push esi
        push edi
 
; Load arguments
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ebx,[ebp+12]                    ;ebx = 'b'
        mov ecx,[ebp+16]                    ;ecx = 'c'
        mov edx,[ebp+20]                    ;edx = 's1'
        mov esi,[ebp+24]                    ;esi = 's2'
        mov edi,[ebp+28]                    ;edi = 's3'
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; Compute 's1'
        mov [ebp-12],eax
        add [ebp-12],ebx
        add [ebp-12],ecx                    ;final 's1' result
 
; Compute 's2'
        imul eax,eax
        imul ebx,ebx
        imul ecx,ecx
        mov [ebp-8],eax
        add [ebp-8],ebx
        add [ebp-8],ecx                     ;final 's2' result
 
; Compute 's3'
        imul eax,[ebp+8]
        imul ebx,[ebp+12]
        imul ecx,[ebp+16]
        mov [ebp-4],eax
        add [ebp-4],ebx
        add [ebp-4],ecx                     ;final 's3' result
 
; Save 's1', 's2', and 's3'
        mov eax,[ebp-12]
        mov [edx],eax                       ;save 's1'
        mov eax,[ebp-8]
        mov [esi],eax                       ;save 's2'
        mov eax,[ebp-4]
        mov [edi],eax                       ;save 's3'
 
; Function epilog
        pop edi
        pop esi
        pop ebx
        mov esp,ebp                         ;Release local storage space
        pop ebp
        ret
CalculateSums_  endp
        end
 

You can see in Listing 2-7 that _tmain calls a function named CalculateSums_. This 
function calculates three sum values using the provided integer arguments. The assembly 
language definition of CalculateSums_ that’s shown in Listing 2-8 begins with the now 
familiar stack frame pointer initialization along with the preservation of all non-volatile 
registers on the stack. Before the non-volatile registers are saved, a sub esp,12 (Subtract) 
instruction is executed. This instruction subtracts 12 from the contents of ESP register, 
which effectively allocates 12 bytes of local (and private) storage space on the stack 
that can be used by the function. The reason a sub instruction is used instead of an add 
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instruction is because the x86’s stack grows downward toward lower-memory addresses. 
The allocation of local storage space on the stack reveals another purpose of the prolog’s 
mov ebp,esp instruction. When using the EBP register to access values on the stack, 
function arguments are always referenced using positive displacement values, while local 
variables are referenced using negative displacement values, as illustrated in Figure 2-3.

c

b

a

Return Address

Old EBP EBP

High Memory

Low Memory

+4

+8

+12

+16

Temp s3

Temp s2

Temp s1

+24

+20s1

s2

s3

Old EBX

Old ESI

Old EDI

+28

-4

-8

-12

ESP

Figure 2-3. Organization of a stack with local storage space

Following the prolog code, the function arguments a, b, and c are loaded into 
registers EAX, EBX, and ECX, respectively. The calculation of s1 illustrates the use of an 
add instruction with a memory destination operand instead of a register. I should note 
that in this particular case, the use of a memory destination operand is inefficient; s1 
easily could be computed using register operands. The reason for employing memory 
destination operands here is to elucidate the use of local variables on the stack.

The values of s2 and s3 are then calculated using the two-operand form of imul. 
Note that the imul instructions employed to calculate s3 use the original values on the 
stack as source operands since the contents of EAX, EBX, and ECX no longer contain the 
original values of a, b, and c. Subsequent to the calculation of the required results, the 
values s1, s2, s3, are copied from their temporary locations on the stack to the caller’s 
memory locations using the provided pointers.
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CalculateSums_ concludes with an epilog that restores the non-volatile registers 
EBX, ESI, and EDI using pop instructions. It also includes a  mov esp,ebp instruction, 
which essentially releases the previously allocated local storage space and restores the 
ESP register to the correct value prior to execution of the ret instruction. Execution of the 
sample program CallingConvention yields text that’s shown in Output 2-3.

Output 2-3. Sample Program CallingConvention

Input:  a:      3 b:      5 c:      8
Output: s1a:   16 s2a:   98 s3a:  664
        s1b:   16 s2b:   98 s3b:  664
 

The prolog and epilog of CalculateSums_ are typical examples of the calling 
convention that must be observed when invoking an assembly-language function from a 
Visual C++ function. Later in this chapter, you will explore a couple of additional calling 
convention requirements related to 64-bit values and C++ structures. Chapter 4 also 
discusses the calling convention requirements for floating-point values. Appendix B 
contains a complete summary of the Visual C++ calling convention for x86-32 programs. 

Note ■  the assembly language calling convention described in this chapter may be 
different for other high-level languages and operating systems. if you’re reading this book 
to learn x86 assembly language programming and plan on using it in a different execution 
environment, you should consult the appropriate documentation for specific information 
regarding the target platform’s calling convention.

Finally, when coding an assembly language function prolog or epilog, it is usually 
only necessary to include those instructions that are specifically needed by the function. 
For example, if a function does not alter the contents of register EBX, it is not necessary 
for the prolog to save and the epilog to restore its value. Similarly, a function that defines 
zero parameters is not required to initialize a stack frame pointer. The one caveat of 
skipping a prolog or epilog action is the situation where an assembly language function calls 
another function that does not preserve the non-volatile registers. In this case, the calling 
function should ensure that the non-volatile registers are properly saved and restored.

Memory Addressing Modes
You learned in Chapter 1 that the x86 instruction set supports a variety of addressing 
modes that can be used to reference an operand in memory. In this section, you’ll 
examine an assembly-language function that illustrates how to use some of these modes. 
You’ll also learn how define an assembly language lookup table and a global variable 
that can be accessed from a C++ function. The name of the sample program for this 
section is called MemoryAddressing. Listings 2-9 and 2-10 show the contents of the source 
files MemoryAddressing.cpp and MemoryAddressing_.asm, respectively. The Visual 
Studio solution file for this sample program is named Chapter02\MemoryAddressing\
MemoryAddressing.sln.
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Listing 2-9. MemoryAddressing.cpp

#include "stdafx.h"
 
extern "C" int NumFibVals_;
extern "C" int MemoryAddressing_(int i, int* v1, int* v2, int* v3, int* v4);
 
int _tmain(int argc, _TCHAR* argv[])
{
    for (int i = -1; i < NumFibVals_ + 1; i++)
    {
        int v1 = -1, v2 = -1, v3 = -1, v4 = -1;
        int rc = MemoryAddressing_(i, &v1, &v2, &v3, &v4);
 
        printf("i: %2d  rc: %2d - ", i, rc);
        printf("v1: %5d v2: %5d v3: %5d v4: %5d\n", v1, v2, v3, v4);
    }
 
    return 0;
}

Listing 2-10. MemoryAddressing_.asm

        .model flat,c
 
; Simple lookup table (.const section data is read only)
 
            .const
FibVals     dword 0, 1, 1, 2, 3, 5, 8, 13
            dword 21, 34, 55, 89, 144, 233, 377, 610
 
NumFibVals_ dword ($ - FibVals) / sizeof dword
            public NumFibVals_
 
; extern "C" int MemoryAddressing_(int i, int* v1, int* v2, int* v3, int*
  v4);
;
; Description:  This function demonstrates various addressing
;               modes that can be used to access operands in
;               memory.
;
; Returns:      0 = error (invalid table index)
;               1 = success
 
       .code
MemoryAddressing_ proc
        push ebp
        mov ebp,esp
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        push ebx
        push esi
        push edi
 
; Make sure 'i' is valid
        xor eax,eax
        mov ecx,[ebp+8]                     ;ecx = i
        cmp ecx,0
        jl InvalidIndex                     ;jump if i < 0
        cmp ecx,[NumFibVals_]
        jge InvalidIndex                    ;jump if i >=NumFibVals_
 
; Example #1 - base register
        mov ebx,offset FibVals              ;ebx = FibVals
        mov esi,[ebp+8]                     ;esi = i
        shl esi,2                           ;esi = i * 4
        add ebx,esi                         ;ebx = FibVals + i * 4
        mov eax,[ebx]                       ;Load table value
        mov edi,[ebp+12]
        mov [edi],eax                       ;Save to 'v1'
 
; Example #2 - base register + displacement
; esi is used as the base register
        mov esi,[ebp+8]                     ;esi = i
        shl esi,2                           ;esi = i * 4
        mov eax,[esi+FibVals]               ;Load table value
        mov edi,[ebp+16]
        mov [edi],eax                       ;Save to 'v2'
 
; Example #3 - base register + index register
        mov ebx,offset FibVals              ;ebx = FibVals
        mov esi,[ebp+8]                     ;esi = i
        shl esi,2                           ;esi = i * 4
        mov eax,[ebx+esi]                   ;Load table value
        mov edi,[ebp+20]
        mov [edi],eax                       ;Save to 'v3'
 
; Example #4 - base register + index register * scale factor
        mov ebx,offset FibVals              ;ebx = FibVals
        mov esi,[ebp+8]                     ;esi = i
        mov eax,[ebx+esi*4]                 ;Load table value
        mov edi,[ebp+24]
        mov [edi],eax                       ;Save to 'v4'
        mov eax,1                           ;Set return code
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InvalidIndex:
        pop edi
        pop esi
        pop ebx
        pop ebp
        ret
MemoryAddressing_ endp
        end
 

Let’s start by examining the assembly language function named MemoryOperands_. 
In this function, the parameter named i is employed as an index into an array (or lookup 
table) of constant integers, while the four pointer variables are used to save values read 
from the lookup table using different addressing modes. Near the top of Listing 2-10 is a 
.const directive, which defines a memory block that contains read-only data. Immediately 
following the .const directive, a lookup table named FibVals is defined. This table 
contains 16 doubleword integer values; the text dword is an assembler directive that is used 
to allocate storage space and optionally initialize a doubleword value (the text dd can also 
be used as a synonym for dword).

The line NumFibVals_ dword ($ - FibVals) / sizeof dword allocates storage space 
for a single doubleword value and initializes it with the number of doubleword elements in 
the lookup table FibVals. The $ character is an assembler symbol that equals the current 
value of the location counter (or offset from the beginning of the current memory block). 
Subtracting the offset of FibVals from $ yields the size of the table in bytes; dividing this 
result by the size in bytes of a doubleword value generates the correct number of elements. 
The statements in the .const section replicate a commonly-used technique in C++ to 
define and initialize a variable with the number of elements in an array:
 
int Values[] = {10, 20, 30, 40, 50};
int NumValues = sizeof(Values) / sizeof(int);
 

The final line of the .const section declares NumFibVals_ as a public symbol in order 
to enable its use by the function _tmain.

Let’s now look at the assembly language code for MemoryAddressing_. Immediately 
following the function’s prolog, the argument i is checked for validity since it will be used 
as an index into the lookup table FibVals. The cmp ecx,0 (Compare Two Operands) 
instruction compares the contents of ECX, which contains i, to the immediate value 0. 
The processor carries out this comparison by subtracting the source operand from the 
destination operand; it then sets the status flags based on the result of the subtraction (the 
result is not saved to the destination operand). If the condition ecx < 0 is true, program 
control will be transferred to the location specified by the jl (Jump if Less) instruction. 
A similar sequence of instructions is used to determine if the value of i is too large. In 
this case, a cmp ecx,[NumFibVals_] instruction compares ECX against the number of 
elements in the lookup table. If ecx >= [NumFibVals] is true, a jump is performed to the 
target location specified by the jge (Jump if Greater or Equal) instruction.

The remaining instructions of the function MemoryAddressing_ illustrate accessing 
items in the lookup table using various memory addressing modes. The first example 
uses a single base register to read an item from the table. In order to use a single base 
register, the function must manually calculate the address of the i-th table element, which 
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is achieved by adding the offset (or starting address) of FibVals and the value i * 4. The 
mov ebx,offset FibVals instruction loads EBX with the correct table offset value. The 
value of i is then loaded into ESI, followed by a shl esi,2 (Shift Logical Left) instruction. 
This computes the offset of the i-th item relative to the start of the lookup table. An add 
ebx,esi instruction calculates the final address. Once this is complete, the specified 
table value is read using a mov eax,[ebx] instruction and saved to the memory location 
specified by the argument v1.

The second memory-addressing example uses the BaseReg+Disp form to read a table 
item. Like the previous example, the offset of the i-th table element relative to the start of 
the table is calculated using a shl esi,2 instruction. The correct table entry is the loaded 
into EAX using a mov eax,[esi+FibVals] instruction. In this example, the processor 
computes the final effective address by adding the contents of ESI (the base register) and 
the displacement (or offset) of FibVals.

In the third memory-addressing example, the table value is read using 
BaseReg+IndexReg memory addressing. This example is similar to the first example 
except that the processor computes the final effective address during execution of the 
mov eax,[ebx+esi] instruction. The fourth and final example demonstrates the use of 
BaseReg+IndexReg*ScaleFactor addressing. In this example, the offset of FibVals and 
the value i are loaded into registers EBX and ESI, respectively. The correct table value is 
loaded into EAX using a mov eax,[ebx+esi*4] instruction.

The file MemoryAddressing.cpp (Listing 2-10) contains a simple looping construct 
that exercises the function MemoryOperands_ including cases with an invalid index. Note 
that the for loop uses the variable NumFibVals_, which was defined as a public symbol 
in the assembly language file MemoryOperands_.asm. The output for the sample program 
MemoryAddressing is shown in Output 2-4.

Output 2-4. Sample Program MemoryAddressing

i: -1  rc:  0 - v1:    -1 v2:    -1 v3:    -1 v4:    -1
i:  0  rc:  1 - v1:     0 v2:     0 v3:     0 v4:     0
i:  1  rc:  1 - v1:     1 v2:     1 v3:     1 v4:     1
i:  2  rc:  1 - v1:     1 v2:     1 v3:     1 v4:     1
i:  3  rc:  1 - v1:     2 v2:     2 v3:     2 v4:     2
i:  4  rc:  1 - v1:     3 v2:     3 v3:     3 v4:     3
i:  5  rc:  1 - v1:     5 v2:     5 v3:     5 v4:     5
i:  6  rc:  1 - v1:     8 v2:     8 v3:     8 v4:     8
i:  7  rc:  1 - v1:    13 v2:    13 v3:    13 v4:    13
i:  8  rc:  1 - v1:    21 v2:    21 v3:    21 v4:    21
i:  9  rc:  1 - v1:    34 v2:    34 v3:    34 v4:    34
i: 10  rc:  1 - v1:    55 v2:    55 v3:    55 v4:    55
i: 11  rc:  1 - v1:    89 v2:    89 v3:    89 v4:    89
i: 12  rc:  1 - v1:   144 v2:   144 v3:   144 v4:   144
i: 13  rc:  1 - v1:   233 v2:   233 v3:   233 v4:   233
i: 14  rc:  1 - v1:   377 v2:   377 v3:   377 v4:   377
i: 15  rc:  1 - v1:   610 v2:   610 v3:   610 v4:   610
i: 16  rc:  0 - v1:    -1 v2:    -1 v3:    -1 v4:    -1
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Given the multiple addressing modes that are available on an x86 processor, you 
might wonder which mode should be used most often. The answer to this question 
depends on a number of factors including register availability, the number of times an 
instruction (or sequence of instructions) is expected to execute, instruction ordering, and 
memory space vs. execution time tradeoffs. Hardware features such as the processor’s 
underlying microarchitecture and memory cache sizes also need to be considered.

When coding an x86 assembly language function, one suggested guideline is to 
use simple (a single register or displacement) rather than complex (multiple registers) 
instruction forms to reference an operand in memory. The drawback of this approach 
is that the simpler forms generally require the programmer to code longer instruction 
sequences and may consume more code space. The use of a simple form also may be 
imprudent if extra instructions are needed to preserve non-volatile registers on the stack. 
In Chapters 21 and 22, you’ll learn about some of the issues that can affect the efficiency 
of assembly language code in greater detail.

Integer Addition
Visual C++ supports the standard C++ fundamental types, including char, short, int, 
and long long. These parallel the x86 fundamental types byte, word, doubleword, and 
quadword, respectively. This section examines a program that performs integer addition 
using various-sized integers. You’ll also learn how to use global variables defined in 
a C++ file from an x86 assembly language function and a few more commonly used 
x86 instructions. The Visual Studio solution file for this section is named Chapter02\
IntegerAddition\IntegerAddition.sln and the source code files are shown in 
Listings 2-11 and 2-12.

Listing 2-11. IntegerAddition.cpp

#include "stdafx.h"
 
extern "C" char GlChar = 10;
extern "C" short GlShort = 20;
extern "C" int GlInt = 30;
extern "C" long long GlLongLong = 0x000000000FFFFFFFE;
 
extern "C" void IntegerAddition_(char a, short b, int c, long long d);
 
int _tmain(int argc, _TCHAR* argv[])
{
    printf("Before GlChar:     %d\n", GlChar);
    printf("       GlShort:    %d\n", GlShort);
    printf("       GlInt:      %d\n", GlInt);
    printf("       GlLongLong: %lld\n", GlLongLong);
    printf("\n");
 
    IntegerAddition_(3, 5, -37, 11);
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    printf("After  GlChar:     %d\n", GlChar);
    printf("       GlShort:    %d\n", GlShort);
    printf("       GlInt:      %d\n", GlInt);
    printf("       GlLongLong: %lld\n", GlLongLong);
    return 0;
}

Listing 2-12. IntegerAddition_.asm

        .model flat,c
 
; These are defined in IntegerAddition.cpp
        extern GlChar:byte
        extern GlShort:word
        extern GlInt:dword
        extern GlLongLong:qword
 
; extern "C" void IntegerTypes_(char a, short b, int c, long long d);
;
; Description:  This function demonstrates simple addition using
;               various-sized integers.
;
; Returns:  None.
 
        .code
IntegerAddition_ proc
 
; Function prolog
        push ebp
        mov ebp,esp
 
; Compute GlChar += a
        mov al,[ebp+8]
        add [GlChar],al
 
; Compute GlShort += b, note offset of 'b' on stack
        mov ax,[ebp+12]
        add [GlShort],ax
 
; Compute GlInt += c, note offset of 'c' on stack
        mov eax,[ebp+16]
        add [GlInt],eax
 
; Compute GlLongLong += d, note use of dword ptr operator and adc
        mov eax,[ebp+20]
        mov edx,[ebp+24]
        add dword ptr [GlLongLong],eax
        adc dword ptr [GlLongLong+4],edx
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; Function epilog
        pop ebp
        ret
IntegerAddition_ endp
        end
 

The C++ portion of this sample program defines four global signed integers using 
different fundamental types. Note that each variable definition includes the string "C", 
which instructs the compiler to use C-style names instead of C++ decorated names when 
generating public symbols for use by the linker. The C++ file also contains a declaration 
for the assembly language function IntegerAddition_. This function performs some 
simple integer addition using the four global variables.

Near the top of the file IntegerAddition_.asm are four extern statements. Similar to 
its C++ counterpart, the extern directive notifies the assembler that the named variable 
is defined outside the scope of the current file. Each extern directive also includes the 
fundamental type of the variable. The extern directive can also include a language type 
specifier to override the default type that’s specified by the .model flat,c directive. Later 
in this chapter, you’ll learn how to use the extern directive to reference external functions.

Following the prolog, the function IntegerAdditions_ loads argument a into 
register AL and then computes GlChar += a using an add [GlChar],al instruction. In a 
similar manner, the calculation of GlShort += b is performed next using register AX with 
an important distinction; the stack offset of parameter b is +12 and not +9 as you might 
expect. The reason for this is that Visual C++ size extends 8-bit and 16-bit values to  
32 bits before pushing them onto the stack, as illustrated in Figure 2-4. This ensures that 
the stack pointer register ESP is always properly aligned to a 32-bit boundary.

c

Return Address

Old EBP EBP, ESP

High Memory

Low Memory

+4

+8

+12

+16

+24

+20d (low dword )

d (high dword )

a

b

Figure 2-4. Organization of stack arguments in the function IntegerAdditions_

An add [GlInt],eax instruction is then used to calculate GlInt += c. The stack 
offset of c is +16, which is not two but four bytes greater than the offset of b. The final 
calculation, GlLongLong += d, is carried out using two 32-bit add instructions. The 
add dword ptr [GlLongLong],eax instruction adds the lower-order doublewords; the 
adc dword ptr [GlLongLong+4],edx (Add With Carry) instruction completes the 64-bit 
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add operation. Two separate add instructions are used here since x86-32 mode does 
not support addition using 64-bit operands. The add and adc instructions also include a 
dword ptr operator since the variable GlLongLong is declared as a quadword type. Output 
2-5 exhibits the output for the sample program called IntegerAddition.

Output 2-5. Sample Program IntegerAddition

Before GlChar:     10
       GlShort:    20
       GlInt:      30
       GlLongLong: 4294967294
 
After  GlChar:     13
       GlShort:    25
       GlInt:      -7
       GlLongLong: 4294967305

Condition Codes
The final sample program of this section demonstrates how to use the x86’s conditional 
instructions including jcc, cmovcc (Conditional Move), and setcc (Set Byte on 
Condition). The execution of a conditional instruction is contingent on its specified 
condition code and the state of one or more status flags, as discussed in Chapter 1. You 
have already seen a few examples of the conditional jump instruction. The function 
IntegerMulDiv_ (Listing 2-5) used a jz to prevent a potential division-by-zero error. 
In MemoryAddressingModes_ (Listing 2-10), the jl and jge instructions were used 
following a cmp instruction to validate a table index. The sample program for this section 
is called ConditionCodes and the Visual Studio solution file is named Chapter02\
ConditionCodes\ConditionCodes.sln. Listings 2-13 and 2-14 show the source code for 
ConditionCodes.cpp and ConditionCodes_.asm, respectively.

Listing 2-13. ConditionCodes.cpp

#include "stdafx.h"
 
extern "C" int SignedMinA_(int a, int b, int c);
extern "C" int SignedMaxA_(int a, int b, int c);
extern "C" int SignedMinB_(int a, int b, int c);
extern "C" int SignedMaxB_(int a, int b, int c);
 
int _tmain(int argc, _TCHAR* argv[])
{
    int a, b, c;
    int smin_a, smax_a;
    int smin_b, smax_b;
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    // SignedMin examples
    a = 2; b = 15; c = 8;
    smin_a = SignedMinA_(a, b, c);
    smin_b = SignedMinB_(a, b, c);
    printf("SignedMinA(%4d, %4d, %4d) = %4d\n", a, b, c, smin_a);
    printf("SignedMinB(%4d, %4d, %4d) = %4d\n\n", a, b, c, smin_b);
 
    a = -3; b = -22; c = 28;
    smin_a = SignedMinA_(a, b, c);
    smin_b = SignedMinB_(a, b, c);
    printf("SignedMinA(%4d, %4d, %4d) = %4d\n", a, b, c, smin_a);
    printf("SignedMinB(%4d, %4d, %4d) = %4d\n\n", a, b, c, smin_b);
 
    a = 17; b = 37; c = -11;
    smin_a = SignedMinA_(a, b, c);
    smin_b = SignedMinB_(a, b, c);
    printf("SignedMinA(%4d, %4d, %4d) = %4d\n", a, b, c, smin_a);
    printf("SignedMinB(%4d, %4d, %4d) = %4d\n\n", a, b, c, smin_b);
 
    // SignedMax examples
    a = 10; b = 5; c = 3;
    smax_a = SignedMaxA_(a, b, c);
    smax_b = SignedMaxB_(a, b, c);
    printf("SignedMaxA(%4d, %4d, %4d) = %4d\n", a, b, c, smax_a);
    printf("SignedMaxB(%4d, %4d, %4d) = %4d\n\n", a, b, c, smax_b);
 
    a = -3; b = 28; c = 15;
    smax_a = SignedMaxA_(a, b, c);
    smax_b = SignedMaxB_(a, b, c);
    printf("SignedMaxA(%4d, %4d, %4d) = %4d\n", a, b, c, smax_a);
    printf("SignedMaxB(%4d, %4d, %4d) = %4d\n\n", a, b, c, smax_b);
 
    a = -25; b = -37; c = -17;
    smax_a = SignedMaxA_(a, b, c);
    smax_b = SignedMaxB_(a, b, c);
    printf("SignedMaxA(%4d, %4d, %4d) = %4d\n", a, b, c, smax_a);
    printf("SignedMaxB(%4d, %4d, %4d) = %4d\n\n", a, b, c, smax_b);
}

Listing 2-14. ConditionCodes_.asm

        .model flat,c
        .code
 
; extern "C" int SignedMinA_(int a, int b, int c);
;
; Description:  Determines minimum of three signed integers
;               using conditional jumps.
;
; Returns       min(a, b, c) 
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SignedMinA_ proc
        push ebp
        mov ebp,esp
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'b'
 
; Determine min(a, b)
        cmp eax,ecx
        jle @F
        mov eax,ecx                         ;eax = min(a, b)
 
; Determine min(a, b, c)
@@:     mov ecx,[ebp+16]                    ;ecx = 'c'
        cmp eax,ecx
        jle @F
        mov eax,ecx                         ;eax = min(a, b, c)
 
@@:     pop ebp
        ret
SignedMinA_ endp
 
; extern "C" int SignedMaxA_(int a, int b, int c);
;
; Description:  Determines maximum of three signed integers
;               using conditional jumps.
;
; Returns:      max(a, b, c)
 
SignedMaxA_ proc
        push ebp
        mov ebp,esp
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'b'
 
        cmp eax,ecx
        jge @F
        mov eax,ecx                         ;eax = max(a, b)
 
@@:     mov ecx,[ebp+16]                    ;ecx = 'c'
        cmp eax,ecx
        jge @F
        mov eax,ecx                         ;eax = max(a, b, c)
 
@@:     pop ebp
        ret
SignedMaxA_ endp
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; extern "C" int SignedMinB_(int a, int b, int c);
;
; Description:  Determines minimum of three signed integers
;               using conditional moves.
;
; Returns       min(a, b, c)
 
SignedMinB_ proc
        push ebp
        mov ebp,esp
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'b'
 
; Determine smallest value using the CMOVG instruction
        cmp eax,ecx
        cmovg eax,ecx                       ;eax = min(a, b)
        mov ecx,[ebp+16]                    ;ecx = 'c'
        cmp eax,ecx
        cmovg eax,ecx                       ;eax = min(a, b, c)
 
        pop ebp
        ret
SignedMinB_ endp
 
; extern "C" int SignedMaxB_(int a, int b, int c);
;
; Description:  Determines maximum of three signed integers
;               using conditional moves.
;
; Returns:      max(a, b, c)
 
SignedMaxB_ proc
        push ebp
        mov ebp,esp
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'b'
 
; Determine largest value using the CMOVL instruction
        cmp eax,ecx
        cmovl eax,ecx                       ;eax = max(a, b)
        mov ecx,[ebp+16]                    ;ecx = 'c'
        cmp eax,ecx
        cmovl eax,ecx                       ;eax = max(a, b, c)
 
        pop ebp
        ret
SignedMaxB_ endp
        end
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When developing code to implement a particular algorithm, it is often necessary 
to determine the minimum or maximum value of two numbers. Visual C++ defines two 
macros called __min and __max to perform these operations. The file ConditionCodes_.asm 
contains several three-argument versions of signed-integer minimum and maximum 
functions. The purpose of these functions is to illustrate proper use of the jcc and cmovcc 
instructions.

The first function, called SignedMinA_, finds the minimum value of three signed 
integers. Following the function’s prolog, the first code block determines min(a, b) using 
two instructions: cmp eax,ecx and jle @F. The cmp instruction, which you saw earlier 
in this chapter, subtracts the source operand from the destination operand and sets the 
status flags based on the result (the result is not saved to the destination operand). The 
target of the jle (Jump if Less or Equal) instruction, @F, is an assembler symbol that 
designates nearest forward @@ label as the target of the conditional jump (the symbol @B 
can be used for backward jumps). Following the calculation of min(a, b), the next code 
block determines min(min(a, b), c) using the same technique. With the result already 
present in register EAX, SignedMinA_ can execute its epilog code and return to the caller.

The function SignedMaxA_ uses the same method to find the maximum of three 
signed integers. The only difference between SignedMaxA_ and SignedMinA_ is the use of 
a jump if a jge (Jump if Greater or Equal) instead of a jle instruction.

Versions of the functions SignedMinA_ and SignedMaxA_ that operate on unsigned 
integers can be easily created by changing the jle and jge instructions to jbe (Jump 
if Below or Equal) and jae (Jump if Above or Equal), respectively. Recall from the 
discussion in Chapter 1 that condition codes using the words “greater” and “less” are 
used with signed-integer operands, while “above” and “below” are used with unsigned-
integer operands.

The file SignedMinMax_.asm also contains the functions SignedMinB_ and SignedMaxB_. 
These functions determine the minimum and maximum of three signed integers using 
conditional move instructions instead of conditional jumps. The cmovcc instruction tests 
the specified condition and if it’s true, the source operand is copied to the destination 
operand. If the specified condition is false, the destination operand is not altered.

If you examine the function SignedMaxB_, you will notice that following each 
cmp eax,ecx instruction is a cmovg eax,ecx instruction. The cmovg instruction copies 
the contents of ECX to EAX if EAX is greater than ECX. The same technique is used 
in SignedMinB_, which employs cmovl instead of cmovg to save the smaller signed 
integer. Unsigned versions of these functions can be easily created by using cmova and 
cmovb instead of cmovg and cmovl, respectively. The output for the sample program 
ConditionCodes is shown in Output 2-6.

Output 2-6. Sample Program ConditionCodes

SignedMinA(   2,   15,    8) =    2
SignedMinB(   2,   15,    8) =    2
 
SignedMinA(  -3,  -22,   28) =  -22
SignedMinB(  -3,  -22,   28) =  -22
 
SignedMinA(  17,   37,  -11) =  -11
SignedMinB(  17,   37,  -11) =  -11
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SignedMaxA(  10,    5,    3) =   10
SignedMaxB(  10,    5,    3) =   10
 
SignedMaxA(  -3,   28,   15) =   28
SignedMaxB(  -3,   28,   15) =   28
 
SignedMaxA( -25,  -37,  -17) =  -17
SignedMaxB( -25,  -37,  -17) =  -17
 

The use of a conditional move instruction to eliminate one or more conditional jump 
statements frequently results in faster code, especially in situations where the processor is 
unable to accurately predict whether the jump will be performed. Chapter21 will examine 
some of the issues related to optimal use of conditional jump instructions in greater detail.

The final conditional instruction that you’ll look at is the setcc instruction. As 
implied by its name, the setcc instruction sets an 8-bit destination operand to 1 if the 
tested condition is true; otherwise, the destination operand is set to 0. This instruction is 
useful for functions that return or set a bool value, as illustrated in Listing 2-15. You’ll see 
additional examples of the setcc instruction later in this book.

Listing 2-15. Example for Set byte on condition instruction

; extern "C" bool SignedIsEQ_(int a, int b);
 
SignedIsEQ_ proc
        push ebp
        mov ebp,esp
 
        xor eax,eax
        mov ecx,[ebp+8]
        cmp ecx,[ebp+12]
        sete al
 
        pop ebp
        ret
SignedIsEQ_ endp

Arrays
Arrays are an indispensable data construct in virtually all programming languages. In 
C++ there is an inherent connection between arrays and pointers since the name of an 
array is essentially a pointer to its first element. Moreover, whenever an array is used as a 
C++ function parameter, a pointer is passed instead of duplicating the array on the stack. 
Pointers are also employed for arrays that are dynamically allocated at run-time. This 
section examines some x86-32 assembly language functions that operate on arrays. The 
first sample program reveals how to access the elements of a one-dimensional array; the 
second sample program demonstrates element processing using an input and output 
array; and the final example illustrates some techniques for manipulating the elements of 
a two-dimensional array.
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Before examining the sample programs, let’s quickly review some C++ array concepts. 
Consider the simple program that is shown in Listing 2-16. In the function CalcArrayCubes, 
the elements of arrays x and y are stored in contiguous blocks of memory on the stack. 
Invocation of the function CalcArrayCubes causes the compiler to push three arguments 
onto the stack from right to left: the value of n, a pointer to the first element of x, and a pointer 
to the first element of y. The for loop of function CalcArrayCubes contains the statement 
int temp= x[i], which assigns the value of the i-th element of array x to temp. The memory 
address of this element is simply the sum of x and i * 4 since the size of an int is four bytes. 
The same method is also used to calculate the address of an element in the y array.

Listing 2-16. CalcArrayCubes.cpp

#include "stdafx.h"
 
void CalcArrayCubes(int* y, const int* x, int n)
{
    for (int i = 0; i < n; i++)
    {
        int temp = x[i];
        y[i] = temp * temp * temp;
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    int x[] = { 2, 7, -4, 6, -9, 12, 10 };
    const int n = sizeof(x) / sizeof(int);
    int y[n];
 
    CalcArrayCubes(y, x, n);
 
    for (int i = 0; i < n; i++)
        printf("i: %4d x: %4d y: %4d\n", i, x[i], y[i]);
    printf("\n");
 
    return 0;
}

One-Dimensional Arrays
This section examines a couple of sample programs that demonstrate using x86 assembly 
language with one-dimensional arrays. The first sample program is called CalcArraySum. 
This program contains a function that calculates the sum of an integer array. It also 
illustrates how to iteratively access each element of an array. The source code for 
files CalArraySum.cpp and CalcArraySum_.asm are shown in Listings 2-17 and 2-18, 
respectively.
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Listing 2-17. CalcArraySum.cpp

#include "stdafx.h"
 
extern "C" int CalcArraySum_(const int* x, int n);
 
int CalcArraySumCpp(const int* x, int n)
{
    int sum = 0;
 
    for (int i = 0; i < n; i++)
        sum += *x++;
 
    return sum;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    int x[] = {1, 7, -3, 5, 2, 9, -6, 12};
    int n = sizeof(x) / sizeof(int);
 
    printf("Elements of x[]\n");
    for (int i = 0; i < n; i++)
        printf("%d ", x[i]);
    printf("\n\n");
 
    int sum1 = CalcArraySumCpp(x, n);
    int sum2 = CalcArraySum_(x, n);
 
    printf("sum1: %d\n", sum1);
    printf("sum2: %d\n", sum2);
    return 0;
}

Listing 2-18. CalcArraySum_.asm

        .model flat,c
        .code
 
; extern "C" int CalcArraySum_(const int* x, int n);
;
; Description:  This function sums the elements of a signed
;               integer array.
 
CalcArraySum_ proc
        push ebp
        mov ebp,esp
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; Load arguments and initialize sum
        mov edx,[ebp+8]                   ;edx = 'x'
        mov ecx,[ebp+12]                  ;ecx = 'n'
        xor eax,eax                       ;eax = sum
 
; Make sure 'n' is greater than zero
        cmp ecx,0
        jle InvalidCount
 
; Calculate the array element sum
@@:     add eax,[edx]                     ;add next element to sum
        add edx,4                         ;set pointer to next element
        dec ecx                           ;adjust counter
        jnz @B                            ;repeat if not done
 
InvalidCount:
        pop ebp
        ret
CalcArraySum_ endp
        end 

Note ■  the Visual Studio solution files for the remaining sample code in this chapter and 
beyond use the following naming convention: Chapter##\<ProgramName>\<ProgramName>.sln,  
where ## denotes the chapter number and <ProgramName> represents the name of the 
sample program.

The C++ portion of the sample program CalcArraySum (Listing 2-17) includes a 
test function called CalcArraySumCpp that sums the elements of a signed-integer array. 
While hardly necessary in this case, coding a function using C++ first followed by its x86 
assembly language equivalent is often helpful during software testing and debugging. 
The assembly language function CalcArraySum_ (Listing 2-18) computes the same result 
as CalcArraySumCpp. Following its function prolog, a pointer to array x is loaded into 
register EDX. Next, the argument value of n is copied into ECX. This is followed by an xor 
eax,eax (Logical Exclusive OR) instruction, which initializes the running sum to 0.

Sweeping through the array to sum the elements requires only four instructions. 
The add eax,[edx] instruction adds the current array element to the running sum. 
Four is then added to register EDX, which points it to the next element in the array.  
A dec ecx instruction subtracts 1 from the counter and updates the state of EFLAGS.ZF.  
This enables the jnz (Jump if not Zero) instruction to terminate the loop after all n 
elements have been summed. The instruction sequence employed here to calculate 
the array sum is the assembly language equivalent of the for loop that was used by the 
function CalcArraySumCpp. The output for the sample program CalcArraySum is shown 
in Output 2-7.
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Output 2-7. Sample Program CalcArraySum

Elements of x[]
1 7 -3 5 2 9 -6 12
 
sum1: 27
sum2: 27
 

When working with arrays, it is frequently necessary to define functions that perform  
element-by-element transformations. You saw an example of this in the function 
CalcArrayCubes (Listing 2-16), which cubed each element of an input array and 
saved the results to a separate output array. The next sample program, named 
CalcArraySquares, exemplifies how to code an assembly-language function to perform 
similar processing. Listings 2-19 and 2-20 show the source code for CalcArraySquares.cpp  
and CalcArraySquares_.asm, respectively.

Listing 2-19. CalcArraySquares.cpp

#include "stdafx.h"
 
extern "C" int CalcArraySquares_(int* y, const int* x, int n);
 
int CalcArraySquaresCpp(int* y, const int* x, int n)
{
    int sum = 0;
 
    for (int i = 0; i < n; i++)
    {
            y[i] =  x[i] * x[i];
            sum += y[i];
    }
 
    return sum;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    int x[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
    const int n = sizeof(x) / sizeof(int);
    int y1[n];
    int y2[n];
    int sum_y1 = CalcArraySquaresCpp(y1, x, n);
    int sum_y2 = CalcArraySquares_(y2, x, n);
 
    for (int i = 0; i < n; i++)
        printf("i: %2d  x: %4d  y1: %4d  y2: %4d\n", i, x[i], y1[i], y2[i]);
    printf("\n");
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ X86-32 Core programming

59

    printf("sum_y1: %d\n", sum_y1);
    printf("sum_y2: %d\n", sum_y2);
 
    return 0;
}

Listing 2-20. CalcArrayCubes.cpp

        .model flat,c
        .code
 
; extern "C" int CalcArraySquares_(int* y, const int* x, int n);
;
;Description:   This function cComputes y[i] = x[i] * x[i].
;
; Returns:      Sum of the elements in array y.
 
CalcArraySquares_ proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
        push edi
 
; Load arguments
        mov edi,[ebp+8]                     ;edi = 'y'
        mov esi,[ebp+12]                    ;esi = 'x'
        mov ecx,[ebp+16]                    ;ecx = 'n'
 
; Initialize array sum register, calculate size of array in bytes,
; and initialize element offset register.
        xor eax,eax                 ;eax = sum of 'y' array
        cmp ecx,0
        jle EmptyArray
        shl ecx,2                   ;ecx = size of array in bytes
        xor ebx,ebx                 ;ebx = array element offset
 
; Repeat loop until finished
@@:     mov edx,[esi+ebx]           ;load next x[i]
        imul edx,edx                ;compute x[i] * x[i]
        mov [edi+ebx],edx           ;save result to y[i]
        add eax,edx                 ;update running sum
        add ebx,4                   ;update array element offset
        cmp ebx,ecx
        jl @B                       ;jump if not finished
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EmptyArray:
        pop edi
        pop esi
        pop ebx
        pop ebp
        ret
CalcArraySquares_ endp
        end
 

The function CalcArraySquares_ (Listing 2-20) computes the square of each 
element in array x and saves this result to the corresponding element in array y. It also 
computes the sum of the elements in y. Following the function prolog, registers ESI 
and EDI are initialized as pointers to x and y, respectively. The function also loads n 
into register ECX and initializes EAX, which will be used to compute the sum, to zero. 
Following a validity check of n, the size of the array in bytes is calculated using a shl ecx,2  
instruction. This value will be used to terminate the processing loop. The function then 
initializes register EBX to zero and will use this register as an offset into both x and y.

The processing loop uses a mov edx,[esi+ebx] instruction to load x[i] into register 
EDX and then computes the square using the two-operand form of imul. This value is 
then saved to y[i] using a mov [edi+ebx],edx instruction. An add eax,edx instruction 
adds y[i] to the running sum in register EAX. The offset of the next element in both x 
and y is computed using an add ebx,4 instruction. The processing loop repeats as long as 
the offset value in register EBX is less than the size in bytes of the arrays, which resides in 
register ECX. Output 2-8 shows the results of CalcArraySquares.

Output 2-8. Sample Program CalcArraySquares

i:  0  x:    2  y1:    4  y2:    4
i:  1  x:    3  y1:    9  y2:    9
i:  2  x:    5  y1:   25  y2:   25
i:  3  x:    7  y1:   49  y2:   49
i:  4  x:   11  y1:  121  y2:  121
i:  5  x:   13  y1:  169  y2:  169
i:  6  x:   17  y1:  289  y2:  289
i:  7  x:   19  y1:  361  y2:  361
i:  8  x:   23  y1:  529  y2:  529
i:  9  x:   29  y1:  841  y2:  841
 
sum_y1: 2397
sum_y2: 2397

Two-Dimensional Arrays
In C++ it is possible to use a contiguous block of memory to store the elements of a 
two-dimensional array or matrix. This enables the compiler to generate code that uses 
simple pointer arithmetic to uniquely access each matrix element. It also allows the 
programmer to manually perform the same pointer arithmetic when working with a 
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matrix. The sample program in this section demonstrates using x86 assembly language 
to access the elements of a matrix. Before you examine the source code files, you’ll take a 
closer look at how C++ handles matrices in memory.

C++ uses row-major ordering to organize the elements of a two-dimensional matrix 
in memory. Row-major ordering arranges the elements of a matrix first by row and then 
by column. For example, elements of the matrix int x[3][2] are stored in memory as 
follows: x[0][0], x[0][1], x[1][0], x[1][1], x[2][0], and x[2][1]. In order to access a 
specific element in the matrix, a C++ compiler must know the row and column indices, 
the total number of columns, and the starting address. Using this information, an element 
can be accessed using pointer arithmetic, as illustrated in Listing 2-21.

Listing 2-21. CalcMatrixCubes.cpp

#include "stdafx.h"
 
void CalcMatrixCubes(int* y, const int* x, int nrows, int ncols)
{
    for (int i = 0; i < nrows; i++)
    {
        for (int j = 0; j < ncols; j++)
        {
            int k = i * ncols + j;
            y[k] = x[k] * x[k] * x[k];
        }
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int nrows = 4;
    const int ncols = 3;
    int x[nrows][ncols] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 },
  { 10, 11, 12 } };
    int y[nrows][ncols];
 
    CalcMatrixCubes(&y[0][0], &x[0][0], nrows, ncols);
 
    for (int i = 0; i < nrows; i++)
    {
        for (int j = 0; j < ncols; j++)
            printf("(%2d, %2d): %6d, %6d\n", i, j, x[i][j], y[i][j]);
    }
 
    return 0;
}
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In function CalcMatrixCubes (Listing 2-21), the offset of a specific matrix element 
is uniquely determined by the formula i * ncols + j, where i and j correspond to 
the row and column indices of the element. Following calculation of the offset, the 
matrix element can be referenced using the same syntax that is used to reference an 
element of a one-dimensional array. The sample program for this section, which is called 
CalcMatrixRowColSums, uses this technique to sum the rows and columns of a matrix. 
Listings 2-22 and 2-23 show the source code for files CalcMatrixRowColSums.cpp and 
CalcMatrixRowColSums_.asm.

Listing 2-22. CalcMatrixRowColSums.cpp

#include "stdafx.h"
#include <stdlib.h>
 
// The function PrintResults is defined in CalcMatrixRowColSumsMisc.cpp
extern void PrintResults(const int* x, int nrows, int ncols, int* row_sums,
  int* col_sums);

extern "C" int CalcMatrixRowColSums_(const int* x, int nrows, int ncols,
  int* row_sums, int* col_sums);
 
void CalcMatrixRowColSumsCpp(const int* x, int nrows, int ncols, int*
 row_sums, int* col_sums)
{
    for (int j = 0; j < ncols; j++)
        col_sums[j] = 0;
 
    for (int i = 0; i < nrows; i++)
    {
        row_sums[i] = 0;
        int k = i * ncols;
 
        for (int j = 0; j < ncols; j++)
        {
            int temp = x[k + j];
            row_sums[i] += temp;
            col_sums[j] += temp;
        }
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int nrows = 7, ncols = 5;
    int x[nrows][ncols];
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    // Initialize the test matrix
    srand(13);
    for (int i = 0; i < nrows; i++)
    {
        for (int j = 0; j < ncols; j++)
            x[i][j] = rand() % 100;
    }
 
    // Calculate the row and column sums
    int row_sums1[nrows], col_sums1[ncols];
    int row_sums2[nrows], col_sums2[ncols];
 
    CalcMatrixRowColSumsCpp((const int*)x, nrows, ncols, row_sums1,
      col_sums1);
    printf("\nResults using CalcMatrixRowColSumsCpp()\n");
    PrintResults((const int*)x, nrows, ncols, row_sums1, col_sums1);
 
    CalcMatrixRowColSums_((const int*)x, nrows, ncols, row_sums2,
     col_sums2);
    printf("\nResults using CalcMatrixRowColSums_()\n");
    PrintResults((const int*)x, nrows, ncols, row_sums2, col_sums2);
 
    return 0;
}

Listing 2-23. CalcMatrixRowColSums_.asm

        .model flat,c
        .code
 
; extern "C" int CalcMatrixRowColSums_(const int* x, int nrows, int ncols,
 int* row_sums, int* col_sums);
;
; Description:  The following function sums the rows and columns
;               of a 2-D matrix.
;
; Returns:      0 = 'nrows' or 'ncols' is invalid
;               1 = success
 
CalcMatrixRowColSums_ proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
        push edi
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; Make sure 'nrow' and 'ncol' are valid
        xor eax,eax                         ;error return code
        cmp dword ptr [ebp+12],0            ;[ebp+12] = 'nrows'
        jle InvalidArg                      ;jump if nrows <= 0
        mov ecx,[ebp+16]                    ;ecx = 'ncols'
        cmp ecx,0
        jle InvalidArg                      ;jump if ncols <= 0
 
; Initialize elements of 'col_sums' array to zero
        mov edi,[ebp+24]                    ;edi = 'col_sums'
        xor eax,eax                         ;eax = fill value
        rep stosd                           ;fill array with zeros
 
; Initialize outer loop variables
        mov ebx,[ebp+8]                     ;ebx = 'x'
        xor esi,esi                         ;i = 0
 
; Outer loop
Lp1:    mov edi,[ebp+20]                    ;edi = 'row_sums'
        mov dword ptr [edi+esi*4],0         ;row_sums[i] = 0
 
        xor edi,edi                         ;j = 0
        mov edx,esi                         ;edx = i
        imul edx,[ebp+16]                   ;edx = i * ncols
 
; Inner loop
Lp2:    mov ecx,edx                         ;ecx = i * ncols
        add ecx,edi                         ;ecx = i * ncols + j
        mov eax,[ebx+ecx*4]                 ;eax = x[i * ncols + j]
        mov ecx,[ebp+20]                    ;ecx = 'row_sums'
        add [ecx+esi*4],eax                 ;row_sums[i] += eax
        mov ecx,[ebp+24]                    ;ecx = 'col_sums'
        add [ecx+edi*4],eax                 ;col_sums[j] += eax
 
; Is inner loop finished?
        inc edi                             ;j++
        cmp edi,[ebp+16]
        jl Lp2                              ;jump if j < ncols
 
; Is outer loop finished?
        inc esi                             ;i++
        cmp esi,[ebp+12]
        jl Lp1                              ;jump if i < nrows
        mov eax,1                           ;set success return code
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InvalidArg:
        pop edi
        pop esi
        pop ebx
        pop ebp
        ret
CalcMatrixRowColSums_ endp
        end
 

Start by taking a look at the C++ implementation of the row-column summing 
algorithm. Listing 2-22 contains a function named CalcMatrixRowColSumsCpp. This 
function sweeps through an input matrix x and during each iteration, it adds the current 
matrix element to the appropriate entries in the arrays row_sums and col_sums. Function 
CalcMatrixRowColSumsCpp uses the previously-described pointer arithmetic technique to 
uniquely reference a matrix element.

Listing 2-23 shows the assembly language version of the row-column summing 
algorithm. Following the function prolog, the arguments nrows and ncols are tested for 
validity. The elements of col_sums are then initialized to zero using a rep stosd (Repeat 
Store String Doubleword) instruction. The stosd instruction stores the contents of EAX 
to the memory location specified by EDI; it then updates EDI to point to the next array 
element. The rep mnemonic is an instruction prefix that tells the processor to repeat the 
store operation using ECX as a counter. After each store operation, ECX is decremented 
by 1; stosd execution continues until ECX equals zero. You’ll take a closer look at the x86 
string processing instructions later in this chapter.

The function CalcMatrixRowColSums_ uses register EBX to hold the base address 
of the input matrix x. Registers ESI and EDI contain the row and column indices, 
respectively. Each outer loop starts by initializing row_sums[i] to zero and computing 
a value for k. Within the inner loop, the final offset for the current matrix element is 
calculated. This matrix element is loaded into EAX using a mov eax,[ebx+ecx*4] 
instruction. Next, the function adds EAX to the corresponding entries in the arrays 
row_sums and col_sums. This process is repeated until all of the elements in matrix x 
have been added to the total arrays. Note that the function CalcMatrixRowColSums makes 
extensive use of BaseReg+IndexReg*ScaleFactor memory addressing, which simplifies 
the loading of elements from matrix x and the updating of elements in both row_sums 
and col_sums, as shown in Figure 2-5. The results of CalcMatrixRowColSums are shown in 
Output 2-9.
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Output 2-9. Sample Program CalcMatrixRowColSums

Results using CalcMatrixRowColSumsCpp()
   81    76    96    48    72  --   373
   76    59    99    93    23  --   350
   30    73     4    75    23  --   205
   40    99    69    96    88  --   392
   37    67    40    92    88  --   324
   15    80    16    62    72  --   245
   90    23     4    55    22  --   194
 
  369   477   328   521   388
 
Results using CalcMatrixRowColSums_()
   81    76    96    48    72  --   373
   76    59    99    93    23  --   350
   30    73     4    75    23  --   205
   40    99    69    96    88  --   392
   37    67    40    92    88  --   324
   15    80    16    62    72  --   245
   90    23     4    55    22  --   194
 
  369   477   328   521   388

[0][0] [0][1] [0][2] [6][4]...

[0] [1] [2] [3] [4] [5] [6]

[0] [1] [2] [3] [4]

x[7][5]

row_sums[7]

col_sums[5]

ebx

ecx

ecx

[2][3] ...

mov eax,[ebx+ecx*4]

i = 2; j = 3; ecx=i*ncols+j

i = esi = 2

add [ecx+esi*4],eax

j =  edi = 3

add [ecx+edi*4],eax

Figure 2-5. Memory addressing used in the function CalcMatrixRowColSums_
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Structures
A structure is a programming language construct that enables a programmer to define 
new data types using one or more existing data types. Both Visual C++ and MASM 
support structures. In this section, you’ll learn how to use a common structure definition 
in both a C++ and assembly language function. You’ll also explore some of the issues that 
developers need to be aware of when defining a structure that will be used by software 
written using different languages. Besides basic structure use, the sample programs of 
this section demonstrate how to call standard C++ library functions from an x86 assembly 
language function. You’ll also learn how to use a few more x86-32 assembly language 
instructions.

In C++ a structure is equivalent to a class. When a data type is defined using the 
keyword struct instead of class, all members are public by default. Another option 
for structure definition is to use C-style definitions such as typedef struct { ... } 
MyStruct;. This style is suitable for simple data-only structures and will be used by 
the sample programs in this section. C++ structure definitions are usually placed in 
header files so they can be easily referenced by multiple files. The same technique is also 
used to define and reference structures that are used in assembly language functions. 
Unfortunately, it is not possible to define a single structure in a header file and include 
this file in both C++ and assembly-language source code files. If you want to use the 
”same” structure in both C++ and assembly language, it must be defined twice and both 
definitions must be semantically equivalent.

Simple Structures
The first sample program that you’ll study is called CalcStructSum. This program 
demonstrates basic structure use between two functions: one written using C++ and the 
other written using x86 assembly language. Let’s begin by defining a simple structure that 
will be used by all of the sample programs in this section. Listings 2-24 and 2-25 each 
contain a structure definition named TestStruct.

Listing 2-24. TestStruct.h

typedef struct
{
    __int8  Val8;
    __int8  Pad8;
    __int16 Val16;
    __int32 Val32;
    __int64 Val64;
} TestStruct;
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Listing 2-25. TestStruct_.inc

TestStruct struct
Val8    byte ?
Pad8    byte ?
Val16   word ?
Val32   dword ?
Val64   qword ?
TestStruct ends
 

The C++ definition of TestStruct (Listing 2-24) uses sized integer types instead 
of the more common ANSI types. Some developers (including me) prefer to use 
sized integer types for assembly language structures and function arguments since 
it emphasizes the exact size of the data types that are being manipulated. The other 
noteworthy detail regarding TestStruct is the definition of structure member Pad8. 
While not explicitly required, the inclusion of this member helps document the fact that 
the C++ compiler defaults to aligning structure members to their natural boundaries. 
The assembly language version of TestStruct (Listing 2-25) looks similar to its C++ 
counterpart. The biggest difference between the two is that the assembler does not 
automatically align structure members to their natural boundaries. Here the definition 
of Pad8 is required; without the member Pad8, the C++ and assembly language versions 
would be semantically different. The ? symbol that’s included with each data element 
declaration notifies the assembler to perform storage allocation only and is customarily 
used to remind the programmer that structure members are always uninitialized.

The C++ and assembly language source code for the sample program CalcStructSum 
are shown in Listings 2-26 and 2-27, respectively. The C++ portion of this program is 
straightforward. The function _tmain declares an instance of TestStruct named ts. Following 
initialization of ts, the function CalcStructSumCpp is called, which sums the members of 
ts and returns a 64-bit integer result. The function _tmain then calls the assembly language 
function CalcStructSum_ to perform the same member-summing calculation.

Listing 2-26. CalcStructSum.cpp

#include "stdafx.h"
#include "TestStruct.h"
 
extern "C" __int64 CalcStructSum_(const TestStruct* ts);
 
__int64 CalcStructSumCpp(const TestStruct* ts)
{
    return ts->Val8 + ts->Val16 + ts->Val32 + ts->Val64;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    TestStruct ts;
 
    ts.Val8 = -100;
    ts.Val16 = 2000;
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    ts.Val32 = -300000;
    ts.Val64 = 40000000000;
 
    __int64 sum1 = CalcStructSumCpp(&ts);
    __int64 sum2 = CalcStructSum_(&ts);
 
    printf("Input: %d  %d  %d  %lld\n", ts.Val8, ts.Val16, ts.Val32,
      ts.Val64);
    printf("sum1:  %lld\n", sum1);
    printf("sum2:  %lld\n", sum2);
 
    if (sum1 != sum2)
        printf("Sum verify check failed!\n");
 
    return 0;
}

Listing 2-27. CalcStructSum_.asm

        .model flat,c
        include TestStruct_.inc
        .code
 
; extern "C" __int64 CalcStructSum_(const TestStruct* ts);
;
; Description:  This function sums the members of a TestStruc.
;
; Returns:      Sum of 'ts' members as a 64-bit integer.
 
CalcStructSum_ proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
 
; Compute ts->Val8 + ts->Val16, note sign extension to 32-bits
        mov esi,[ebp+8]
        movsx eax,byte ptr [esi+TestStruct.Val8]
        movsx ecx,word ptr [esi+TestStruct.Val16]
        add eax,ecx
 
; Sign extend previous sum to 64 bits, save result to ebx:ecx
        cdq
        mov ebx,eax
        mov ecx,edx
 
; Add ts->Val32 to sum
        mov eax,[esi+TestStruct.Val32]
        cdq
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        add eax,ebx
        adc edx,ecx
 
; Add ts->Val64 to sum
        add eax,dword ptr [esi+TestStruct.Val64]
        adc edx,dword ptr [esi+TestStruct.Val64+4]
 
        pop esi
        pop ebx
        pop ebp
        ret
CalcStructSum_ endp
        end
 

Following its prolog, the function CalcStructSum_ (Listing 2-27) loads register ESI 
with a pointer to ts. Two movsx (Move with Sign Extension) instructions then are used to 
load the values of structure members ts->Val8 and ts->Val16 into registers EAX and ECX, 
respectively. The movsx instruction creates a temporary copy of the source operand and 
sign-extends this value before copying it to the destination operand. As illustrated in this 
function, the movsx instruction is frequently used to load a 32-bit register using an 8-bit or 
16-bit source operand. The movsx instructions also illustrate the syntax that is required to 
reference a structure member in an assembly language instruction. From the perspective 
of the assembler, the instruction movsx ecx,word ptr [esi+TestStruct.Val16] is simply 
an instance of BaseReg+Disp memory addressing since the assembler ultimately resolves 
the structure member identifier TestStruct.Val16 to a constant offset value.

The function CalcStructSum_ uses an add eax,ecx instruction to compute the 
sum of ts->Val8 and ts->Val16. It then sign-extends this sum to 64 bits using a cdq 
instruction and copies the result to register pair ECX:EBX. The value of ts->Val32 is then 
loaded into EAX, sign-extended into EDX:EAX, and added to the previous intermediate 
sum using add and adc instructions. The final structure member value ts->Val64 is 
added next, which yields the final result. The Visual C++ calling convention requires 
64-bit return values to be placed in register pair EDX:EAX. Since the final result is already 
in the required register pair, no additional mov instructions are necessary. Output 2-10 
displays the results of the sample program CalcStructSum.

Output 2-10. Sample Program CalcStructSum

Input: -100  2000  -300000  40000000000
sum1:  39999701900
sum2:  39999701900

Dynamic Structure Creation
Many C++ programs use the new operator to dynamically create instances of classes or 
structures. For simple data-only structures like TestStruct, the standard library function 
malloc also can be used at run-time to allocate storage space for a new instance. In this 
section, you’ll look at creating structures dynamically from an x86 assembly language 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ X86-32 Core programming

71

function. You’ll also learn how to call C++ library functions from an assembly language 
function. The sample program for this section is named CreateStruct. The C++ and 
assembly language files are shown in Listings 2-28 and 2-29.

Listing 2-28. CreateStruct.cpp

#include "stdafx.h"
#include "TestStruct.h"
 
extern "C" TestStruct* CreateTestStruct_(__int8 val8, __int16 val16, __int32
 val32, __int64 val64);
extern "C" void ReleaseTestStruct_(TestStruct* p);
 
void PrintTestStruct(const char* msg, const TestStruct* ts)
{
    printf("%s\n", msg);
    printf("  ts->Val8:   %d\n", ts->Val8);
    printf("  ts->Val16:  %d\n", ts->Val16);
    printf("  ts->Val32:  %d\n", ts->Val32);
    printf("  ts->Val64:  %lld\n", ts->Val64);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    TestStruct* ts = CreateTestStruct_(40, -401, 400002, -4000000003LL);
 
    PrintTestStruct("Contents of TestStruct 'ts'", ts);
 
    ReleaseTestStruct_(ts);
    return 0;
}

Listing 2-29. CreateStruct_.asm

        .model flat,c
        include TestStruct_.inc
        extern malloc:proc
        extern free:proc
        .code
 
; extern "C" TestStruct* CreateTestStruct_(__int8 val8, __int16 val16,
  __int32 val32, __int64 val64);
;
; Description:  This function allocates and initializes a new TestStruct.
;
; Returns:      A pointer to the new TestStruct or NULL error occurred.
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CreateTestStruct_ proc
        push ebp
        mov ebp,esp
 
; Allocate a block of memory for the new TestStruct; note that
; malloc() returns a pointer to memory block in EAX
        push sizeof TestStruct
        call malloc
        add esp,4
        or eax,eax                          ; NULL pointer test
        jz MallocError                      ; Jump if malloc failed
 
; Initialize the new TestStruct
        mov dl,[ebp+8]
        mov [eax+TestStruct.Val8],dl
         
        mov dx,[ebp+12]
        mov [eax+TestStruct.Val16],dx
 
        mov edx,[ebp+16]
        mov [eax+TestStruct.Val32],edx
 
        mov ecx,[ebp+20]
        mov edx,[ebp+24]
        mov dword ptr [eax+TestStruct.Val64],ecx
        mov dword ptr [eax+TestStruct.Val64+4],edx
 
MallocError:
        pop ebp
        ret
CreateTestStruct_ endp
 
; extern "C" void ReleaseTestStruct_(const TestStruct* p);
;
; Description:  This function release a previously created TestStruct.
;
; Returns:      None.
 
ReleaseTestStruct_ proc
        push ebp
        mov ebp,esp
 
; Call free() to release previously created TestStruct
        push [ebp+8]
        call free
        add esp,4
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        pop ebp
        ret
ReleaseTestStruct_ endp
        end
 

The C++ portion of sample program CreateStruct (Listing 2-28) is straightforward. 
It includes some simple test code that exercises the assembly language functions 
CreateTestStruct_ and ReleaseTestStruct_. Near the top of the CreateStructure_.asm  
file (Listing 2-29) is the statement extern malloc:proc, which declares the external C++ 
library function malloc. Another extern statement follows for the C++ library function 
free. Unlike its C++ counterpart, the assembly language version of extern does not 
support function parameters or return types. This means that the assembler cannot 
perform static type checking and the programmer is responsible for ensuring that the 
correct arguments are placed on the stack.

Following its prolog, CreateTestStruct_ uses the function malloc to allocate a 
memory block for a new instance of TestStruct. In order to use malloc or any C++ 
run-time library function, the calling function must observe the standard C++ calling 
convention. The instruction push sizeof TestStruct pushes the size in bytes of the 
structure TestStruct onto the stack. A call malloc instruction invokes the C++ library 
function. This is followed by an add esp,4 instruction, which removes the size argument 
from the stack. Like all other standard functions, malloc uses register EAX for its return 
value. The returned pointer is tested for validity prior to its use. If the pointer returned 
by malloc is valid, the new structure instance is initialized using the provided argument 
values. The pointer is then returned to the caller.

The use of malloc by CreateTestStruct_ means that the memory block will need 
to be released following its use. Requiring the caller to use the standard library function 
free would work, but this exposes the inner workings of CreateTestStruct_ and creates 
an unnecessary dependency. A real-world implementation of CreateTestStruct_ 
might want to manage a pool of pre-allocated TestStruct buffers. To allow for this 
possibility, the file CreateStructure_.asm also defines a separate function named 
ReleaseTestStruct_. In the current program, ReleaseTestStruct_ calls free to release 
the block of memory that was previously allocated in CreateTestStruct_. The results of 
the sample program CreateStruct are shown in Output 2-11.

Output 2-11. Sample Program CreateStruct

Contents of TestStruct 'ts'
  ts->Val8:   40
  ts->Val16:  -401
  ts->Val32:  400002
  ts->Val64:  -4000000003

Strings
The x86 instruction set includes several instructions that manipulate strings. In x86 
parlance, a string is a contiguous sequence of bytes, word, or doublewords. Programs 
can use the string instructions to process conventional text strings such as “Hello, 
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World.” They also can be employed to perform operations using the elements of an array 
or on blocks of memory. In this section, you’ll examine some sample programs that 
demonstrate how to use the x86 string instructions with text strings and integer arrays.

Counting Characters
The first sample program that you’ll examine in this section is named CountChars, 
which illustrates how to use the lods (Load String) instruction to count the number of 
occurrences of a character in a text string. The source code files for this program are 
shown in Listings 2-30 and 2-31.

Listing 2-30. CountChars.cpp

#include "stdafx.h"
 
extern "C" int CountChars_(wchar_t* s, wchar_t c);
 
int _tmain(int argc, _TCHAR* argv[])
{
    wchar_t c;
    wchar_t* s;
 
    s = L"Four score and seven seconds ago, ...";
    wprintf(L"\nTest string: %s\n", s);
    c = L's';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
    c = L'F';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
    c = L'o';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
    c = L'z';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
 
    s = L"Red Green Blue Cyan Magenta Yellow";
    wprintf(L"\nTest string: %s\n", s);
    c = L'e';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
    c = L'w';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
    c = L'Q';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
    c = L'l';
    wprintf(L"  SearchChar: %c Count: %d\n", c, CountChars_(s, c));
 
    return 0;
}
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Listing 2-31. CountChars_.asm

        .model flat,c
        .code
 
; extern "C" int CountChars_(wchar_t* s, wchar_t c);
;
; Description: This function counts the number of occurrences
;               of 'c' in 's'
;
; Returns: Number of occurrences of 'c'
 
CountChars_ proc
        push ebp
        mov ebp,esp
        push esi
 
; Load parameters and initialize count registers
        mov esi,[ebp+8]                     ;esi = 's'
        mov cx,[ebp+12]                     ;cx = 'c'
        xor edx,edx                         ;edx = Number of occurrences
 
; Repeat loop until the entire string has been scanned
@@:     lodsw                         ;load next char into ax
        or ax,ax                      ;test for end-of-string
        jz @F                         ;jump if end-of-string found
        cmp ax,cx                     ;test current char
        jne @B                        ;jump if no match
        inc edx                       ;update match count
        jmp @B
 
@@:     mov eax,edx                   ;eax = character count
        pop esi
        pop ebp
        ret
CountChars_ endp
        end
 

The assembly language function CountChars_ accepts two arguments: a text string 
pointer s and a search character c. Both arguments are of type wchar_t, which means 
that each text string character and the search character are 16-bit values. The function 
CountChars_ starts by loading s and c into ESI and CX respectively. EDX is then initialized 
to zero so that it can be used as an occurrence counter. The processing loop uses the 
lodsw (Load String Word) instruction to read each text string character. This instruction 
loads register AX with the contents of the memory pointed to by ESI; it then increments 
ESI by two so that it points to the next character. The function uses an or ax,ax 
instruction to test for the end-of-string ('\0') character. If the end-of-string character 
is not found, a cmp ax,cx instruction compares the current text string character to the 
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search character. If a match is detected, the occurrence counter is incremented by one. 
This process is repeated until the end-of-string character is found. Following completion 
of the text string scan, the final occurrence count is moved into register EAX and returned 
to the caller. The results of the sample program CountChars are shown in Output 2-12.

Output 2-12. Sample Program CountChars

Test string: Four score and seven seconds ago, ...
  SearchChar: s Count: 4
  SearchChar: F Count: 1
  SearchChar: o Count: 4
  SearchChar: z Count: 0
 
Test string: Red Green Blue Cyan Magenta Yellow
  SearchChar: e Count: 6
  SearchChar: w Count: 1
  SearchChar: Q Count: 0
  SearchChar: l Count: 3
 

A version of CountChars_ that processes strings of type char instead of wchar_t 
can be easily created by changing the lodsw instruction to a lodsb (Load String Byte) 
instruction. Register AL would also be used instead of AX. The last character of an x86 
string instruction mnemonic always indicates the size of the operand that is processed.

String Concatenation
The concatenation of two text strings is a common operation that is performed by many 
programs. In Visual C++ applications can use the library functions strcat, strcat_s, 
wcscat, and wcscat_s to concatenate two strings. One drawback of these functions is that 
they can process only a single source string. Multiple calls are necessary if an application 
needs to concatenate several strings together. The next sample application of this section 
is called ConcatStrings and demonstrates how to use the scas (Scan String) and movs 
(Move String) instructions to concatenate multiple strings. Listing 2-32 shows the 
source code for ConcatStrings.cpp while Listing 2-33 contains the source code file for 
ConcatStrings_.asm.

Listing 2-32. ConcatStrings.cpp

#include "stdafx.h"
 
extern "C" int ConcatStrings_(wchar_t* des, int des_size, const wchar_t* 
const* src, int src_n);
 
int _tmain(int argc, _TCHAR* argv[])
{
    printf("\nResults for ConcatStrings\n");
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    // Destination buffer large enough
    wchar_t* src1[] = { L"One ", L"Two ", L"Three ", L"Four" };
    int src1_n = sizeof(src1) / sizeof(wchar_t*);
    const int des1_size = 64;
    wchar_t des1[des1_size];
 
    int des1_len = ConcatStrings_(des1, des1_size, src1, src1_n);
    wchar_t* des1_temp = (*des1 != '\0') ? des1 : L"<empty>";
    wprintf(L"  des_len: %d (%d) des: %s \n", des1_len, wcslen(des1_temp), 
    des1_temp);
 
    // Destination buffer too small
    wchar_t* src2[] = { L"Red ", L"Green ", L"Blue ", L"Yellow " };
    int src2_n = sizeof(src2) / sizeof(wchar_t*);
    const int des2_size = 16;
    wchar_t des2[des2_size];
 
    int des2_len = ConcatStrings_(des2, des2_size, src2, src2_n);
    wchar_t* des2_temp = (*des2 != '\0') ? des2 : L"<empty>";
    wprintf(L"  des_len: %d (%d) des: %s \n", des2_len, wcslen(des2_temp), 
    des2_temp);
 
    // Empty string test
    wchar_t* src3[] = { L"Airplane ", L"Car ", L"", L"Truck ", L"Boat " };
    int src3_n = sizeof(src3) / sizeof(wchar_t*);
    const int des3_size = 128;
    wchar_t des3[des3_size];
 
    int des3_len = ConcatStrings_(des3, des3_size, src3, src3_n);
    wchar_t* des3_temp = (*des3 != '\0') ? des3 : L"<empty>";
    wprintf(L"  des_len: %d (%d) des: %s \n", des3_len, wcslen(des3_temp), 
    des3_temp);
 
    return 0;
}

Listing 2-33. ConcatStrings_.asm

        .model flat,c
        .code
 
; extern "C" int ConcatStrings_(wchar_t* des, int des_size, const wchar_t* 
 const* src, int src_n)
;
; Description:  This function performs string concatenation using
;               multiple input strings.
;
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; Returns:      -1         Invalid 'des_size'
;               n >=0      Length of concatenated string
;
; Locals Vars:  [ebp-4] = des_index
;               [ebp-8] = i
 
ConcatStrings_ proc
        push ebp
        mov ebp,esp
        sub esp,8
        push ebx
        push esi
        push edi
 
; Make sure 'des_size' is valid
        mov eax,-1
        mov ecx,[ebp+12]                    ;ecx = 'des_size'
        cmp ecx,0
        jle Error
 
; Perform required initializations
        xor eax,eax
        mov ebx,[ebp+8]                     ;ebx = 'des'
        mov [ebx],ax                        ;*des = '\0'
        mov [ebp-4],eax                     ;des_index = 0
        mov [ebp-8],eax                     ;i = 0
 
; Repeat loop until concatenation is finished
Lp1:    mov eax,[ebp+16]                    ;eax = 'src'
        mov edx,[ebp-8]                     ;edx = i
        mov edi,[eax+edx*4]                 ;edi = src[i]
        mov esi,edi                         ;esi = src[i]
 
; Compute length of s[i]
        xor eax,eax
        mov ecx,-1
        repne scasw                         ;find '\0'
        not ecx
        dec ecx                             ;ecx = len(src[i])
 
; Compute des_index + src_len
        mov eax,[ebp-4]                     ;eax= des_index
        mov edx,eax                         ;edx = des_index_temp
        add eax,ecx                         ;des_index + len(src[i])
 
; Is des_index + src_len >=des_size?
        cmp eax,[ebp+12]
        jge Done
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; Update des_index
        add [ebp-4],ecx                     ;des_index += len(src[i])
 
; Copy src[i] to &des[des_index] (esi already contains src[i])
        inc ecx                             ;ecx = len(src[i]) + 1
        lea edi,[ebx+edx*2]                 ;edi = &des[des_index_temp]
        rep movsw                           ;perform string move
 
; Update i and repeat if not done
        mov eax,[ebp-8]
        inc eax
        mov [ebp-8],eax                     ;i++
        cmp eax,[ebp+20]
        jl Lp1                              ;jump if i < src_n
 
; Return length of concatenated string
Done:   mov eax,[ebp-4]                     ;eax = des_index
Error:  pop edi
        pop esi
        pop ebx
        mov esp,ebp
        pop ebp
        ret
ConcatStrings_ endp
        end
 

Let’s begin by examining the contents of ConcatStrings.cpp (Listing 2-31). It starts 
with a declaration statement for the assembly language function ConcatStrings_, which 
includes four parameters: des is the destination buffer for the final string; the size of des 
in characters is specified by des_size; and parameter src points to an array that contains 
pointers to src_n text strings. The function ConcatStrings_ returns the length of des or 
-1 if the supplied value for des_size is less than or equal to zero.

The test cases presented in _tmain illustrate the use of ConcatStrings_. For example, 
if src points to a text string array consisting of {"Red", "Green", "Blue"}, the final 
string in des is "RedGreenBlue" assuming the size of des is sufficient. If the size of des is 
insufficient, ConcatStrings_ generates a partially concatenated string. For example, a 
des_size equal to 10 would yield "RedGreen" as the final string.

The prolog of function ConcatStrings_ (Listing 2-32) allocates space for two local 
variables: des_index is used as an offset into des for string copies and i is the index of the 
current string in src. Following a validity check of des_size, ConcatStrings_ loads des 
into register EBX and initializes the buffer with an empty string. The values of des_index 
and i are then initialized to zero. The subsequent block of instructions marks the top of the 
concatenation loop; registers ESI and EDI are loaded with a pointer to the string src[i].

The length of src[i] is determined next using a repne scasw instruction in 
conjunction with several support instructions. The repne (Repeat String Operation While 
not Equal) is an instruction prefix that repeats execution of a string instruction while the 
condition ECX != 0 && EFLAGS.ZF == 0 is true. The exact operation of the repne scasw 
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(Scan String Word) combination is as follows:  If ECX is not zero, the scasw instruction 
compares the string character pointed to by EDI to the contents of register AX and sets the 
status flags according to the results. Register EDI is then automatically incremented by 
two so that it points to the next character and a count of one is subtracted from ECX. This 
string-processing operation is repeated so long as the aforementioned test conditions 
remain true; otherwise, the repeat string operation terminates.

Prior to execution of repne scasw, register ECX was loaded with -1. Upon completion 
of the repne scasw instruction, register ECX contains -(L + 2), where L denotes the actual 
string length of src[i]. The value L is calculated using a not ecx (One’s Complement 
Negation) instruction followed by a dec ecx (Decrement by 1) instruction, which is equal to 
subtracting 2 from the two’s complement negation of -(L + 2). (The instruction sequence 
shown here to calculate the length of a text string is a well-known x86 technique.)

Before continuing it should be noted that the Visual C++ run-time environment 
assumes that EFLAGS.DF is always cleared. If an assembly language function sets EFLAGS.DF  
in order to perform an auto-decrement operation with a string instruction, the flag must be 
cleared before returning to the caller or using any library functions. The sample program 
ReverseArray discusses this in greater detail.

Following the computation of len(src[i]), a check is made to verify that the string 
src[i] will fit into the destination buffer. If the sum des_index + len(src[i]) is greater 
than or equal to des_size, the function terminates. Otherwise, len(src[i]) is added to 
des_index and string src[i] is copied to the correct position in des using a rep movsw 
(Repeat Move String Word) instruction.

The rep movsw instruction copies the string pointed to by ESI to the memory location 
pointed to by EDI using the length specified by ECX. An inc ecx instruction is executed 
before the string copy to ensure that the end-of-string terminator '\0' is also transferred to 
des. Register EDI is initialized to the correct location in des using a lea edi,[ebx+edx*2] 
(Load Effective Address) instruction, which computes the address of the source operand. 
The function can use a lea instruction since register EBX points to the start of des and 
EDX contains the value of des_index prior its addition with len(src[i]). Subsequent 
to the string copy operation, the value of i is updated and if it’s less than src_n, the 
concatenation loop is repeated. Following completion of the concatenation operation, 
register EAX is loaded with des_index, which is the length of the final string in des. Output 
2-13 shows the results of the sample program ConcatStrings.

Output 2-13. Sample Program ConcatStrings

Results for ConcatStrings
  des_len: 18 (18) des: One Two Three Four
  des_len: 15 (15) des: Red Green Blue
  des_len: 24 (24) des: Airplane Car Truck Boat

Comparing Arrays
As mentioned in the beginning of this section, the x86 string instructions also can be 
used to process blocks of memory. The sample application CompareArrays illustrates 
use of the cmps (Compare String Operands) instruction to compare the elements of two 
arrays. Listings 2-34 and 2-35 contain the C++ and assembly language source code for this 
sample program.
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Listing 2-34. CompareArrays.cpp

#include "stdafx.h"
#include <stdlib.h>
 
extern "C" int CompareArrays_(const int* x, const int* y, int n);
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 21;
    int x[n], y[n];
    int result;
 
    // Initialize test arrays
    srand(11);
    for (int i = 0; i < n; i++)
        x[i] = y[i] = rand() % 1000;
 
    printf("\nResults for CompareArrays\n");
 
    // Test using invalid 'n'
    result = CompareArrays_(x, y, -n);
    printf("  Test #1 - expected: %3d  actual: %3d\n", -1, result);
 
    // Test using first element mismatch
    x[0] += 1;
    result = CompareArrays_(x, y, n);
    x[0] -= 1;
    printf("  Test #2 - expected: %3d  actual: %3d\n", 0, result);
 
    // Test using middle element mismatch
    y[n / 2] -= 2;
    result = CompareArrays_(x, y, n);
    y[n / 2] += 2;
    printf("  Test #3 - expected: %3d  actual: %3d\n", n / 2, result);
 
    // Test using last element mismatch
    x[n - 1] *= 3;
    result = CompareArrays_(x, y, n);
    x[n - 1] /=3;
    printf("  Test #4 - expected: %3d  actual: %3d\n", n - 1, result);
 
    // Test with identical elements in each array
    result = CompareArrays_(x, y, n);
    printf("  Test #5 - expected: %3d  actual: %3d\n", n, result);
    return 0;
}
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Listing 2-35. CompareArrays_.asm

        .model flat,c
        .code
 
; extern "C" int CompareArrays_(const int* x, const int* y, int n)
;
; Description:  This function compares two integer arrays element
;               by element for equality
;
; Returns       -1          Value of 'n' is invalid
;               0 <= i < n  Index of first non-matching element
;               n           All elements match
 
CompareArrays_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Load arguments and validate 'n'
        mov eax,-1                      ;invalid 'n' return code
        mov esi,[ebp+8]                 ;esi = 'x'
        mov edi,[ebp+12]                ;edi = 'y'
        mov ecx,[ebp+16]                ;ecx = 'n'
        test ecx,ecx
        jle @F                          ;jump if 'n' <= 0
        mov eax,ecx                     ;eax = 'n
 
; Compare the arrays for equality
        repe cmpsd
        je @F                           ;arrays are equal
 
; Calculate index of unequal elements
        sub eax,ecx
        dec eax                         ;eax = index of mismatch
 
@@:     pop edi
        pop esi
        pop ebp
        ret
CompareArrays_ endp
        end
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The assembly language function CompareArrays_ (Listing 2-34) compares the 
elements of two integer arrays and returns the index of the first non-matching element. 
If the arrays are identical, the number of elements is returned. Otherwise, -1 is returned 
to indicate an error. The function loads ESI and EDI with pointers to arrays x and y, 
respectively. Register ECX is then loaded with the number of elements and checked 
for validity using a test ecx,ecx instruction. The test (Logical Compare) instruction 
performs a bitwise AND of the two operands and sets the status flags EFLAGS.ZF, EFLAGS.
SF, and EFLAGS.PF based on the result (EFLAGS.CF and EFLAGS.OF are cleared). The result 
of the AND operation is discarded. A test instruction is sometimes used as an alternative 
to a cmp instruction, especially in situations where use of the former results in a smaller 
instruction encoding.

The arrays are compared using a repe cmpsd (Compare String Dowubleword) 
instruction. This instruction compares the two doublewords pointed to by ESI and EDI 
and sets the status flags according to the results. Registers ESI and EDI are incremented 
(the value 4 is added to each register since a doubleword compare is being performed) 
after each compare operation. The repe (Repeat While Equal) prefix instructs the 
processor to repeat the cmpsd instruction as long as the condition ECX != 0 && EFLAGS.
ZF == 1 is true. Upon completion of the doubleword compare, a conditional jump is 
performed if the arrays are equal (EAX already contains the correct return value) or the 
index of the first non-matching elements is calculated. Output 2-14 shows the results of 
CompareArrays.

Output 2-14. Sample Program CompareArrays

Results for CompareArrays
  Test #1 - expected:  -1  actual:  -1
  Test #2 - expected:   0  actual:   0
  Test #3 - expected:  10  actual:  10
  Test #4 - expected:  20  actual:  20
  Test #5 - expected:  21  actual:  21

Array Reversal
The final sample program of this section is called ReverseArray and demonstrates using 
the lods (Load String) instruction to reverse the elements of an array. Unlike the previous 
sample applications of this section, ReverseArray sweeps through the source array from 
the last element to the first element, which requires modification of control flag EFLAGS.DF.  
The source code files ReverseArray.cpp and ReverseArray_.asm are shown in Listings 
2-36 and 2-37, respectively.

Listing 2-36. ReverseArray.cpp

#include "stdafx.h"
#include <stdlib.h>
 
extern "C" void ReverseArray_(int* y, const int* x, int n);
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int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 21;
    int x[n], y[n];
 
    // Initialize test array
    srand(31);
    for (int i = 0; i < n; i++)
        x[i] = rand() % 1000;
 
    ReverseArray_(y, x, n);
 
    printf("\nResults for ReverseArray\n");
    for (int i = 0; i < n; i++)
    {
        printf("  i: %5d  y: %5d  x: %5d\n", i, y[i], x[i]);
        if (x[i] != y[n - 1 - i])
            printf("  Compare failed!\n");
    }
 
    return 0;
}

Listing 2-37. ReverseArray_.asm

        .model flat,c
        .code
 
; extern "C" void ReverseArray_(int* y, const int* x, int n);
;
; Description:  The following function saves the elements of array 'x'
;               to array 'y' in reverse order.
;
; Returns       0 = Invalid 'n'
;               1 = Success
 
ReverseArray_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Load arguments, make sure 'n' is valid
        xor eax,eax                         ;error return code
        mov edi,[ebp+8]                     ;edi = 'y'
        mov esi,[ebp+12]                    ;esi = 'x'
        mov ecx,[ebp+16]                    ;ecx = 'n'
        test ecx,ecx
        jle Error                           ;jump if 'n' <= 0
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; Initialize pointer to x[n - 1] and direction flag
        lea esi,[esi+ecx*4-4]               ;esi = &x[n - 1]
        pushfd                              ;save current direction flag
        std                                 ;EFLAGS.DF = 1
 
; Repeat loop until array reversal is complete
@@:     lodsd                               ;eax = *x--
        mov [edi],eax                       ;*y = eax
        add edi,4                           ;y++
        dec ecx                             ;n--
        jnz @B
 
        popfd                          ;restore direction flag
        mov eax,1                      ;set success return code
 
Error:  pop edi
        pop esi
        pop ebp
        ret
ReverseArray_ endp
        end
 

The function ReverseArray_ (Listing 2-36) copies the elements of a source array to 
a destination array in reverse order. The function requires three parameters: a pointer 
to a destination array named y, a pointer to a source array named x, and the number of 
elements n. The argument values of parameters are loaded into registers EDI, ESI, and 
ECX, respectively.

In order to reverse the elements of the source array, the address of the last 
array element x[n - 1] needs to be calculated. This is accomplished using a lea 
esi,[esi+ecx*4-4] instruction, which computes the effective address of the source 
memory operand (i.e. it performs the arithmetic specified between the brackets). The 
current state of EFLAGS.DF is saved on the stack using a pushfd (Push EFLAGS Register 
onto the Stack), followed by a std (Set Direction Flag) instruction. The duplication 
of array elements from x to y is straightforward. A lodsd (Load String Doubleword) 
instruction loads an element from x into EAX and decrements register ESI. This value is 
saved to the element in y that is pointed to by EDI. An add edi,4 instruction points EDI 
to the next element in y. Register ECX is then decremented and the loop is repeated until 
the array reversal is complete.

Following the reverse array loop, a popfd (Pop Stack into EFLAGS Register) is used 
to restore the original state of EFLAGS.DF. One question that might be asked at this point 
is if the Visual C++ run-time environment assumes that EFLAGS.DF is always cleared, 
why doesn’t the function ReverseArray_ use a cld (Clear Direction Glag) instruction 
to restore EFLAGS.DF instead of a pushfd/popfd sequence? Yes, the Visual C++ run-time 
environment assumes that EFLAGS.DF is always cleared, but it cannot enforce this policy 
during program execution. Since ReverseArray_ is declared as a public function, it could 
be called by another assembly language function that violates the EFLAGS.DF state rules.  
If ReverseArray_ were to be included in a DLL, it could conceivably be called by a 
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function written in a language that uses a different convention for the direction flag. 
Using pushfd and popfd ensures that the state of the caller’s direction is always properly 
restored. The results of the sample program ReverseArray are shown in Output 2-15.

Output 2-15. Sample Program ReverseArray

Results for ReverseArray
  i:     0  y:   409  x:   139
  i:     1  y:    48  x:   240
  i:     2  y:   981  x:   971
  i:     3  y:   643  x:   503
  i:     4  y:   102  x:   927
  i:     5  y:   114  x:   453
  i:     6  y:   366  x:   547
  i:     7  y:   697  x:    76
  i:     8  y:    87  x:   789
  i:     9  y:   466  x:   862
  i:    10  y:   268  x:   268
  i:    11  y:   862  x:   466
  i:    12  y:   789  x:    87
  i:    13  y:    76  x:   697
  i:    14  y:   547  x:   366
  i:    15  y:   453  x:   114
  i:    16  y:   927  x:   102
  i:    17  y:   503  x:   643
  i:    18  y:   971  x:   981
  i:    19  y:   240  x:    48
  i:    20  y:   139  x:   409

Summary
This chapter examined a significant amount of material related to x86 assembly language 
programming. This includes the rudiments of an x86 assembly language function; 
essential topics such as calling conventions, integer arithmetic, memory addressing 
modes, and condition codes; and how to use x86 assembly language with common 
programming constructs such as arrays, structures, and text strings.

If this is your first venture into the world of assembly language programing and 
you’re feeling a little overwhelmed at this point, don’t worry. It has been my experience 
that the best way to become comfortable with a new programming language is to start by 
coding simple programs and then gradually work toward learning the more sophisticated 
aspects of the language. The sample code that’s included with this book is structured to 
achieve this goal. All of the assembly language functions are relatively short and contain 
minimal dependencies in order to facilitate “hands-on” learning and experimentation. 
Simple console programs are also used in order to avoid excessive complexity.

Chapters 1 and 2 explained key elements of the x86-32 platform and its execution 
environment. You’ll use this knowledge as you explore other facets of the x86 platform, 
including the x87 floating-point unit, which is the topic of Chapters 3 and 4.
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Chapter 3

X87 Floating-Point Unit

The x86 platform includes a discrete execution unit that is capable of performing 
floating-point arithmetic. This unit, known as the x87 floating-point unit (FPU), employs 
dedicated hardware to implement fundamental floating-point operations such as 
addition, subtraction, multiplication and division. It is also equipped to carry out more 
sophisticated computations using built-in square root, trigonometric, and logarithmic 
instructions. The x87 FPU supports a variety of numerical data types, including single and 
double precision floating-point, signed integers, and packed BCD.

This chapter examines the architecture of the x87 FPU. You’ll learn about the 
x87 FPU’s major components, including its data registers, control register, and status 
register. You’ll also study the binary encoding formats that the x87 FPU uses to 
represent floating-point numbers and certain special values. Software developers who 
understand these encoding schemes can frequently use this knowledge to minimize 
potential floating-point errors or improve the performance of algorithms that make 
heavy use of floating-point values. The chapter concludes with an overview of the  
x87 FPU instruction set.

X87 FPU Core Architecture
Architecturally, the x87 FPU includes eight 80-bit wide data registers and a set of  
special-purpose registers. The special-purpose register set contains a control register and 
a status register that the programmer can use to configure the x87 FPU and determine its 
current status. The special-purpose register set also includes several auxiliary registers 
that are used primarily by operating systems and floating-point exception handlers. 
Figure 3-1 illustrates the major components of the x87 FPU. 
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Data Registers
The x87 FPU’s eight data registers are organized as a stack. All arithmetic instructions are 
executed using either implicit or explicit operands relative to the stack top. Different data 
types can be pushed onto or popped off the x87 FPU register stack, including signed integers 
(16, 32, and 64 bits), floating-point values (32, 64, and 80 bits), and 80-bit packed BCD 
quantities. Data transfers between an x87 FPU data register and an x86-32 general-purpose 
register are not possible; an intermediate memory location must be used to perform 
this type of operation. However, it should be noted that these types of data transfers are 
not performed that often. Except for an exceedingly small set of commonly used values, 
arithmetic constants also must be loaded onto the x87 FPU register stack using a memory 
operand since the x87 FPU instruction set does not support immediate operands. 

All of the x87 FPU’s numerical formats, processing algorithms, and exception 
signaling procedures are based on an IEEE standard for binary floating-point arithmetic 
(IEEE 754-1985). Internally, the x87 FPU maintains numerical values using an 80-bit 
double extended-precision format. Conversion between this internal format and all 
supported integer, floating-point, and BCD formats occurs automatically during x87 FPU 
register load and store operations.

X87 FPU Special-Purpose Registers
The x87 FPU contains several special-purpose registers, which are used to configure 
the FPU, determine its status, and facilitate exception processing. The x87 FPU control 
register, shown in Figure 3-2, allows a task to enable or disable various floating-point 
processing options, including exceptions, rounding method, and precision level. Unlike 
most other x86 control registers, modification of the x87 FPU control register does not 
require elevated run-time privileges; application programs can configure the x87 FPU 
based on an algorithm’s specific processing requirements. Table 3-1 describes the 
meaning of each field in the x87 FPU control register.

R7

R6

R5

R4

R3

R2

R1

R0

ExponentS Significand

Data Registers

079 64

Control Register

Status Register

Tag Register

Last Instruction Pointer

Last Data Pointer

Last Instruction Opcode

Special-Purpose Registers

Figure 3-1. X87 FPU core architecture
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X RC PM UM OM ZM DM IMPC

0123456789101112131415

Figure 3-2. X87 FPU control register

Table 3-1. X87 FPU Control Register Fields

Bit Field Name Description

IM Invalid operation mask Invalid operation exception mask bit; 1 disables 
the exception.

DM Denormal operand mask Denormal operand exception mask bit; 1 disables 
the exception.

ZM Zero divide mask Division-by-zero exception mask bit; 1 disables 
the exception.

OM Overflow mask Overflow exception mask bit; 1 disables the 
exception.

UM Underflow mask Underflow exception mask bit; 1 disables the 
exception.

PM Precision mask Precision exception mask bit; 1 disables the 
exception.

PC Precision control field Specifies the precision for basic floating-point 
calculations. Valid options include single 
precision (00b), double precision (10b), and 
double extended precision (11b).

RC Rounding control field Specifies the method for rounding x87 FPU 
results. Valid options include round to nearest 
(00b), round down towards -∞ (01b), round up 
towards +∞ (10b), and round towards zero or 
truncate (11b).

X Infinity control bit Enables processing of infinity values in a 
manner that is compatible with the 80287 math 
coprocessor. Modern software can ignore this flag.

Setting an exception mask bit to 1 in the x87 FPU control register disables only 
the generation of a processor exception. The x87 FPU status register always records the 
occurrence of any x87 FPU exception condition. Application programs cannot directly 
access the internal processor table that specifies the x87 FPU exception handler. Most C and 
C++ compilers, however, provide a library function that allows an application program to 
designate a callback function that gets invoked whenever an x87 FPU exception occurs.
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The x87 FPU status register contains a 16-bit value that allows a task to determine 
the results of an arithmetic operation, check if an exception has occurred, or query stack 
status information. Figure 3-3 shows the organization of the fields in the x87 FPU status 
register and Table 3-2 describes the meaning of each status register field. 

B C3 TOP ES SF PE UE OE ZE DE IE

0123456789101112131415

C2 C1 C0

Figure 3-3. X87 FPU status register

Table 3-2. X87 FPU Status Register Fields

Bit Field Name Description

IE Invalid operation exception Invalid operation exception status; set to 
1 whenever an instruction uses an invalid 
operand.

DE Denormal operand 
exception

Denormal operand exception status; set to 
1 whenever an instruction uses a denormal 
operand.

ZE Zero divide exception Division-by-zero exception status; set to 1 
whenever an instruction attempts division-
by-zero.

OE Overflow exception Overflow exception status; set to 1 if a result 
exceeds the maximum allowable value for 
destination operand.

UE Underflow exception Underflow exception status; set to 1 if a result 
is smaller than the minimum allowable value 
for destination operand.

PE Precision exception Precision exception status; set to 1 if a result 
cannot be exactly represented using binary 
format of destination operand.

SF Stack fault Signifies that a stack fault has occurred when 
set to 1 (the Invalid Operation exception 
flag is also set to 1); condition code bit C1 
indicates the stack fault type: underflow (C1 = 0) 
or overflow (C1 = 1).

ES Error summary status Indicates that at least one unmasked 
exception bit is set.

C0 Condition code flag 0 X87 FPU status flag (see text).

(continued)
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The exception flags in the x87 FPU status register are set whenever a floating-point 
error condition occurs following the execution of an x87 FPU instruction. These flags 
are not automatically cleared by the processor; they must manually reset using an fclex 
or fnclex (Clear Exceptions) instruction. The condition code flags report the results of 
floating-point arithmetic and compare operations. They are also used by some instructions 
to indicate errors or additional status information. The bits of the x87 FPU status register 
(also called the x87 FPU status word) cannot be directly tested. They must be copied to 
memory or register AX using an fstsw or fnstsw (Store x87 FPU Status Word) instruction.

The x87 FPU also contains a 16-bit tag word register, which denotes the contents of 
each 80-bit data register. The tag word can be examined either by an application program 
or exception handler. Possible floating-point register tags states include valid (00b), 
zero (01b), special (10b), or empty (11b). The special tag state includes invalid format, 
denormal, or infinity. The meanings of these states are described later in this chapter.

Finally, the x87 FPU includes three registers that are used primarily by operating 
systems and exception handlers. The last instruction pointer, last data pointer, and 
last instruction opcode registers allow an exception handler to ascertain additional 
information about the specific instruction that caused an exception. The sizes of the last 
instruction pointer and last data pointer registers vary depending on the whether the 
current processor execution mode is x86-32 or x86-64. The size of the last instruction 
opcode register is 11 bits. This register contains the low-order opcode bits of the last 
non-control x87 FPU instruction that was executed (the upper five bits of an x87 FPU 
instruction opcode are not saved since these bits are always 11011b).

X87 FPU Operands and Encodings
The x87 FPU instruction set supports three types of memory operands: signed integer, 
floating-point, and packed BCD. Usable signed-integer operands include word (16 bits), 
doubleword (32 bits), and quadword (64 bits). Supported floating-point operands include 
single precision (32 bits), double precision (64 bits), and double extended-precision (80 
bits). Many C and C++ compilers use the single-precision and double-precision operand 
types to implement float and double values, respectively. The sole packed BCD format 

Bit Field Name Description

C1 Condition code flag 1 X87 FPU status flag (see text).

C2 Condition code flag 2 X87 FPU status flag (see text).

TOS Top-of-stack register Three-bit value that indicates the current top-
of-stack register.

C3 Condition code flag 3 X87 FPU status flag (see text).

B Busy flag Duplicates the state of the ES flag; provided 
for 8087 compatibility; modern application 
programs can ignore this flag.

Table 3-2. (continued)
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is 80 bits in length. X87 FPU instructions may use any of the addressing modes that 
were described in Chapter 1 to specify an operand in memory. Figure 3-4 illustrates the 
organization of all valid x87 memory operand types. 
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significand

significand

significand
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Figure 3-4. X87 memory operand types

The x87 FPU encodes a floating-point value using three distinct fields: a significand, 
an exponent, and a sign bit. The significand field represents a number’s significant digits 
(or fractional part). The exponent specifies the location of the binary “decimal” point in the 
significand, which determines the magnitude. The sign bit indicates whether the number 
is positive (s = 0) or negative (s = 1). Table 3-3 lists the various size parameters that are used 
to encode single, double, and double-extended precision floating-point values. 

Table 3-3. Floating-Point Size Parameters

Parameter Single Double Double-Extended

Total width 32 64 80

Significand width 23 52 63

Exponent width 8 11 15

Sign width 1 1 1

Exponent bias +127 +1023 +16383

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ X87 Floating-point Unit

93

Figure 3-5 illustrates the process that is used to convert a decimal number into an 
x87-FPU compatible floating-point encoded value. In this example, the number 237.8325 
is transformed from a decimal number to its single-precision floating-point encoding. 
The process starts by converting the number from base 10 to base 2. Next, the base 2 
value is transformed to a binary scientific value. The value to the right of the E

2
 symbol 

is the binary exponent. A properly encoded floating-point value uses a biased exponent 
instead of the true exponent since this expedites floating-point compare operations. For 
a single-precision floating-point number, the bias value is +127. Adding the exponent 
bias value to the true exponent creates a binary scientific with biased exponent value. In 
the example that’s shown in Figure 3-5, adding 111b to 1111111b (+127) yields a binary 
scientific with a biased exponent value of 10000110b.

1.11011011101 E2 111

1.11011011101 E2 10000110

235.8325

0  10000110  11011011101000000000000

Base 10

Base 2

Binary Scientific

Binary Scientific with
Biased Exponent

Sign Bit, Exponent, 
Normalized Significand

27 26

1 1

25 24 23 22 21 20 2-1 2-2 2-3 2-4

1 0 1 1 0 1 1 1 0 1.

0x436DD000
Final Single-Precision 
Encoding

Figure 3-5. Single-precision floating-point encoding process

When encoding a single-precision or double-precision floating-point value, 
the leading 1 digit of the significand is implied and not included in the final binary 
representation. The leading 1 digit is included when encoding a number using double 
extended-precision format. Dropping the leading 1 digit forms a normalized significand. 
The three fields required for an IEEE 754 complaint encoding are now available, as shown 
in Table 3-4. A reading of the bit fields in Table 3-4 from left to right yields the 32-bit value 
0x436DD000, which is the final single-precision floating-point encoding of 237.8325. 

Table 3-4. IEEE 754-Compliant Fields

Sign Biased Exponent Normalized Significand

0 10000110 11011011101000000000000
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The x87 FPU encoding scheme also reserves a small set of bit patterns for special 
values that are used to handle certain processing conditions. The first group of special 
values includes denormalized numbers (also called a denormal). As shown in the earlier 
encoding example, the standard encoding of a floating-point number assumes that the 
leading digit of the significand is always a 1. One drawback of x87 FPU’s floating-point 
encoding scheme is its inability to accurately represent numbers very close to zero.  
In these cases, the x87 FPU will encode such numbers using a non-normalized format, 
which enables tiny numbers close to zero (both positive and negative) to be encoded 
using less precision. Denormals rarely occur but when they do, the x87 FPU can still 
process them. In algorithms where the use of a denormal is problematic, a function can 
test a floating-point value in order to ascertain its denormal state or the x87 FPU can be 
configured to generate either an underflow or denormal exception.

Another application of special values involves the encodings that are used for 
floating-point zero. The x87 FPU supports two different representations of floating-point 
zero: positive zero (+0.0) and negative zero (–0.0). A negative zero can be generated either 
algorithmically or as a side effect of the x87 FPU’s rounding mode. Computationally, the 
x87 FPU treats positive and negative zero the same and the programmer typically does 
not need to be concerned. However, the x87 FPU includes instructions that can be used to 
test the sign bit of a floating-point value. 

The x87 FPU encoding scheme also supports positive and negative representations 
of infinity. Infinities are produced by certain numerical algorithms, overflow conditions, 
or division by zero. As discussed earlier in this chapter, the x87 FPU can be configured to 
generate an exception whenever an overflow occurs or a program attempts to divide a 
number by zero.

The final special value type is called Not a Number (NaN). NaNs are simply  
floating-point encodings that are not valid numbers. The x87 FPU defines two types of 
NaNs: signaling NaN (SNaN) and quiet NaN (QNaN). SNaNs are created by software; 
the FPU will not create a SNaN during any arithmetic operation. Any attempt by an 
instruction to use a SNaN will cause an invalid operation exception, unless the exception 
is masked. SNaNs are useful for testing exception handlers. They also can be exploited by 
an application program for proprietary numerical-processing purposes. The x87 FPU uses 
QNaNs as a default response to certain invalid arithmetic operations whose exceptions 
are masked. For example, one unique encoding of a QNaN, called an indefinite, is 
substituted for a result whenever a function uses the fsqrt (Square Root) instruction with 
a negative value. QNaNs also can be used by programs to signify algorithm-specific errors 
or other unusual numerical conditions. When QNaNs are used as operands, they enable 
continued processing without generating an exception.

When developing software for the x87 FPU or any other floating-point platform, 
it is important to keep in mind that the employed encoding scheme is simply an 
approximation of a real-number system. It is impossible for any floating-point encoding 
system to represent an infinite number of values using a finite number of bits. This 
leads to floating-point rounding errors that can affect the accuracy of a calculation. 
Also, some mathematical properties that hold true for integers and real numbers are not 
necessarily true for floating-point numbers. For example, floating-point multiplication is 
not necessarily associative; (a * b) * c may not equal a * (b * c) depending on the 
values of a, b, and c. Developers of algorithms that require high levels of floating-point 
accuracy must be aware of these issues.
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X87 FPU Instruction Set
The following section presents a brief overview of the x87 FPU instruction set. Similar to 
the x86-32 instruction set review in Chapter 1, the purpose of this section is to provide 
you with a general understanding of the x87 FPU instruction set. Additional information 
regarding each x87 FPU instruction including valid operands, affected condition codes, 
and the effects of control word options is available in the reference manuals published 
by AMD and Intel. A list of these manuals and other x87 FPU documentation resources is 
included in Appendix C. The sample code of Chapter 4 also contains more information 
regarding x87 FPU instruction set use. 

The x87 FPU instruction set can be partitioned into the following six functional groups:

Data transfer•	

Basic arithmetic•	

Data comparison•	

Transcendental•	

Constants•	

Control•	

In the instruction descriptions that follow, ST(0) denotes the top-most value on the 
x87 FPU register stack, while ST(i) denotes the i-th register from the current stack top. 
Most x87 FPU calculating instructions use ST(0) as an implicit operand while ST(i) must 
be explicitly specified.

Data Transfer
The data transfer group contains instructions that push values onto or pop values from 
the x87 FPU register stack. The x87 FPU uses different instruction mnemonics to perform 
push (load) and pop (store) operations depending on whether the operand data type is 
a floating-point, integer, or packed BCD value. Table 3-5 summaries the data-transfer 
instructions. 

Table 3-5. X87 FPU Data-Transfer Instructions

Mnemonic Description

fld Pushes a floating-point value onto the register stack. The source operand 
can be the contents of ST(i) or a memory location.

flid Reads a signed integer operand from memory, converts the value to a double 
extended-precision value, and pushes this result onto the register stack.

fbld Reads a packed-BCD operand from memory, converts the value to a double 
extended-precision value, and pushes this result onto the stack.

fst Copies ST(0) to ST(i) or a memory location.

(continued)
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The “Data Comparison” section contains additional details regarding the use of 
ordered and unordered floating-point compares.

Basic Arithmetic
The basic arithmetic group contains instructions that perform standard arithmetic 
operations including addition, subtraction, multiplication, division, and square roots. 
These instructions are summarized in Table 3-7. 

Table 3-6. Condition Codes for fcmovcc Instruction

Condition Code Description Test Condition

B Below CF == 1

NB Not below CF == 0

E Equal ZF == 1

NE Not equal ZF == 0

BE Below or equal CF == 1 || ZF == 1

NBE Not below or equal CF == 0 && ZF == 0

U Unordered PF == 1

NU Not unordered (i.e. ordered) PF == 0

Mnemonic Description

fstp Performs the same operation as the fst instruction and pops the stack.

fist Converts the value in ST(0) to an integer and saves the result to the 
specified memory location.

fistp Performs the same operation as the fist instruction and pops the stack.

fisttp Converts the value in ST(0) to an integer using truncation, saves the result 
to the specified  memory location, and pops the stack. This instruction is 
available on processors that support SSE3.

fbstp Converts the value in ST(0) to packed BCD format, saves the result to the 
specified memory location, and pops the stack.

fxch Exchanges the contents of registers ST(0) and ST(i).

fcmovcc Conditionally copies the contents of ST(i) to ST(0) if the specified 
condition is true. Valid condition codes are outlined in Table 3-6.  
A floating-point compare instruction is generally used before an fmovcc 
instruction. See the “Data Comparison” section for more information 
about floating-point compares.

Table 3-5. (continued)
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Table 3-7. X87 FPU Basic Arithmetic Instructions

Mnemonic Description

fadd Adds the source and destination operands. The source operand can be a 
memory location or an x87 FPU register. The destination operand must be 
an x87 FPU register.

faddp Adds ST(i) and ST(0), saves sum to ST(i), and pops the stack.

fiadd Adds ST(0) and the specified integer operand and saves the sum to ST(0).

fsub Subtracts the source operand (subtrahend) from destination operand 
(minuend) and saves the result in the destination operand. The source 
operand can be a memory location or an x87 FPU register. The destination 
operand must be an x87 FPU register.

fsubr Subtracts the destination operand (subtrahend) from the source operand 
(minuend) and saves the result in the destination operand. The source 
operand can be a memory location or an x87 FPU register. The destination 
operand must be an x87 FPU register.

fsubp Subtracts ST(0) from ST(i), saves the difference to ST(i), and pops the stack.

fsubrp Subtracts ST(i) from ST(0), saves the difference to ST(i), and pops the stack.

fisub Subtracts the specified integer operand from ST(0) and saves the  
difference to ST(0).

fisubr Subtracts ST(0) from the specified integer operand and saves the difference 
to ST(0).

fmul Multiplies the source and destination operands and saves the product in 
the destination operand. The source operand can be a memory location or 
an x87 FPU register. The destination operand must be an x87 FPU register.

fmulp Multiplies ST(i) and ST(0), saves the product to ST(i), and pops the stack.

fimul Multiplies ST(0) and the specified integer operand and then saves the 
product to ST(0).

fdiv Divides the destination operand (dividend) by the source operand 
(divisor). The source operand can be a memory location an FPU register. 
The destination operand must be an x87 FPU register.

fdivr Divides the source operand (dividend) by the destination operand 
(divisor). The source operand can be a memory location or an FPU 
register. The destination operand must be an x87 FPU register.

fdivp Divides ST(i) by ST(0), saves the quotient to ST(i), and pops the stack.

fdivrp Divides ST(0) by ST(i), saves the quotient to ST(i), and pops the stack.

(continued)
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Data Comparison
The data-comparison group contains instructions that are used to compare and test 
floating-point values. As discussed earlier in this chapter, the x87 FPU status word 
contains a set of condition code flags that are used to indicate the results of arithmetic 
and compare instructions. Table 3-8 shows the state of the condition code flags following 
execution of a floating-point compare or test instruction (e.g. fcom, fucom, ficom, ftst, 
or fxam, and the “pop” versions of these instructions where applicable). Table 3-9 
summarizes the x87 FPU data compare instructions. 

Mnemonic Description

fidiv Divides ST(0) by the specified integer operand and then saves the 
quotient to ST(0).

fidivr Divides the specified integer operand by ST(0) and then saves the 
quotient to ST(0).

fprem Calculates a partial remainder of ST(0) divided by ST(1) and the saves the 
result to ST(0). This instruction is typically used in a loop to calculate the 
true remainder.

fprem1 Similar to the fprem instruction except that the partial remainder is 
calculated using the algorithm specified by the IEEE 754 standard.

fabs Calculates the absolute value of ST(0) and saves the result to ST(0).

fchs Complements the sign bit of ST(0) and saves the result to ST(0).

frndint Rounds the value in ST(0) to the nearest integer and then saves the result 
to ST(0). The RC field of the x87 FPU control word specifies the rounding 
method that is used.

fsqrt Calculates the square root of ST(0) and then saves the result to ST(0).

fxtract Separates ST(0) into its exponent and significand components. Following 
execution of this instruction, ST(0) contains the significand and ST(1) 
contains the exponent.

Table 3-8. Condition Code Flags for x87 FPU Compare Instructions

Condition C3 C2 C0

ST(0) > SRC_OP 0 0 0

ST(0) < SRC_OP 0 0 1

ST(0) == SRC_OP 1 0 0

Unordered 1 1 1

Table 3-7. (continued)
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Table 3-9. X87 FPU Data Compare Instructions

Mnemonic Description

fcom Compares ST(0) with ST(i) or an operand in memory and sets the x87 FPU 
condition code flags based on the result.

fcomp
fcompp

Compares ST(0) with ST(i) or an operand in memory, sets the x87 FPU 
condition code flags, and pops the stack. The fcompp instruction pops the 
stack twice.

fucom Performs an unordered compare of ST(0) and ST(i) and sets the x87 FPU 
condition code flags based on the result.

fucomp
fucompp

Performs an unordered compare of ST(0) and ST(i), sets the x87 FPU 
condition code flags, and pops the stack. The fucompp pops the stack twice.

ficom Compares ST(0) with a memory-based integer operand and sets the x87 
FPU condition code flags based on the result.

ficomp Compares ST(0) with a memory-based integer operand, sets the x87 FPU 
condition code flags, and pops the stack.

fcomi Compares ST(0) with ST(i) and directly sets EFLAGS.CF, EFLAGS.PF, and 
EFLAGS.ZF based on the result.

fcomip Performs the same operation as fcomi and pops the stack.

fucomi Performs an unordered compare of ST(0) and ST(i) and directly sets 
EFLAGS.CF, EFLAGS.PF, and EFLAGS.ZF based on the result.

fucomip Performs the same operation as fucomi and pops the stack.

ftst Compares ST(0) with 0.0 and sets the x87 FPU condition code flags based 
on the result.

fxam Examines ST(0) and sets the x87 FPU condition code flags, which signifies 
the class of the value. Possible classes include denormal number, empty, 
infinity, NaN, normal finite number, unsupported, and zero.

There are no x86 or x87 FPU conditional jump instructions that directly test the 
condition code flags. In order to make a program control-flow jump decision based on 
the state of the condition code flags, the flags must be transferred to the processor’s 
EFLAGS register. This is accomplished using the instruction sequences fstsw ax (Store 
x87 FPU status word in AX) and sahf (Store AH into flags), which copy the condition code 
flags C0, C2, and C3 to EFLAGS.CF, EFLAGS.PF, and EFLAGS.ZF, respectively. Processors 
based on a P6 or later microarchitecture (which includes all processors marketed since 
1997) also can use the fcomi and fucomi instructions to directly set EFLAGS.CF, EFLAGS.PF,  
and EFLAGS.ZF. Following setting of EFLAGS status bits, a conditional jump can be 
performed using the condition codes described in Table 3-6.
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Unlike an integer compare, there are four possible and mutually exclusive outcomes 
of a floating-point compare: less than, equal, greater than, and unordered. An unordered 
floating-point compare occurs when at least one of the operands is a NaN or invalid 
floating-point value. In an ordered compare, both operands are valid floating-point 
numbers. Using an x87 FPU ordered compare instruction with a NaN or invalid value will 
cause the processor to generate an invalid operation exception. If the invalid operation 
exception is masked, the x87 FPU condition code flags or EFLAGS status bits are set 
accordingly. An unordered compare instruction will generate an x87 FPU invalid operation 
exception if one of the operands is a SNaN or invalid. The x87 FPU condition code flags or 
EFLAGS status bits are set if the invalid operation exception is masked. The use of a QNaN 
operand during execution of an unordered compare instruction causes the condition code 
flags or EFLAGS status bits to be set accordingly, but an exception is never generated.

Transcendental
The transcendental group contains instructions that perform trigonometric, 
logarithmic, and exponential operations on floating-point operands. Table 3-10 lists the 
transcendental group instructions.

Table 3-10. X87 FPU Transcendental Instructions

Mnemonic Description

fsin Calculates the sine of ST(0) and saves the result to ST(0).

fcos Calculates the cosine of ST(0) and saves the result to ST(0).

fsincos Calculates the sin and cosine of ST(0). Following execution of this 
instruction, ST(0) and ST(1) contain the cosine and sine, respectively, 
of the original operand.

fptan Computes the tangent of ST(0),  saves the result to ST(0), and pushes 
the constant 1.0 onto the stack.

fpatan Computes the arctangent of ST(1) divided by ST(0) and saves the  
result to ST(0).

f2xm1 Computes 2^(ST(0) – 1) and saves the result in ST(0). The value of 
the source operand must reside between -1.0 and +1.0.

fyl2x Computes ST(1) * log2(ST(0)), saves the result in ST(1), and pops 
the stack.

fyl2xp1 Computes ST(1) * log2(ST(0) + 1.0), saves the result in ST(1), and 
pops the stack.

fscale Truncates the value in ST(1) and adds this value to the exponent of 
ST(0). This instruction is used to perform fast multiplication and 
division by an integral power-of-two.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ X87 Floating-point Unit

101

Constants
The constants group contains instructions that are used to load commonly-used floating-
point constant values. Table 3-11 lists the constants group instructions.

Table 3-11. X87 FPU Constants Instructions

Mnemonic Description

fld1 Pushes the constant +1.0 onto the x87 FPU register stack.

fldz Pushes the constant +0.0 onto the x87 FPU stack.

fldpi Pushes the constant p onto the x87 FPU stack.

fldl2e Pushes the constant value log2(e) onto the x87 FPU stack.

fldln2 Pushes the constant value ln(2) onto the x87 FPU stack

fldl2t Pushes the constant log2(10) onto the x87 FPU stack.

fldlg2 Pushes the constant log10(2) onto the x87 FPU stack.

Control
The control group contains instructions that are used to manage the x87 FPU control register 
and status register. It also includes instructions that facilitate administration of the x87 FPU’s 
execution environment and running state. Table 3-12 outlines the control group instructions. 
An instruction whose mnemonic begins with the prefix fn will ignore all pending unmasked 
floating-point exceptions prior to its execution. The standard prefix version services any 
pending unmasked floating-point exceptions prior to performing the required operation.

Table 3-12. X87 FPU Control Instructions

Mnemonic Description

finit
fninit

Initializes the x87 FPU to its default state.

fincstp Changes the current stack pointer position by adding one to the TOS field 
in the x87 FPU status word. The contents of the x87 FPU’s data registers 
and tag word are not modified, which means that this instruction is 
not equivalent to a stack pop. This instruction can be used to manually 
manage the x87 FPU register stack.

fdecstp Changes the current stack pointer position by subtracting one from the TOS 
field in the x87 FPU status word. The contents of the x87 FPU’s data registers 
and tag word are not modified, which means that this instruction is not 
equivalent to a stack push. This instruction can be used to manually manage 
the x87 FPU register stack.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ X87 Floating-point Unit

102

Summary
This chapter covered the core architecture of the x87 FPU including its data types, 
stack-oriented register set, control register, and status register. You also learned a little 
about the binary encodings that are used to represent floating-point values. If this is 
your first encounter with a floating-point architecture, some of the presented material 
might seem a little abstruse. The content of Chapter 4, which contains a number of 
sample programs that illustrate how to perform floating-point calculations using the 
x87 FPU instruction set, should help clairify any lingering abstruseness.

Mnemonic Description

ffree Frees an x87 FPU floating-point register by setting its tag word state to 
empty.

flcdw Loads the x87 FPU control word from the specified memory location.

fstcw
fnstcw

Stores the x87 FPU control word to the specified memory location.

fstsw
fnstsw

Stores the x87 FPU status word to the AX register or a memory location.

fclex
fnclex

Clears the following x87 FPU status word bits: PE, UE, OE, ZE, DE, IE, 
ES, SF, and B. The state of condition code flags C0, C1, C2, and C3 are 
undefined following execution of this instruction.

fstenv
fnstenv

Saves the current x87 FPU execution environment to memory, which 
includes the control word, status word, tag word, x87 FPU data pointer, 
x87 FPU instruction pointer, and x87 FPU last instruction opcode.

fldenv Loads an x87 FPU execution environment from memory.

fsave
fnsave

Saves the current x87 FPU operating state, which includes the contents 
of all data registers and following items: control word, status word, tag 
word, x87 FPU data pointer, x87 FPU instruction pointer, and x87 FPU last 
instruction opcode.

frstor Loads an x87 FPU operating state from memory.

Table 3-12. (continued)
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Chapter 4

X87 FPU Programming

This chapter covers additional details about the architecture of the x87 FPU and its 
instruction set. The chapter includes an assortment of x86 assembly language functions 
that demonstrate the fundamentals of x87 FPU programming along with some advanced 
techniques. You’ll begin your exploration of the x87 FPU with an examination of some 
sample programs that illustrate how to perform basic arithmetic and compare operations 
using floating-point numbers. Next, you’ll learn how to perform calculations using 
floating-point arrays. The final set of sample programs in this chapter describes the x87 
FPU’s transcendental instructions along with a few techniques that exemplify efficient 
x87 FPU register stack use. The content of this chapter assumes that you’re familiar with 
material presented in Chapters 1, 2, and 3. 

Note ■  Development of software that employs floating-point arithmetic always entails a 
few caveats. The purpose of the sample programs presented in this chapter is to elucidate 
the architecture and instruction set of the x87 FPU. The sample programs do not address 
important floating-point concerns such as rounding errors, numerical stability, or ill-conditioned 
functions. Software developers must always be cognizant of these issues during the design 
and implementation of any algorithm that employs floating-point arithmetic. If you’re interested 
in learning more about the potential pitfalls of floating-point arithmetic, consult the references 
listed in Appendix C.

X87 FPU Programming Fundamentals
This section examines a couple of sample programs that illustrate the fundamentals 
of x87 FPU programming. The first sample program demonstrates using the x87 FPU 
to perform simple arithmetic. It also shows you how to declare and reference integer 
and floating-point constants in memory. The second sample program explains how to 
perform compare operations using floating-point values. You’ll also learn how to carry 
out conditional jumps using the results of a compare operation. 
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Simple Arithmetic
The first sample program that you’ll look at is called TemperatureConversions. This 
sample program contains a couple of functions that convert a temperature value 
from Fahrenheit to Celsius and vice versa using the x87 FPU. Despite their triviality, 
these temperature-conversion functions demonstrate a number of essential x87 FPU 
programming concepts including utilization of x87 FPU register stack and treatment 
of floating-point constants in memory. They also illustrate how an assembly language 
function can return a floating-point value back to its caller. Listings 4-1 and 4-2 contain 
the C++ and assembly language source code files for this sample program. 

Listing 4-1. TemperatureConversions.cpp

#include "stdafx.h"
 
extern "C" double FtoC_(double deg_f);
extern "C" double CtoF_(double deg_c);
 
int _tmain(int argc, _TCHAR* argv[])
{
    double deg_fvals[] = {-459.67, -40.0, 0.0, 32.0, 72.0, 98.6, 212.0};
    int nf = sizeof(deg_fvals) / sizeof(double);
 
    for (int i = 0; i < nf; i++)
    {
        double deg_c = FtoC_(deg_fvals[i]);
        printf("i: %d  f: %10.4lf c: %10.4lf\n", i, deg_fvals[i], deg_c);
    }
 
    printf("\n");
 
    double deg_cvals[] = {-273.15, -40.0, -17.77, 0.0, 25.0, 37.0, 100.0};
    int nc = sizeof(deg_cvals) / sizeof(double);
 
    for (int i = 0; i < nc; i++)
    {
        double deg_f = CtoF_(deg_cvals[i]);
        printf("i: %d  c: %10.4lf f: %10.4lf\n", i, deg_cvals[i], deg_f);
    }
 
    return 0;
}
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Listing 4-2. TemperatureConversions_.asm

        .model flat,c
        .const
 
r8_SfFtoC   real8 0.5555555556              ; 5 / 9
r8_SfCtoF   real8 1.8                       ; 9 / 5
i4_32       dword 32
 
; extern "C" double FtoC_(double f)
;
; Description:  Converts a temperature from Fahrenheit to Celsius.
;
; Returns:      Temperature in Celsius.
 
        .code
FtoC_   proc
        push ebp
        mov ebp,esp
 
        fld [r8_SfFtoC]                     ;load 5/9
        fld real8 ptr [ebp+8]               ;load 'f'
        fild [i4_32]                        ;load 32
        fsubp                               ;ST(0) = f - 32
        fmulp                               ;ST(0) = (f - 32) * 5/9
         
        pop ebp
        ret
FtoC_   endp
 
; extern "C" double CtoF_(double c)
;
; Description:  Converts a temperature from Celsius to Fahrenheit.
;
; Returns:      Temperature in Fahrenheit.
 
CtoF_   proc
        push ebp
        mov ebp,esp
 
        fld real8 ptr [ebp+8]           ;load 'c'
        fmul [r8_SfCtoF]                ;ST(0) = c * 9/5
        fiadd [i4_32]                   ;ST(0) = c * 9/5 + 32
 
        pop ebp
        ret
CtoF_   endp
        end
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Here are the formulas that you’ll need to convert a temperature value from 
Fahrenheit to Celsius and vice versa: 

C F F C= - ´ = ´ +( )32 5 9 9 5 32

Near the top of Listing 4-2 is a .const directive, which defines the start of a memory 
block that contains constant values. Unlike the x86 general-purpose instruction set, 
the x87 FPU instruction set does not support using a constant value as an immediate 
operand. Constant values must be always loaded from memory, except for the few 
values supported by a constant load instruction. The .const section includes the two 
temperature conversion scale factors. The real8 directive allocates and initializes a 
double-precision floating-point value. This section also declares a dword (32-bit) integer 
that contains the value 32. The other detail to note about the .const section is that the 
values are ordered to ensure proper alignment of each constant.

Immediately following the function prolog in FtoC_, the first x87 FPU instruction fld 
[r8_SfFtoC] (Load Floating-Point Value) loads (or pushes) the constant 5/9 onto the x87 
FPU register stack. The next instruction, fld real8 ptr [ebp+8], loads the Fahrenheit 
temperature argument value onto the x87 FPU register stack. The real8 ptr operator 
informs the assembler that the size of the operand in memory is double-precision 
floating-point (the operator qword ptr could also be used here but I prefer to use real8 
ptr since it accentuates the loading of a double-precision floating-point value).

The instruction fild [i4_32] (Load Integer) pushes the doubleword integer 32 from 
memory onto the x87 FPU stack. Subsequent to reading the operand from its memory 
location, the x87 FPU automatically converts the value from a signed doubleword integer 
to double extended-precision floating-point value, which is the format used internally 
by the x87 FPU. Given that this conversion process takes time, it would have been more 
prudent to define the constant 32 using real8 instead of dword, but in this function I 
wanted to include an example of fild instruction use. Following the fild instruction, 
the x87 FPU contains three values on its register stack: the constant 32.0, the Fahrenheit 
temperature parameter, and the constant 5/9, as illustrated in Figure 4-1.

0.5555555555555556

Temperature value

32.0

R7

R6

R5

R4

R3

R2

R1

R0

TOS

Figure 4-1. Contents of the x87 register stack after fild instruction
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The fsubp (Subtract) instruction subtracts ST(0) from ST(1), saves the difference to 
ST(1), and pops the x87 FPU stack. Following this instruction, ST(0) contains the value 
F – 32 and ST(1) contains the value 5/9. The fmulp instruction multiplies ST(1) by ST(0), 
saves the product to ST(1), and pops the register stack. Following execution of the fmulp 
(Multiply) instruction, ST(0) contains the converted temperature value in Celsius and is 
the sole item on the x87 FPU register stack.

The Visual C++ calling convention for 32-bit programs specifies that a function must 
use ST(0) to return a floating-point value back to its caller. All other x87 FPU registers 
must be empty. If a function does not need to return a floating-point value, the entire x87 
FPU register stack must be empty. Functions that modify any of the flags in the x87 FPU 
control register must also restore these flags to their original state prior to returning. Since 
in the current example the x87 FPU register stack already contains the required return 
value, no additional instructions are needed prior to the function epilog.

The organization of function CtoF_, which converts a temperature value from Celsius 
to Fahrenheit, is similar to FtoC_. The main difference between these two functions is 
that the former performs its arithmetic calculations using memory operands, which 
requires fewer instructions.The CtoF_ function starts by loading the Celsius temperature 
argument onto the x87 FPU stack. Next, an fmul [r8_SfCtoF] instruction multiplies 
the temperature value in ST(0) by 9/5 (or 1.8) and saves the product to ST(0). The final 
instruction fiadd [i4_32] (Add) adds 32 to ST(0), which yields the final temperature 
value in degrees Fahrenheit.

The C++ file for this example, shown in Listing 4-1, contains some test 
cases to exercise the functions FtoC_ and CtoF_. The output for sample program 
TemperatureConversions is shown in Output 4-1. Lastly, it would be remiss for me not 
to mention that the conversion functions of this sample program do not perform any 
validity checks for temperature values that are theoretically impossible. For example, a 
temperature of -1000 degrees Fahrenheit could be used as the argument value for FtoC_ 
and the function will carry out its calculations irrespective of any physical limitations.

Output 4-1. Sample Program TemperatureConversions

i: 0  f:  -459.6700 c:  -273.1500
i: 1  f:   -40.0000 c:   -40.0000
i: 2  f:     0.0000 c:   -17.7778
i: 3  f:    32.0000 c:     0.0000
i: 4  f:    72.0000 c:    22.2222
i: 5  f:    98.6000 c:    37.0000
i: 6  f:   212.0000 c:   100.0000
 
i: 0  c:  -273.1500 f:  -459.6700
i: 1  c:   -40.0000 f:   -40.0000
i: 2  c:   -17.7700 f:     0.0140
i: 3  c:     0.0000 f:    32.0000
i: 4  c:    25.0000 f:    77.0000
i: 5  c:    37.0000 f:    98.6000
i: 6  c:   100.0000 f:   212.0000
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Floating-Point Compares
The next sample program that you’ll examine is called CalcSphereAreaVolume. This 
program demonstrates how to compare two floating-point numbers. It also illustrates 
use of several common x87 FPU constant-loading instructions. The C++ and assembly 
language source code files for CalcSphereAreaVolume are shown in Listings 4-3 and 4-4, 
respectively. 

Listing 4-3. CalcSphereAreaVolume.cpp

#include "stdafx.h"
 
extern "C" bool CalcSphereAreaVolume_(double r, double* sa, double* v);
 
int _tmain(int argc, _TCHAR* argv[])
{
    double r[] = { -1.0, 0.0, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0 };
    int num_r = sizeof(r) / sizeof(double);
 
    for (int i = 0; i < num_r; i++)
    {
        double sa = -1;
        double v = -1;
        bool rc = CalcSphereAreaVolume_(r[i], &sa, &v);
 
        printf("rc: %d  r: %8.2lf  sa: %10.4lf  v: %10.4lf\n", rc, r[i], sa,
 v);
    }
 
    return 0;
}

Listing 4-4.  CalcSphereAreaVolume_.asm

        .model flat,c
        .const
r8_4p0  real8 4.0
r8_3p0  real8 3.0
 
; extern "C" bool CalcSphereAreaVolume_(double r, double* sa, double* v);
;
; Description:  This function calculates the surface area and volume
;               of a sphere.
;
; Returns:      0 = invalid radius
;               1 = valid radius
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        .code
CalcSphereAreaVolume_ proc
        push ebp
        mov ebp,esp
 
; Make sure radius is valid
        xor eax,eax                         ;set error return code
        fld real8 ptr [ebp+8]               ;ST(0) = r
        fldz                                ;ST(0) = 0.0, ST(1) = r
        fcomip st(0),st(1)                  ;compare 0.0 to r
        fstp st(0)                          ;remove r from stack
        jp Done                             ;jump if unordered operands
        ja Done                             ;jump if r < 0.0
 
; Calculate sphere surface area
        fld real8 ptr [ebp+8]               ;ST(0) = r
        fld st(0)                           ;ST(0) = r, ST(1) = r
        fmul st(0),st(0)                    ;ST(0) = r * r, ST(1) = r
        fldpi                               ;ST(0) = pi
        fmul [r8_4p0]                       ;ST(0) = 4 * pi
        fmulp                               ;ST(0) = 4 * pi * r * r
 
        mov edx,[ebp+16]
        fst real8 ptr [edx]                 ;save surface area
 
; Calculate sphere volume
        fmulp                               ;ST(0) = pi * 4 * r * r * r
        fdiv [r8_3p0]                       ;ST(0) = pi * 4 * r * r * r / 3
 
        mov edx,[ebp+20]
        fstp real8 ptr [edx]                ;save volume
        mov eax,1                           ;set success return code
 
Done:   pop ebp
        ret
CalcSphereAreaVolume_ endp
        end
 

The surface area and volume of a sphere can be calculated using the following 
formulas: 

sa r v r r r= = = ( )4 4 3 4 32 3 2p p p/ /

Following its prolog, the function CalcSphereAreaVolume_ (Listing 4-4) performs a 
validity check of the sphere’s radius. The argument value r is pushed onto the x87 FPU 
register stack using a fld real8 ptr [ebp+8] instruction. The next instruction, fldz 
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(Load Constant 0.0), loads the floating-point constant value 0.0 onto the register stack. 
The instruction fcomip st(0),st(1) (Compare Floating-Point Values and Set EFLAGS) 
compares ST(0) with ST(1) (or 0.0 with r) and sets the status flags based on the results. 
The fcomip instruction also pops the x87 FPU register stack. This is followed by an fstp 
st(0) (Store Floating-Point Value and Pop Register Stack) instruction, which removes the 
value r from the x87 FPU register stack and leaves it empty. The x87 FPU register stack is 
emptied before testing the status flags to ensure compliance with the Visual C++ calling 
convention should the value of r turn out to be invalid. Following cleanup of the x87 FPU 
register stack, there are two conditional jump instructions. A jp Done or ja Done jump is 
performed if r is a NaN (or invalid) or is less than zero.

The details of the compare operation that is performed by the fcomip instruction 
warrant closer scrutiny. This instruction subtracts ST(1) from ST(0) and sets the status 
flags, as shown in Table 4-1 (the difference is discarded). The x87 FPU instructions 
fcomi, fucomi, and fucomip also report their results using the same status flags. The 
setting of flags EFLAGS.ZF, EFLAGS.PF, and EFLAGS.CF by fcomip or one of its companion 
instructions enables a function to make a floating-point relational decision using a 
conditional jump instruction, as outlined in Table 4-2.

Table 4-2. Conditional Jumps Following f(u)comi(p) Instructions

Relational Operator Conditional Jump EFLAGS Test Condition

ST(0) < ST(i) jb CF == 1

ST(0) <= ST(i) jbe CF == 1 || ZF == 1

ST(0) == ST(i) jz ZF == 1

ST(0) != ST(i) jnz ZF == 0

ST(0) > ST(i) ja CF == 0 && ZF == 0

ST(0) >=ST(i) jae CF == 0

Table 4-1. Status Flags Set by f(u)comi(p) Instructions

Condition EFLAGS.ZF EFLAGS.PF EFLAGS.CF

ST(0) > ST(i) 0 0 0

ST(0) = ST(i) 1 0 0

ST(0) < ST(i) 0 0 1

Unordered 1 1 1

It should be noted that the status flag states shown in Table 4-1 are set only if the x87 
FPU invalid operation exception (bit IM in the x87 FPU control register) is masked (the 
default state for Visual C++). If the invalid operation exception is unmasked, a fcomi(p) 
instruction will raise an exception if either operand is any type of NaN or is invalid. A 
fucomi(p) instruction will also raise an exception if either operand is a SNaN or invalid; 
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a QNaN operand causes the processor to set the status flags to indicate an unordered 
condition but no exception is generated. Chapter 3 contains additional information 
regarding the x87 FPU’s use of NaNs and ordered versus unordered compares.

If the value of r is valid, the function uses a fld real8 ptr [ebp+8] instruction  
to push r onto the x87 FPU register stack. This is followed by a fld st(0) instruction, 
which duplicates the top-most item on the x87 FPU register stack. The instruction  
fmul st(0),st(0) squares the radius and saves the result in ST(0). The fldpi instruction 
pushes the constant p onto the x87 FPU register stack. Following execution of the fldpi 
instruction, the x87 FPU register stack contains three items: the constant p in ST(0), the 
value r * r in ST(1), and r in ST(2). This is shown on the left side of Figure 4-2. Final 
calculation of the sphere’s surface area occurs next using two multiply instructions: 
fmul [r8_4p0] followed by fmulp. The surface area is then saved to the memory location 
specified by the caller using a fst instruction. Subsequent to the saving of the surface 
area, two values remain on the x87 FPU register stack as illustrated on the right side of 
Figure 4-2: the computed surface area in ST(0) and the radius in ST(1).

r

r r
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r
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R1

R0

TOS

Stack following Stack following 

Figure 4-2. Contents of x87 register stack following the execution of the fldpi and  
fmulp instructions 

The function computes the sphere volume using a fmulp instruction followed by 
a fdiv [r8_3p0] (Divide) instruction, which multiplies the surface area by the radius 
and divides this product by 3.0. The final sphere volume is then saved to the caller’s 
memory location using a fstp real8 ptr [edx] instruction. Following execution of this 
instruction, the x87 FPU register stack is empty. Output 4-2 shows the results for sample 
program CalcSphereAreaVolume.

Output 4-2. Sample Program CalcSphereAreaVolume

rc: 0  r:    -1.00  sa:    -1.0000  v:    -1.0000
rc: 1  r:     0.00  sa:     0.0000  v:     0.0000
rc: 1  r:     1.00  sa:    12.5664  v:     4.1888

www.it-ebooks.info

http://www.it-ebooks.info/


ChAPTer 4 ■ X87 FPU ProgrAmmIng

112

rc: 1  r:     2.00  sa:    50.2655  v:    33.5103
rc: 1  r:     3.00  sa:   113.0973  v:   113.0973
rc: 1  r:     5.00  sa:   314.1593  v:   523.5988
rc: 1  r:    10.00  sa:  1256.6371  v:  4188.7902
rc: 1  r:    20.00  sa:  5026.5482  v: 33510.3216

X87 FPU Advanced Programming
In the previous section, you learned how to perform a few basic floating-point operations 
using the x87 FPU. The remainder of this chapter focuses on some advanced x87 FPU 
programming techniques. You’ll begin with an analysis of two sample programs that 
process floating-point arrays. This will be followed by a sample program that illustrates 
the use of several x87 FPU transcendental instructions. The final sample program of the 
chapter highlights advanced x87 FPU register stack use.

Floating-Point Arrays
The following section contains two sample programs that illustrate using the x87 FPU 
to process the values in a floating-point array. The sample programs of this section also 
illustrate some additional x87 FPU instructions, including square roots and floating-point 
conditional moves. 

The first sample program that you’ll examine is called CalcMeanStdev. This  
program calculates the sample mean and sample standard deviation of the values in a 
double-precision floating-point array. Listings 4-5 and 4-6 contain the C++ and  
assembly language source code, respectively.

Listing 4-5. CalcMeanStdev.cpp

#include "stdafx.h"
#include <math.h>
 
extern "C" bool CalcMeanStdev_(const double* a, int n, double* mean, double*
stdev);
 
bool CalcMeanStdevCpp(const double* a, int n, double* mean, double* stdev)
{
        if (n <= 1)
            return false;
 
        double sum = 0.0;
        for (int i = 0; i < n; i++)
            sum += a[i];
        *mean = sum / n;
 
        sum = 0.0;
        for (int i = 0; i < n; i++)
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        {
                double temp = a[i] - *mean;
                sum += temp * temp;
        }
 
        *stdev = sqrt(sum / (n - 1));
        return true;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    double a[] = { 10, 2, 33, 15, 41, 24, 75, 37, 18, 97};
    const int n = sizeof(a) / sizeof(double);
    double mean1, stdev1;
    double mean2, stdev2;
 
    CalcMeanStdevCpp(a, n, &mean1, &stdev1);
    CalcMeanStdev_(a, n, &mean2, &stdev2);
 
    for (int i = 0; i < n; i++)
        printf("a[%d] = %g\n", i, a[i]);
 
    printf("\n");
    printf("mean1: %g stdev1: %g\n", mean1, stdev1);
    printf("mean2: %g stdev2: %g\n", mean2, stdev2);
}

Listing 4-6. CalcMeanStdev_.asm

        .model flat,c
        .code
 
; extern "C" bool CalcMeanStdev(const double* a, int n, double* mean,
double* stdev);
;
; Description:  The following function calculates the mean and
;               standard deviation of the values in an array.
;
; Returns:      0 = invalid 'n'
;               1 = valid 'n'
 
CalcMeanStdev_  proc
        push ebp
        mov ebp,esp
        sub esp,4
 
; Make sure 'n' is valid
        xor eax,eax
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        mov ecx,[ebp+12]
        cmp ecx,1
        jle Done                            ;jump if n <= 1
        dec ecx
        mov [ebp-4],ecx                     ;save n - 1 for later
        inc ecx
 
; Compute sample mean
        mov edx,[ebp+8]                     ;edx = 'a'
        fldz                                ;sum = 0.0
 
@@:     fadd real8 ptr [edx]                ;sum += *a
        add edx,8                           ;a++
        dec ecx
        jnz @B
        fidiv dword ptr [ebp+12]            ;mean = sum / n
 
; Compute sample stdev
        mov edx,[ebp+8]                     ;edx = 'a'
        mov ecx,[ebp+12]                    ;n
        fldz                                ;sum = 0.0, ST(1) = mean
 
@@:     fld real8 ptr [edx]                 ;ST(0) = *a,
        fsub st(0),st(2)                    ;ST(0) = *a - mean
        fmul st(0),st(0)                    ;ST(0) = (*a - mean) ^ 2
        faddp                               ;update sum
        add edx,8
        dec ecx
        jnz @B
        fidiv dword ptr [ebp-4]             ;var = sum / (n - 1)
        fsqrt                               ;final stdev
 
; Save results
        mov eax,[ebp+20]
        fstp real8 ptr [eax]                ;save stddev
        mov eax,[ebp+16]
        fstp real8 ptr [eax]                ;save mean
        mov eax,1                           ;set success return code
 
Done:   mov esp,ebp
        pop ebp
        ret
CalcMeanStdev_ endp
        end
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Here are the formulas that sample program CalcMeanStdev uses to calculate the 
sample mean and sample standard deviation: 

x
n

x s
n

x xi
i

i
i

= =
-

-( )å å1 1

1
2

Note ■  If they’re not explicitly specified, it can be assumed that the lower and upper 
bounds of any summation operator index appearing in this book are 0 and n – 1.

Immediately following its prolog, the function CalcMeanStdev_ performs a validity 
check of the array element count n. In order to calculate the sample standard deviation, 
the number of elements in the array must be greater than or equal to 2. Following this 
validation, the value n – 1 is computed and saved to a local variable on the stack. This 
calculation is performed now since n is already loaded in register ECX. It is also faster to 
perform the subtraction using integer rather than floating-point arithmetic. The reason 
for saving n - 1 to a memory location is that the x86 does not support data transfers 
between general-purpose and x87 FPU registers. 

Computation of the sample mean is straightforward and requires only seven 
instructions. Prior to entering a summation loop, the function CalcMeanStdev_ uses a mov 
edx,[ebp+8] instruction to initialize register EDX with a pointer to array a. The function 
also uses a fldz instruction that allows ST(0) to be used as a summation variable. During 
the summation loop, a fadd real8 ptr [edx] instruction adds the current array element 
to the running sum in ST(0). The real8 ptr operator is used since the data array contains 
double-precision floating-point values. Following addition of the current array element to 
the running sum in ST(0), an add edx,8 instruction updates register EDX so that it points 
to the next array element. The summation loop is repeated until summation of the array 
elements is complete. The sample mean is then calculated using a fidiv dword ptr 
[ebp+12] instruction, which replaces the array element sum value in ST(0) with the final 
sample mean.

The sample standard deviation is also calculated using a summation loop. Before 
entering the loop, registers EDX and ECX are re-initialized as an array pointer and 
loop counter. A fldz instruction initializes the sum value to 0.0. Following the fldz, 
instruction ST(0) contains 0.0 and ST(1) contains the sample mean. Within the 
summation loop, each array element is loaded onto the x87 FPU register stack using 
a fld real8 ptr [edx] instruction. The fsub st(0),st(2) instruction subtracts the 
previously-computed mean from the current array element and saves the difference to 
ST(0). This difference value is then squared using an fmul st(0),st(0) instruction and 
added to the variance sum using an faddp instruction. The summation loop repeats until 
each element of the array has been processed.

Following completion of summation loop, the x87 FPU register stack contains two 
values: the computed sum in ST(0) and the sample mean in ST(1). The function uses a 
fidiv dword ptr [ebp-4] instruction to calculate the sample variance. Recall that the 
memory location [ebp-4] contains the value n - 1 that was derived earlier during the 

www.it-ebooks.info

http://www.it-ebooks.info/


ChAPTer 4 ■ X87 FPU ProgrAmmIng

116

validation of n. Following calculation of the sample variance, the function computes the 
final sample standard deviation using a fsqrt (Square Root) instruction, which replaces 
the value in ST(0) with its square root. The x87 FPU register stack now contains two 
values: the sample standard deviation in ST(0) and the sample mean in ST(1). These 
values are removed from the x87 FPU stack and saved to the memory locations specified 
by the caller using the fstp instruction. Output 4-3 shows the results for sample program 
CalcMeanStdev.

Output 4-3. Sample Program CalcMeanStdev

a[0] = 10
a[1] = 2
a[2] = 33
a[3] = 15
a[4] = 41
a[5] = 24
a[6] = 75
a[7] = 37
a[8] = 18
a[9] = 97
 
mean1: 35.2 stdev1: 29.8358
mean2: 35.2 stdev2: 29.8358
 

The second sample program of this section, called CalcMinMax, determines the 
minimum and maximum values of a single-precision floating-point array. The C++ and 
assembly language files are shown in Listings 4-7 and 4-8, respectively.

Listing 4-7.  CalcMinMax.cpp

#include "stdafx.h"
#include <float.h>
 
extern "C" bool CalcMinMax_(const float* a, int n, float* min, float* max);
 
bool CalcMinMaxCpp(const float* a, int n, float* min, float* max)
{
    if (n <= 0)
        return false;
 
    float min_a = FLT_MAX;
    float max_a = -FLT_MAX;
 
    for (int i = 0; i < n; i++)
    {
        if (a[i] < min_a)
            min_a = a[i];
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        if (a[i] > max_a)
            max_a = a[i];
    }
 
    *min = min_a;
    *max = max_a;
    return true;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    float a[] = { 20, -12, 42, 97, 14, -26, 57, 74, -18, 63, 34, -9};
    const int n = sizeof(a) / sizeof(float);
    float min1, max1;
    float min2, max2;
 
    CalcMinMaxCpp(a, n, &min1, &max1);
    CalcMinMax_(a, n, &min2, &max2);
 
    for (int i = 0; i < n; i++)
        printf("a[%2d] = %8.2f\n", i, a[i]);
 
    printf("\n");
    printf("min1: %8.2f  max1: %8.2f\n", min1, max1);
    printf("min2: %8.2f  max2: %8.2f\n", min2, max2);
}

Listing 4-8.  CalcMinMax_.asm

        .model flat,c
        .const
r4_MinFloat dword 0ff7fffffh                ;smallest float number
r4_MaxFloat dword  7f7fffffh                ;largest float number
        .code
 
; extern "C" bool CalcMinMax_(const float* a, int n, float* min, float*
max);
;
; Description:  The following function calculates the min and max values
;               of a single-precision floating-point array.
;
; Returns:      0 = invalid 'n'
;               1 = valid 'n'
 
CalcMinMax_ proc
        push ebp
        mov ebp,esp
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; Load argument values and make sure 'n' is valid.
        xor eax,eax                         ;set error return code
        mov edx,[ebp+8]                     ;edx = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'n'
        test ecx,ecx
        jle Done                            ;jump if 'n' <= 0
 
        fld [r4_MinFloat]                  ;initial max_a value
        fld [r4_MaxFloat]                  ;initial min_a value
 
; Find min and max of input array
@@:     fld real4 ptr [edx]                 ;load *a
        fld st(0)                           ;duplicate *a on stack
 
        fcomi st(0),st(2)                   ;compare *a with min
        fcmovnb st(0),st(2)                 ;ST(0) equals smaller val
        fstp st(2)                          ;save new min value
 
        fcomi st(0),st(2)                   ;compare *a with max_a
        fcmovb st(0),st(2)                  ;st(0) equals larger val
        fstp st(2)                          ;save new max value
 
        add edx,4                           ;point to next a[i]
        dec ecx
        jnz @B                              ;repeat loop until finished
 
; Save results
        mov eax,[ebp+16]
        fstp real4 ptr [eax]                ;save final min
        mov eax,[ebp+20]
        fstp real4 ptr [eax]                ;save final max
        mov eax,1                           ;set success return code
 
Done:   pop ebp
        ret
CalcMinMax_ endp
        end
 

Following a validation check of n, CalcMinMax_ uses a fld [r4_MinFloat] 
instruction to initialize max_a on the x87 FPU register stack. This is followed by an fld 
[r4_MaxFloat] instruction that initializes min_a. The memory operands [r4_MinFloat] 
and [r4_MaxFloat] are defined in the .const section and contain the hexadecimal 
encodings for the smallest and largest single-precision floating-point values supported by 
the x87 FPU. 

The processing loop in CalcMinMax_ loads two copies of the current array element 
onto the x87 FPU register stack using a fld real4 ptr [edx] instruction followed by a 
fld st(0) instruction. After execution of these instructions, the x87 FPU register stack 
contains a[i], a[i], min_a, and max_a, as shown in Figure 4-3. The fcomi st(0),st(2) 
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instruction compares a[i] to min_a and sets the status flags in EFLAGS. A conditional 
move instruction, fcmovnb st(0),st(2) (Floating-Point Conditional Move), ensures 
that ST(0) contains the smaller of these two values. Next, a fstp st(2) instruction copies 
ST(0) to ST(2) and pops the x87 FPU register stack, which updates the value of min_a on 
the stack. Following execution of the fstp st(2) instruction, the x87 FPU register stack 
contains a[i], min_a, and max_a.

max_a

min_a

a[i]

a[i]

R7

R6

R5

R4

R3

R2

R1

R0

TOS

Figure 4-3. Contents of the x87 register stack following execution of the fld st(0) instruction 

CalcMinMax_ uses a similar series of instructions to update max_a. A fcomi 
st(0),st(2) instruction compares a[i] to max_a and a fcmovb st(0),st(2) instruction 
ensures that ST(0) contains the larger value. Next, a fstp st(2) instruction updates the 
value of max_a on the x87 FPU register stack. Upon completion of the processing loop, the 
x87 FPU register stack contains the final min_a and max_a. These values are then saved to 
the required memory locations. The output for CalcMinMax is shown in Output 4-4.

Output 4-4. Sample Program CalcMinMax

a[ 0] =    20.00
a[ 1] =   -12.00
a[ 2] =    42.00
a[ 3] =    97.00
a[ 4] =    14.00
a[ 5] =   -26.00
a[ 6] =    57.00
a[ 7] =    74.00
a[ 8] =   -18.00
a[ 9] =    63.00
a[10] =    34.00
a[11] =    -9.00
 
min1:   -26.00  max1:    97.00
min2:   -26.00  max2:    97.00
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Transcendental Instructions
The next sample program is named ConvertCoordinates. This program demonstrates 
how to use some of the x87 FPU’s transcendental instructions. The program includes a 
couple of functions that perform coordinate conversions using rectangular and polar 
coordinates. Listings 4-9 and 4-10 contain the C++ and x86 assembly language code for 
the sample program ConvertCoordinates. 

Listing 4-9. ConvertCoordinates.cpp

#include "stdafx.h"
 
extern "C" void RectToPolar_(double x, double y, double* r, double* a);
extern "C" void PolarToRect_(double r, double a, double* x, double* y);
 
int _tmain(int argc, _TCHAR* argv[])
{
    double x1[] = { 0, 3, -3, 4, -4 };
    double y1[] = { 0, 3, -3, 4, -4 };
    const int nx = sizeof(x1) / sizeof(double);
    const int ny = sizeof(y1) / sizeof(double);
 
    for (int i = 0; i < ny; i++)
    {
        for (int j = 0; j < nx; j++)
        {
            double r, a, x2, y2;
 
            RectToPolar_(x1[i], y1[j], &r, &a);
            PolarToRect_(r, a, &x2, &y2);
 
            printf("[%d, %d]: ", i, j);
            printf("(%8.4lf, %8.4lf) ", x1[i], y1[j]);
            printf("(%8.4lf, %10.4lf) ", r, a);
            printf("(%8.4lf, %8.4lf)\n", x2, y2);
        }
    }
 
    return 0;
}

Listing 4-10. ConvertCoordinates_.asm

        .model flat,c
        .const
DegToRad real8  0.01745329252
RadToDeg real8 57.2957795131
        .code
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; extern "C" void RectToPolar_(double x, double y, double* r, double* a);
;
; Description:  This function converts a rectangular coordinate to a
;               to polar coordinate.
 
RectToPolar_ proc
        push ebp
        mov ebp,esp
 
; Calculate the angle.  Note that fpatan computes atan2(ST(1) / ST(0))
        fld real8 ptr [ebp+16]              ;load y
        fld real8 ptr [ebp+8]               ;load x
        fpatan                              ;calc atan2 (y / x)
        fmul [RadToDeg]                     ;convert angle to degrees
        mov eax,[ebp+28]
        fstp real8 ptr [eax]                ;save angle
 
; Calculate the radius
        fld real8 ptr [ebp+8]               ;load x
        fmul st(0),st(0)                    ;x * x
        fld real8 ptr [ebp+16]              ;load y
        fmul st(0),st(0)                    ;y * y
        faddp                               ;x * x + y * y
        fsqrt                               ;sqrt(x * x + y * y)
        mov eax,[ebp+24]
        fstp real8 ptr [eax]                ;save radius
 
        pop ebp
        ret
RectToPolar_    endp
 
; extern "C" void PolarToRect_(double r, double a, double* x, double* y);
;
; Description:  The following function converts a polar coordinate
;               to a rectangular coordinate.
 
PolarToRect_ proc
        push ebp
        mov ebp,esp
 
; Calculate sin(a) and cos(a).
; Following execution of fsincos, ST(0) = cos(a) and ST(1) = sin(a)
        fld real8 ptr [ebp+16]          ;load angle in degrees
        fmul [DegToRad]                 ;convert angle to radians
        fsincos                         ;calc sin(ST(0)) and cos(ST(0))
 
        fmul real8 ptr [ebp+8]          ;x = r * cos(a)
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        mov eax,[ebp+24]
        fstp real8 ptr [eax]                ;save x
 
        fmul real8 ptr [ebp+8]              ;y = r * sin(a)
        mov eax,[ebp+28]
        fstp real8 ptr [eax]                ;save y
 
        pop ebp
        ret
PolarToRect_    endp
        end
 

Before examining the source code, let’s quickly review the rudiments of a two-dimensional 
coordinate system. A point on a two-dimensional plane can be uniquely specified using 
an (x, y) ordered pair. The values for x and y represent signed distances from an origin 
point, which is located at the intersection of two perpendicular axes. An ordered (x, y)  
pair is called a rectangular or Cartesian coordinate. A point on a two-dimensional 
plane also can be uniquely specified using a radius vector r and angle q, as illustrated in 
Figure 4-4. An ordered (r, q) pair is called a polar coordinate.

 =53.13°

R=
5

3

4

X

Y

Figure 4-4. Specification of a point using rectangular and polar coordinates

Conversion between rectangular and polar coordinates is accomplished using the 
following formulas: 

r x y y x= + = ( ) - £ £ +2 2 2q p q patan where

x r y r= =cos( ) sin( )q q
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The file ConvertCoordinates_.asm contains a function called RectToPolar_ that 
converts a rectangular coordinate to a polar coordinate. Immediately following the function 
prolog, the argument values y and x are loaded onto the register stack using two fld 
instructions. The next instruction, fpatan (Partial Arctangent), calculates atan2 (st(1) / 
st(0)), stores the resultant angle in ST(1), and pops the x87 FPU stack. A fmul [RadToDeg] 
instruction converts the angle value, which is stored in ST(0), from radians to degrees. The 
polar coordinate angle is then saved to the caller’s specified memory location.

The value of r is calculated as follows. A fld real8 ptr [ebp+8] instruction 
loads x onto the x87 FPU stack. The square of x is calculated using a fmul st(0),st(0) 
instruction. The square of y is calculated next, using a similar sequence of instructions.  
A faddp instruction sums the squares and the final radius value is computed using fsqrt. 
The polar coordinate radius is then saved to the specified memory location.

The inverse of function RectToPolar_ is called PolarToRect_. It begins by loading 
the polar angle value onto the x87 FPU register stack using a fld real8 ptr [ebp+16] 
instruction. A fmul [DegToRad] instruction converts the angle from degrees to radians. 
This is followed by a fsincos (Sine and Cosine) instruction, which calculates both the 
sine and cosine of the value in ST(0). Upon completion of the fsincos instruction, ST(0) 
and ST(1) contain the cosine and sine, respectively. As a side note, the x87 FPU also 
includes the instructions fsin and fcos; however, use of the fsincos instruction is faster 
when both values are needed.

A fmul real8 ptr [ebp+8] instruction multiples the polar angle’s cosine by the 
polar radius, which yields the rectangular x coordinate. This value is then saved to the 
specified memory location. A similar sequence of instructions calculates the rectangular 
y coordinate by multiplying the polar angle’s sine and radius. Output 4-5 shows the 
output for sample program ConvertCoordinates.

Output 4-5. Sample Program ConvertCoordinates

[0, 0]: (  0.0000,   0.0000) (  0.0000,     0.0000) (  0.0000,   0.0000)
[0, 1]: (  0.0000,   3.0000) (  3.0000,    90.0000) ( -0.0000,   3.0000)
[0, 2]: (  0.0000,  -3.0000) (  3.0000,   -90.0000) ( -0.0000,  -3.0000)
[0, 3]: (  0.0000,   4.0000) (  4.0000,    90.0000) ( -0.0000,   4.0000)
[0, 4]: (  0.0000,  -4.0000) (  4.0000,   -90.0000) ( -0.0000,  -4.0000)
[1, 0]: (  3.0000,   0.0000) (  3.0000,     0.0000) (  3.0000,   0.0000)
[1, 1]: (  3.0000,   3.0000) (  4.2426,    45.0000) (  3.0000,   3.0000)
[1, 2]: (  3.0000,  -3.0000) (  4.2426,   -45.0000) (  3.0000,  -3.0000)
[1, 3]: (  3.0000,   4.0000) (  5.0000,    53.1301) (  3.0000,   4.0000)
[1, 4]: (  3.0000,  -4.0000) (  5.0000,   -53.1301) (  3.0000,  -4.0000)
[2, 0]: ( -3.0000,   0.0000) (  3.0000,   180.0000) ( -3.0000,  -0.0000)
[2, 1]: ( -3.0000,   3.0000) (  4.2426,   135.0000) ( -3.0000,   3.0000)
[2, 2]: ( -3.0000,  -3.0000) (  4.2426,  -135.0000) ( -3.0000,  -3.0000)
[2, 3]: ( -3.0000,   4.0000) (  5.0000,   126.8699) ( -3.0000,   4.0000)
[2, 4]: ( -3.0000,  -4.0000) (  5.0000,  -126.8699) ( -3.0000,  -4.0000)
[3, 0]: (  4.0000,   0.0000) (  4.0000,     0.0000) (  4.0000,   0.0000)
[3, 1]: (  4.0000,   3.0000) (  5.0000,    36.8699) (  4.0000,   3.0000)
[3, 2]: (  4.0000,  -3.0000) (  5.0000,   -36.8699) (  4.0000,  -3.0000)
[3, 3]: (  4.0000,   4.0000) (  5.6569,    45.0000) (  4.0000,   4.0000)
[3, 4]: (  4.0000,  -4.0000) (  5.6569,   -45.0000) (  4.0000,  -4.0000)
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[4, 0]: ( -4.0000,   0.0000) (  4.0000,   180.0000) ( -4.0000,  -0.0000)
[4, 1]: ( -4.0000,   3.0000) (  5.0000,   143.1301) ( -4.0000,   3.0000)
[4, 2]: ( -4.0000,  -3.0000) (  5.0000,  -143.1301) ( -4.0000,  -3.0000)
[4, 3]: ( -4.0000,   4.0000) (  5.6569,   135.0000) ( -4.0000,   4.0000)
[4, 4]: ( -4.0000,  -4.0000) (  5.6569,  -135.0000) ( -4.0000,  -4.0000)

Advanced Stack Usage
Thus far the sample programs of this chapter haven’t stressed the limits of the x87 
register stack. This will change in the final x87 FPU sample program, which is called 
CalcLeastSquares. In CalcLeastSquares, you’ll learn how to calculate a least squares 
regression line using the x87 FPU. The source code for CalcLeastSquares.cpp and 
CalcLeastSquares_.asm is shown in Listings 4-11 and 4-12, respectively. 

Listing 4-11.  CalcLeastSquares.cpp

#include "stdafx.h"
#include <math.h>
 
extern "C" double LsEpsilon_;
extern "C" bool CalcLeastSquares_(const double* x, const double* y, int n,
double* m, double* b);
 
bool CalcLeastSquaresCpp(const double* x, const double* y, int n, double* m,
double* b)
{
    if (n <= 0)
        return false;
 
    double sum_x = 0;
    double sum_y = 0;
    double sum_xx = 0;
    double sum_xy = 0;
 
    for (int i = 0; i < n; i++)
    {
        sum_x += x[i];
        sum_xx += x[i] * x[i];
        sum_xy += x[i] * y[i];
        sum_y += y[i];
    }
 
    double denom = n * sum_xx - sum_x * sum_x;
 
    if (LsEpsilon_ >=fabs(denom))
        return false;
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    *m = (n * sum_xy - sum_x * sum_y) / denom;
    *b = (sum_xx * sum_y - sum_x * sum_xy) / denom;
    return true;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 7;
    double x[n] = { 0, 2, 4, 6, 8, 10, 12};
    double y[n] = { 51.125, 62.875, 71.25, 83.5, 92.75, 101.1, 110.5 };
    double m1 = 0, m2 = 0;
    double b1 = 0, b2 = 0;
    bool rc1, rc2;
 
    rc1 = CalcLeastSquaresCpp(x, y, n, &m1, &b1);
    rc2 = CalcLeastSquares_(x, y, n, &m2, &b2);
 
    for (int i = 0; i < n; i++)
        printf("%12.4lf, %12.4lf\n", x[i], y[i]);
 
    printf("\n");
    printf("rc1: %d  m1: %12.4lf  b1: %12.4lf\n", rc1, m1, b1);
    printf("rc2: %d  m2: %12.4lf  b2: %12.4lf\n", rc2, m2, b2);
    return 0;
}

Listing 4-12. CalcLeastSquares_.asm

        .model flat,c
        .const
        public LsEpsilon_
LsEpsilon_ real8 1.0e-12                    ;epsilon for valid denom test
        .code
 
; extern "C" bool CalcLeastSquares_(const double* x, const double* y, int n,
   double* m, double* b);
;
; Description:  The following function computes the slope and intercept
;               of a least squares regression line.
;
; Returns       0 = error
;               1 = success
 
CalcLeastSquares_ proc
        push ebp
        mov ebp,esp
        sub esp,8                           ;space for denom
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        xor eax,eax                         ;set error return code
        mov ecx,[ebp+16]                    ;n
        test ecx,ecx
        jle Done                            ;jump if n <= 0
        mov eax,[ebp+8]                     ;ptr to x
        mov edx,[ebp+12]                    ;ptr to y
 
; Initialize all sum variables to zero
        fldz                                ;sum_xx
        fldz                                ;sum_xy
        fldz                                ;sum_y
        fldz                                ;sum_x
;STACK: sum_x, sum_y, sum_xy, sum_xx
 
@@:     fld real8 ptr [eax]                 ;load next x
        fld st(0)
        fld st(0)
        fld real8 ptr [edx]                 ;load next y
;STACK: y, x, x, x, sum_x, sum_y, sum_xy, sum_xx
 
        fadd st(5),st(0)                    ;sum_y += y
        fmulp
;STACK: xy, x, x, sum_xm sum_y, sum_xy, sum_xx
 
        faddp st(5),st(0)                   ;sum_xy += xy
;STACK: x, x, sum_x, sum_y, sum_xy, sum_xx
 
        fadd st(2),st(0)                    ;sum_x += x
        fmulp
;STACK: xx, sum_x, sum_y, sum_xy, sum_xx
 
        faddp st(4),st(0)                   ;sum_xx += xx
;STACK: sum_x, sum_y, sum_xy, sum_xx
 
; Update pointers and repeat until elements have been processed.
        add eax,8
        add edx,8
        dec ecx
        jnz @B
 
; Compute denom = n * sum_xx - sum_x * sum_x
        fild dword ptr [ebp+16]             ;n
        fmul st(0),st(4)                    ;n * sum_xx
;STACK: n * sum_xx, sum_x, sum_y, sum_xy, sum_xx
 
        fld st(1)
        fld st(0)
;STACK: sum_x, sum_x, n * sum_xx, sum_x, sum_y, sum_xy, sum_xx
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        fmulp
        fsubp
        fst real8 ptr [ebp-8]           ;save denom
;STACK: denom, sum_x, sum_y, sum_xy, sum_xx
 
; Verify that denom is valid
        fabs                            ;fabs(denom)
        fld real8 ptr [LsEpsilon_]
        fcomip st(0),st(1)              ;compare epsilon and fabs(demon)
        fstp st(0)                      ;remove fabs(denom) from stack
        jae InvalidDenom                ;jump if LsEpsilon_ >=fabs(denom)
;STACK: sum_x, sum_y, sum_xy, sum_xx
 
; Compute slope = (n * sum_xy - sum_x * sum_y) / denom
        fild dword ptr [ebp+16]
;STACK: n, sum_x, sum_y, sum_xy, sum_xx
 
        fmul st(0),st(3)                ;n * sum_xy
        fld st(2)                       ;sum_y
        fld st(2)                       ;sum_x
        fmulp                           ;sum_x * sum_y
        fsubp                           ;n * sum_xy - sum_x * sum_y
        fdiv real8 ptr [ebp-8]          ;calculate slope
        mov eax,[ebp+20]
        fstp real8 ptr [eax]            ;save slope
;STACK: sum_x, sum_y, sum_xy, sum_xx
 
; Calculate intercept = (sum_xx * sum_y - sum_x * sum_xy) / denom
        fxch st(3)
;STACK: sum_xx, sum_y, sum_xy, sum_x
 
        fmulp
        fxch st(2)
;STACK: sum_x, sum_xy, sum_xx * sum_y
 
        fmulp
        fsubp
;STACK: sum_xx * sum_y - sum_x * sum_xy
 
        fdiv real8 ptr [ebp-8]          ;calculate intercept
        mov eax,[ebp+24]
        fstp real8 ptr [eax]            ;save intercept
        mov eax,1                       ;set success return code
 
Done:   mov esp,ebp
        pop ebp
        ret
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InvalidDenom:
; Cleanup x87 FPU register stack
        fstp st(0)
        fstp st(0)
        fstp st(0)
        fstp st(0)
        xor eax,eax                     ;set error return code
        mov esp,ebp
        pop ebp
        ret
CalcLeastSquares_ endp
        end
 

Simple linear regression is a statistical technique kthat models a linear relationship 
between two variables. One popular method of simple linear regression is called least 
squares fitting, which uses a set of sample data points to determine a best fit or optimal 
curve between two variables. When used with a simple linear regression model, the 
curve is a straight line whose equation is y = mx + b. In this equation, x denotes the 
independent variable, y represents the dependent (or measured) variable, m is the line’s 
slope, and b is the line’s y-axis intercept point. The slope and intercept of a least squares 
line are determined using a series of computations that minimize the sum of the squared 
deviations between the line and sample data points. Following calculation of the slope and 
intercept values, the least squares line is frequently used to predict an unknown y value 
using a known x value. If you’re interested in learning more about the theory of simple 
linear regression and least squares fitting, consult the resources listed in Appendix C.

In sample program CalcLeastSquares, the following formulas are used to calculate 
the least squares slope and intercept point: 
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At first glance, the slope and intercept equations may appear a little daunting. 
However, upon closer examination, a couple of simplifications become apparent. 
First, the slope and intercept denominators are the same, which means that this value 
only needs to be computed once. Second, it is only necessary to calculate four simple 
summation quantities (or sum variables), as shown in the following formulas:

sum x x sum y yi
i

i
i

_ _= =å å

sum xy x y sum xx xi i
i

i
i

_ _= =å å 2

Subsequent to the calculation of the sum variables, the least-squares slope and 
intercept are easily derived using straightforward multiplication, subtraction, and 
division.
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The function CalcLeastSquares_ is somewhat more complicated than the other x87 
FPU functions discussed in this chapter in that it uses all eight positions in the x87 FPU 
register stack. When coding an x87 FPU function that uses more than four entries in the 
x87 FPU register stack, I find it helpful to include occasional comments in the source code 
that document the values stored on the stack. In Listing 4-12, comment lines that begin 
with the word STACK denote the contents of the x87 FPU register stack following execution 
of the instruction immediately above the comment. The stack contents are listed in order 
from top to bottom starting with ST(0).

Let’s review the source code for the function CalcLeastSquares_. Following a 
validity check of n, a series of fldz instructions initializes sum_x, sum_y, sum_xy, and 
sum_xx to 0.0. The order of the sum variables in the previous sentence represents their 
position on the x87 FPU register stack starting with ST(0). This sequence will not change 
during execution of the processing loop but the positions of the sum variables relative 
to the stack top will vary. While use of the x87 FPU register stack for intermediate values 
increases the complexity of the algorithm slightly, it also results in better performance 
compared to using intermediate values in memory.

Subsequent to the initialization of the sum variables to 0.0, the function enters a 
loop that iterates through the data points and computes the sum variables. At the top 
of the loop, the current x and y values are loaded onto the x87 FPU register stack using 
a series of fld instructions. Immediately following execution of these instructions, the 
x87 FPU register stack is completely full, as shown in Figure 4-5 (the value sum_xx would 
be lost if another value were loaded onto the x87 FPU register stack). The sum variables 
are then updated using a series of floating-point additions and multiplications. Note 
that some of the fadd instructions use a destination operand other than ST(0). It is also 
important to notice that the relative positions of the sum variables on the stack change as 
computations are performed. Upon completion of the iteration loop, the x87 FPU stack 
contains the final values of the four sum variables.

sum_xx

sum_xy

sum_y

sum_x

x

x

x

y

R7

R6

R5

R4

R3

R2

R1

R0 TOS

Figure 4-5. Contents of the x87 FPU stack following execution of the fld real8 ptr  
[edx] instruction
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Calculation of the common slope-intercept denominator (denom) occurs next. This 
requires the function to calculate two intermediate values, n * sum_xx and sum_x * 
sum_x, using variations of the fld and fmul instructions. Once these values are calculated, 
the latter product is subtracted from the former product to generate the final value of 
denom. This value is then saved to a temporary local variable on the x86 stack. Before 
proceeding to the next calculation, the value of denom is validated to prevent a division-
by-zero error. If denom is invalid, program control is transferred to a block of code near the 
end of function CalcLeastSquares_ that cleans up the x87 FPU stack, loads register EAX 
with the appropriate error code, and returns to the caller.

Following calculation of denom, the function computes the least-squares slope. 
During calculation of the slope, the order of the sum variables on the x87 FPU stack is 
maintained since these values will also be needed to calculate the intercept. The final 
slope value is saved to the caller-specified memory location. Computation of the least-
squares intercept value requires the use of two fxch instructions. The reason for this is 
that all x87 FPU arithmetic instructions must use ST(0) either as an implicit or explicit 
operand. The final fstp instruction saves the intercept value to the caller’s specified 
memory location and yields an empty x87 FPU register stack. Output 4-6 shows the 
results for sample program CalcLeastSquares.

Output 4-6. Sample Program CalcLeastSquares

      0.0000,      51.1250
      2.0000,      62.8750
      4.0000,      71.2500
      6.0000,      83.5000
      8.0000,      92.7500
     10.0000,     101.1000
     12.0000,     110.5000
 
rc1: 1  m1:       4.9299  b1:      52.2920
rc2: 1  m2:       4.9299  b2:      52.2920

Summary
In this chapter, you learned a little more about the architecture of the x87 FPU and how 
to exploit the computational capabilities of this resource in order to perform a variety of 
floating-point operations. Unlike the x86’s general-purpose registers, effective use of the 
x87 FPU’s stack-oriented register set requires you to adopt a slightly different mindset 
when writing code. This shift in approach tends to become second nature over time as 
you gain experience with the architecture.

If you are familiar with the scalar floating-point capabilities of x86-SSE, you may 
question why I spent quite a few pages explaining features and discussing sample code 
of an architecture that many consider deprecated. I did it for a number of reasons. First, 
despite any perceptions of deprecation, the x87 FPU’s architecture and instruction set will 
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remain relevant for the foreseeable future due to the tremendous amount of legacy code 
that exists. Another reason is that the Visual C++ calling convention for 32-bit programs 
still uses the x87 FPU register stack for floating-point return values even if the compiler is 
configured to generate floating-point code using SSE2 instructions. This means that many  
developers will need at least a basic understanding of the x87 FPU. Finally, ultra-low-power  
microarchitectures such as Intel’s Quark do not include any of the floating-point resources 
provided by x86-SSE. Developers targeting Quark and similar platforms have no choice 
but to use the x87 FPU in code that requires floating-point arithmetic.
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Chapter 5

MMX Technology

Chapters 1-4 focused on the essence of the x86-32 platform. You learned about the 
x86’s basic data types, its general-purpose registers, its memory addressing modes, and 
the core x86-32 instruction set. You also examined a cornucopia of sample code that 
illustrated the nuts and bolts of x86 assembly language programming, including basic 
operands, integer arithmetic, compare operations, conditional jumps, and manipulation 
of common data structures. This was followed by an examination of the x87 FPU’s 
architecture, including its stack-oriented register set and how to write assembly language 
code to perform floating-point arithmetic.

The next twelve chapters concentrate on the single instruction multiple data (SIMD) 
capabilities of the x86 platform. This chapter examines the x86’s first SIMD extension, 
which is called MMX technology. MMX technology adds integer SIMD processing to the 
x86 platform. The chapter opens with an explanation of some basic SIMD processing 
concepts. It then describes the difference between wraparound and saturated integer 
arithmetic and when it’s appropriate to use the latter. This is followed by a discussion of 
the MMX execution environment, including its register set and supported data types.  
The chapter concludes with a summary of the MMX instruction set.

MMX technology defines a basis for subsequent x86 SIMD extensions including 
x86-SSE and x86-AVX, which are discussed in Chapters 7 through 16. If your ultimate 
objective is to create software that exploits one of the newer SIMD extensions, attaining 
a thorough understanding of this chapter’s content is strongly recommended since it will 
ultimately reduce the time that you spend on the x86 SIMD learning curve.

SIMD Processing Concepts
Before examining the particulars of MMX technology, this section reviews some basic 
SIMD processing concepts. As implied by the words of its acronym, a SIMD computing 
element performs the same operation on multiple data items simultaneously. Typical 
SIMD operations include basic arithmetic (addition, subtraction, multiplication, and 
division), shifts, compares, and data conversions. Processors facilitate SIMD operations 
by reinterpreting the bit pattern of an operand in a register or memory location.  
A 32-bit register, for example, can contain a single 32-bit integer value. It is also capable  
of accommodating two 16-bit integers or four 8-bit integers, as illustrated in Figure 5-1. 
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The bit patterns shown in Figure 5-1 make it possible to perform an operation using 
each distinct data element. Figure 5-2 exemplifies this in greater detail. In this figure, 
integer addition is illustrated using a single 32-bit integer, two 16-bit integers, and four 
8-bit integers. Processing performance improvements are possible when multiple data 
items are used since the processor can carry out the required operations in parallel.  
In Figure 5-2, the processor can simultaneously perform each 16-bit or 8-bit integer 
addition using the supplied operands.

32-bit integer

16-bit integer

8-bit integer

031

16-bit integer

0 15 0

00 70 7 0 7

15

7

8-bit integer 8-bit integer 8-bit integer

Figure 5-1. 32-bit register using multiple integer sizes

3000

200

40

031

100

0 15 0

00 70 7 0 7

15

7

30 20 -10

2000

+

5000

500 300+

700 400

25 -45 60 100+

65 -15 80 90

Figure 5-2. Example of SIMD integer addition
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On the x86 platform, MMX technology supports 64-bit wide registers and memory 
operands. This means that a SIMD operation can be performed using two 32-bit, four 
16-bit, or eight 8-bit values. Moreover, MMX SIMD operations are not limited to simple 
arithmetic operations such as addition and subtraction. Other common operations 
such as shifts, Boolean operations, compares, and data conversions are also possible. 
MMX technology also supports a number of atomic high-level operations that normally 
require several instructions to complete. Figure 5-3 illustrates execution of the MMX 
pmaxub (Maximum of Packed Unsigned Byte Integers) instruction using 64-bit MM 
registers containing 8-bit unsigned integers. In this example, the processor compares 
each 8-bit unsigned integer pair, separately and simultaneously, and stores the larger 
value in the destination operand. You’ll take a closer look at the MMX instruction set 
later in this chapter.

23 33 4 10 132 1 5

5 7 40 89 341 51 34

23 33 40 89 1341 51 34

mm1

mm0

pmaxub mm1, mm0

mm1

Figure 5-3. Operation of MMX pmaxub instruction

Wraparound vs. Saturated Arithmetic
One extremely useful feature of MMX technology is its support for saturated integer 
arithmetic. In saturated integer arithmetic, computational results are automatically 
clipped by the processor to prevent overflow and underflow conditions. This differs from 
normal wraparound integer arithmetic where an overflow or underflow result is retained. 
Saturated arithmetic is handy when working with pixel values since it eliminates the 
need to explicitly check the result of each pixel calculation for an overflow or underflow 
condition. MMX technology includes instructions that perform saturated arithmetic 
using 8-bit and 16-bit integers, both signed and unsigned.

Let’s take a closer look at some examples of wraparound and saturated arithmetic. 
Figure 5-4 shows an example of 16-bit signed integer addition using both wraparound 
and saturated arithmetic. An overflow condition occurs if the two 16-bit signed integers 
are added using wraparound arithmetic. With saturated arithmetic, however, the result is 
clipped to the largest possible 16-bit signed integer value. Figure 5-5 illustrates a similar 
example using 8-bit unsigned integers. Besides addition, MMX technology also supports 
saturated integer subtraction, as shown in Figure 5-6. Table 5-1 summarizes the saturated 
arithmetic range limits for all possible integer sizes and sign types.
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20000 (0x4e20)

15000 (0x3a98)

-30536 (0x88b8)

20000 (0x4e20)

15000 (0x3a98)

32767 (0x7fff)

+

16-bit Signed Integer Addition

Wraparound Saturated

Figure 5-4. 16-bit signed integer addition using wraparound and saturated arithmetic

150 (0x96)

135 (0x87)

29 (0x1d)

150 (0x96)

135 (0x87)

255 (0xff)

+

8-bit Unsigned Integer Addition

Wraparound Saturated

Figure 5-5. 8-bit unsigned integer addition using wraparound and saturated arithmetic

-5000 (0xEC78)

30000 (0x7530)

30536 (0x7748)

-5000 (0xEC78)

30000 (0x7530)

-32768 (0x8000)

-

16-bit Signed Integer Subtraction

Wraparound Saturated

Figure 5-6. 16-bit signed integer subtraction using wraparound and saturated arithmetic

Table 5-1. Range Limits for Saturated Arithmetic

Integer Type Lower Limit Upper Limit

8-bit signed -128 (0x80) +127 (0x7f)

8-bit unsigned 0 +255 (0xff)

16-bit signed -32768 (0x8000) +32767 (0x7fff )

16-bit unsigned 0 +65535 (0xffff )
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MMX Execution Environment
From the perspective of an application program, MMX technology adds eight 64-bit 
registers to the core x86-32 platform. These registers, shown in Figure 5-7, are named 
MM0–MM7 and can be used to perform SIMD operations using eight 8-bit integers, four 
16-bit integers, or two 32-bit integers. Both signed and unsigned integers are supported. 
The MMX registers also can be used to carry out a limited number of operations using  
64-bit integers. Unlike the x87 FPU register set, the MMX registers are directly 
addressable; a stack-based architecture is not used. The MMX registers cannot be used 
to perform floating-point arithmetic or address operands located in memory. Figure 5-8 
illustrates the packed data types that are supported by MMX.

MM7

MM6

MM2

MM1

MM0

MM3

MM4

MM5

063

Figure 5-7. MMX register set

56 0

Memory Address

3263

Bit Position

Packed
Bytes

Packed
Words

Packed
Doublewords

Single
Quadword

s

N+7 N+6 N+5 N+4 N+3 N+2 N+1 N

48 40 24 16 8

Figure 5-8. MMX data types
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Within an x86 processor, the MMX registers are aliased with the x87 FPU registers. 
This means that the MMX and x87 FPU registers use the same storage bits. The aliasing of 
the MMX and x87 FPU registers imposes some restrictions on intermixing MMX and x87 
FPU instructions. In order to avoid conflicts between the MMX and x87 FPU execution 
units, MMX state information must be cleared using the emms (Empty MMX Technology 
State) instruction whenever a transition from executing MMX instructions to executing 
x87 FPU instructions occurs. The sample code in Chapter 6 illustrates this requirement 
in greater detail. Failure to properly use the emms instruction may cause the x87 FPU to 
generate an unexpected exception or compute an invalid result.

MMX Instruction Set
This section presents a brief overview of the MMX instruction set. Similar to the 
instruction set reviews in Chapters 1 and 3, the purpose of this section is to provide you 
with a general understanding of the MMX instruction set. Comprehensive information 
regarding each MMX instruction, including valid operands and potential exceptions, is 
available in the reference manuals published by AMD and Intel. A list of these manuals 
is included in Appendix C. The sample code that’s discussed in Chapter 6 also contains 
additional details regarding MMX instruction set use.

The MMX instruction set can be partitioned into the following eight functional 
groups:

Data transfer•	

Arithmetic•	

Comparison•	

Conversion•	

Logical and Shift•	

Unpack and Shuffle•	

Insertion and Extraction•	

State and Cache Control•	

The instruction set overview surveys all of the instructions that were included with 
the initial release of MMX. It also encompasses MMX instructions that were added as 
part of an x86-SSE enhancement (e.g. SSE, SSE2, SSE3, or SSSE3). The summary tables 
include the requisite MMX or x86-SSE version for each instruction. Unless otherwise 
noted, the source operand of an MMX instruction can be a memory location or an MMX 
register. The destination operand must be an MMX register. When referencing a memory 
location, an MMX instruction can use any of the x86-32 addressing modes described 
in Chapter 1. Proper alignment of memory operands is not required but strongly 
recommended since multiple memory cycles may be required to read a value from an 
unaligned memory location.
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Caution ■  the MMX instructions do not update any of the status bits in the eFlagS  
register. Software routines must be used to detect, correct, or prevent potential error  
conditions such as arithmetic overflow or underflow.

Most MMX instruction mnemonics use the letters b (byte), w (word), d (doubleword), 
and q (quadword) to denote the width of the elements that will be processed.

Data Transfer
The data transfer group contains instructions that copy packed integer data values 
between MMX registers, general-purpose registers, and memory. Table 5-2 summarizes 
the data transfer instructions. 

Table 5-2. MMX Data Transfer Instructions

Mnemonic Description Version

movd Copies the low-order doubleword of an MMX register to 
a general-purpose register or a memory location. This 
instruction also can be used to copy the contents of a 
general-purpose register or memory location to the  
low-order doubleword of an MMX register.

MMX

movq Copies the contents of an MMX register to another MMX 
register. This instruction also can be used to copy the 
contents of a memory location to an MMX register or  
vice versa.

MMX

Arithmetic
The arithmetic group contains instructions that perform basic arithmetic (addition, 
subtraction, and multiplication) on packed operands. This group also includes 
instructions that are used to perform high-level operations such as min/max, averaging, 
absolute values, and integer sign changes. All the arithmetic instructions support signed 
and unsigned integers unless otherwise noted. Table 5-3 lists the arithmetic group 
instructions. 
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Table 5-3. MMX Arithmetic Instructions

Mnemonic Description Version

paddb
paddw
paddd
paddq

Performs packed integer addition using the specified 
operands.

MMX

SSE2
(paddq)

paddsb
paddsw

Performs packed signed integer addition using saturation. MMX

paddusb
paddusw

Performs packed unsigned integer addition using 
saturation.

MMX

psubb
psubw
psubd
psubq

Performs packed integer subtraction using the specified 
operands. The source operand contains the subtrahends 
and the destination operands contain the minuends.

MMX

SSE2
(psubq)

psubsb
psubsw

Performs packed signed integer subtraction using 
saturation. The source operand contains the subtrahends 
and the destination operands contain the minuends.

MMX

psubusb
psubusw

Performs packed unsigned integer subtraction using 
saturation. The source operand contains the subtrahends 
and the destination operands contain the minuends.

MMX

pmaddwd Performs a packed signed-integer multiplication followed 
by a signed-integer addition that uses neighboring data 
elements within the products. This instruction can be used 
to calculate an integer dot product.

MMX

pmaddubsw Performs a packed-integer multiplication using the  
signed-byte elements of the source operand and the 
unsigned-byte elements of the destination operand. The 
resultant signed-word values are added adjacently using 
saturation arithmetic and saved in the destination operand.

SSSE3

pmuludq Multiplies the low-order doublewords of the source and 
destination operands and saves the quadword result in the 
destination operand.

SSE2

pmullw Performs packed signed integer multiplication using word 
values. The low-order word of each doubleword product is 
saved to the destination operand.

MMX

pmulhw Performs packed signed integer multiplication using word 
values. The high-order word of each doubleword product  
is saved to the destination operand.

MMX

(continued)
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Table 5-3. (continued)

Mnemonic Description Version

pmulhuw Performs packed unsigned integer multiplication using 
word values. The high-order word of each doubleword 
product is saved to the destination operand.

SSE

pmulhrsw Performs packed signed integer multiplication using word 
values. The doubleword products are rounded to 18 bits, 
scaled to 16 bits, and saved to the destination operand.

SSSE3

pavgb
pavgw

Computes the packed means of the specified operands 
using unsigned integer arithmetic.

SSE

pmaxub Compares two packed unsigned-byte integer operands  
and saves the larger data element of each comparison.

SSE

pminub Compares two packed unsigned-byte integer operands  
and saves the smaller data element of each comparison.

SSE

pmaxsw Compares two packed signed-word integer operands  
and saves the larger data element of each comparison.

SSE

pminsw Compares two packed signed-word integer operands  
and saves the smaller data element of each comparison.

SSE

pabsb
pabsw
pabsd

Computes the absolute value of each packed integer  
data element.

SSSE3

psignb
psignw
psignd

Negates, zeros, or keeps each signed-integer data  
element in the destination operand based on the sign  
of the matching data element in the source operand.

SSSE3

phaddw
phaddd

Performs integer addition using adjacent data elements in 
the source and destination operands.

SSSE3

phaddsw Performs signed-integer addition using adjacent data 
elements of the source and destination operands. The 
saturated results are saved to the destination operand.

SSSE3

phsubw
phsubd

Performs integer subtraction using adjacent data elements 
in the source and destination operands.

SSSE3

phsubsw Performs signed-integer subtraction using adjacent data 
elements of the source and destination operands. The 
saturated results are saved to the destination operand.

SSSE3
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Comparison
The comparison group contains instructions that compare two packed operands 
element-by-element. The results of each comparison are saved to the corresponding 
position in the destination operand. Table 5-4 lists the comparison group instructions. 

Table 5-4. MMX Comparison Instructions

Mnemonic Description Version

pcmpeqb
pcmpeqw
pcmpeqd

Compares two packed integer operands element-by-element 
for equality. If the source and destination data elements are 
equal, the corresponding data element in the destination 
operand is set to all ones; otherwise, the destination operand 
data element is set to all zeros.

MMX

pcmpgtb
pcmpgtw
pcmpgtd

Compares two packed signed-integer operands  element-by-
element for magnitude. If the destination operand data element 
is larger, the corresponding data element in the destination 
operand is set to all ones; otherwise, the destination operand 
data element is set to all zeros.

MMX

Conversion
The conversion group contains instructions that are used to pack the data elements of an 
operand. These instructions facilitate the conversion of integers from one type to another. 
Table 5-5 shows the conversion group instructions. 

Table 5-5. MMX Conversion Instructions

Mneomonic Description Version

packsswb
packssdw

Converts the word/doubleword packed integers in the 
source and destination operands to byte/word packed 
integers using signed saturation.

MMX

packuswb Converts the word packed integers in the source and 
destination operands to byte packed integers using 
unsigned saturation.

MMX

Logical and Shift
The logical and shift group contains instructions that perform bitwise logical operations 
of operands. It also includes instructions that perform logical and arithmetic shifts using 
the individual data elements of a packed operand. Table 5-6 summarizes the logical and 
shift group instructions. 
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Table 5-6. MMX Logical and Shift Instructions

Mnemonic Description Version

pand Performs a bitwise logical AND between the specified 
source and destination operands.

MMX

pandn Performs a bitwise logical AND of the source operand  
and inverted destination operand.

MMX

por Performs a bitwise logical inclusive OR between the 
specified source and destination operands.

MMX

pxor Performs a bitwise logical exclusive OR between the 
specified source and destination operands.

MMX

psllw
pslld
psllq

Performs a logical left shift of each data element in the 
destination operand, shifting 0s into the low-order bits. 
The number of bits to shift is specified by the source 
operand and can be a memory location, an MMX  
register, or an immediate operand.

MMX

pslrw
pslrd
pslrq

Performs a logical right shift of each data element in the 
destination operand, shifting 0s into the high-order bits. 
The number of bits to shift is specified by the source 
operand and can be a memory location, an MMX  
register, or an immediate operand.

MMX

psraw
psrad

Performs an arithmetic right shift of each data element  
in the destination operand, shifting the original sign bit 
into the high-order bits. The number of bits to shift is 
specified by the source operand and can be a memory 
location, an MMX register, or an immediate operand.

MMX

palignr Concatenates the destination and source operands 
to form a temporary value. This temporary value is 
byte-shifted right using a count that is specified by an 
immediate operand. The right-most quadword of the 
temporary value is saved to the destination operand.

SSSE3

Unpack and Shuffle
The unpack and shuffle group contains instructions that interleave (unpack) the data 
elements of a packed operand. It also contains instructions that can be used to reorder 
(shuffle) the data elements of a packed operand. These instructions are shown in Table 5-7. 
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Insertion and Extraction
The insertion and extraction group contains instructions that are used to insert or 
extract word values in an MMX register. Table 5-8 outlines the insertion and extraction 
instructions. 

Table 5-7. MMX Unpack and Shuffle Instructions

Mnemonic Description Version

punpckhbw
punpckhwd
punpckhdq

Unpacks and interleaves the high-order data elements  
of the source and destination operands. These  
instructions can be used to convert bytes to words,  
words to doublewords, or doublewords to quadwords.

MMX

punpcklbw
punpcklwd
punpckldq

Unpacks and interleaves the low-order data elements of 
the source and destination operands. These instructions 
can be used to convert bytes to words, words to 
doublewords, or doublewords to quadwords.

MMX

pshufb Shuffles the bytes in the destination operand according 
to a control mask that is specified by the source operand. 
This instruction is used to reorder the bytes of a packed 
operand.

SSSE3

pshufw Shuffles the words in the source operand according 
to a control mask that is specified using an immediate 
operand. This instruction is used to reorder the words  
of a packed operand.

SSE

Table 5-8. Insertion and Extraction Instructions

Mnemonic Description Version

pinsrw Copies the low-order word from a general-purpose register 
and inserts it into an MMX register. The element position in 
the MMX register is specified using an immediate operand.

SSE

pextrw Extracts a word from an MMX register and copies it to the 
low-order word of a general-purpose register. The element 
position in the MMX register is specified using an  
immediate operand.

SSE
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State and Cache Control
The state and cache control group contains instructions that inform the processor of 
MMX to x87 FPU state transitions. It also contains instructions that perform memory 
stores using non-temporal hints. A non-temporal hint notifies the processor that the data 
value can be written directly to memory without being stored in a memory cache. This 
can improve cache efficiency in applications such as audio and video encoding since 
cache clutter is eliminated. Table 5-9 reviews the state and cache control instructions. 

Table 5-9. MMX State and Cache Control Instructions

Mnemonic Description Version

emms Clears MMX state information by resetting the x87 FPU tag 
word to indicate that all x87 FPU registers are empty. This 
instruction must be used whenever a program transitions 
from executing MMX instructions to executing x87 FPU 
instructions.

MMX

movntq Copies the contents of an MMX register to memory using  
a non-temporal hint.

SSE

maskmovq Conditionally copies the bytes of an MMX register to 
memory using a non-temporal hint. A mask value, which 
is contained in a second MMX register, specifies the bytes 
that will be copied. Register EDI points to the destination 
memory location.

SSE

Summary
This chapter explored the essentials of MMX technology, including its register set, 
supported data types, and instruction set. You also studied some basic SIMD processing 
concepts and learned about the differences between wraparound and saturated integer 
arithmetic. Unlike other x86 computation resources such as the x87 FPU, it may not be 
completely obvious how a software developer can take advantage of MMX technology 
to solve real-world programming challenges. In Chapter 6 you’ll examine a collection of 
sample code that demonstrates the benefits MMX technology and shows the proper use 
of its instruction set.
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Chapter 6

MMX Technology 
Programming

This chapter focuses on MMX programming. It begins by exploring MMX programming 
fundamentals. This is followed by an examination of some advanced MMX programming 
techniques that can accelerate the processing of integer arrays. All of the ensuing discussions 
and sample programs assume that you’re familiar with the material in Chapter 5.

It was mentioned in Chapter 5 that MMX technology defines a basis for subsequent 
x86 SIMD extensions, including x86-SSE and x86-AVX. This means that you are strongly 
encouraged to peruse this chapter in order to acquire a thorough understanding of MMX 
programming and its associated instruction set, even if your ultimate goal is to develop 
code that targets one of the newer extensions. Understanding this chapter’s material is 
also a must if you need to maintain an existing MMX code base.

MMX Programming Fundamentals
You’ll begin your exploration of MMX technology by examining some sample programs that 
illustrate the basics of MMX programming. The first sample program that you’ll study illustrates 
how to perform packed integer addition using both byte- and word-sized integers. The second 
sample program demonstrates use of the MMX shift instructions using packed operands. The 
final sample program shows how to perform packed signed integer multiplication. The primary 
purpose of the sample programs in this section is pedagogical. Later in this chapter, you’ll learn 
how to code complete algorithms using the MMX instruction set.

Before you examine the sample programs, you’ll review some data types that have 
been defined in order to simplify the MMX sample code. The header file MiscDefs.h 
includes several C++ typedef statements for common signed and unsigned integer types. 
These type definitions are shown in Listing 6-1 and are used by the sample code in this 
chapter and in subsequent chapters. The header file MmxVal.h, shown in Listing 6-2, 
declares a union named MmxVal that is used to exchange data between C++ and assembly 
language functions. Items declared in the union MmxVal match the packed data types 
that are supported by MMX. This union also includes several declarations for text string 
helper functions, which are used to format and display the contents of an MmxVal variable. 
The file MmxVal.cpp contains the definitions of the ToString_ conversion functions.  
This file is not shown here but is included in the sample source code distribution file and 
is located in a subfolder named CommonFiles.
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Listing 6-1.  MiscDefs.h

#pragma once
 
// Signed integer typdefs
typedef __int8 Int8;
typedef __int16 Int16;
typedef __int32 Int32;
typedef __int64 Int64;
 
// Unsigned integer typdefs
typedef unsigned __int8 Uint8;
typedef unsigned __int16 Uint16;
typedef unsigned __int32 Uint32;
typedef unsigned __int64 Uint64;

Listing 6-2. MmxVal.h

#pragma once
 
#include "MiscDefs.h"
 
union MmxVal
{
    Int8  i8[8];
    Int16 i16[4];
    Int32 i32[2];
    Int64 i64;
    Uint8  u8[8];
    Uint16 u16[4];
    Uint32 u32[2];
    Uint64 u64;
 
    char* ToString_i8(char* s, size_t len);
    char* ToString_i16(char* s, size_t len);
    char* ToString_i32(char* s, size_t len);
    char* ToString_i64(char* s, size_t len);
 
    char* ToString_u8(char* s, size_t len);
    char* ToString_u16(char* s, size_t len);
    char* ToString_u32(char* s, size_t len);
    char* ToString_u64(char* s, size_t len);
 
    char* ToString_x8(char* s, size_t len);
    char* ToString_x16(char* s, size_t len);
    char* ToString_x32(char* s, size_t len);
    char* ToString_x64(char* s, size_t len);
};
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Packed Integer Addition
The first sample program that you’ll examine is called MmxAddition. This sample program 
illustrates the basics of SIMD addition using packed signed and unsigned integers. It also 
illustrates how to perform packed integer addition using both wraparound and saturated 
arithmetic. Besides demonstrating packed integer addition, MmxAddition exemplifies use 
of some common C++ and assembly language programming constructs, including unions 
and jump tables. The source code files for this sample program, MmxAddition.cpp and 
MmxAddition_.asm, are shown in Listings 6-3 and 6-4, respectively.

Listing 6-3. MmxAddition.cpp

#include "stdafx.h"
#include "MmxVal.h"
 
// The order of the name constants in the following enum must match
// the table that is defined in MmxAddition_.asm.
enum MmxAddOp : unsigned int
{
    paddb,      // packed byte addition with wraparound
    paddsb,     // packed byte addition with signed saturation
    paddusb,    // packed byte addition with unsigned saturation
    paddw,      // packed word addition with wraparound
    paddsw,     // packed word addition with signed saturation
    paddusw,    // packed word addition with unsigned saturation
    paddd       // packed doubleword addition with wrapround
};
 
extern "C" MmxVal MmxAdd_(MmxVal a, MmxVal b, MmxAddOp op);
 
void MmxAddBytes(void)
{
    MmxVal a, b, c;
    char buff [256];
 
    // Packed byte addition - signed integers
    a.i8[0] = 50;   b.i8[0] = 30;
    a.i8[1] = 80;   b.i8[1] = 64;
    a.i8[2] = -27;  b.i8[2] = -32;
    a.i8[3] = -70;  b.i8[3] = -80;
 
    a.i8[4] = -42;  b.i8[4] = 90;
    a.i8[5] = 60;   b.i8[5] = -85;
    a.i8[6] = 64;   b.i8[6] = 90;
    a.i8[7] = 100;  b.i8[7] = -30;
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    printf("\n\nPacked byte addition - signed integers\n");
    printf("a:  %s\n", a.ToString_i8(buff, sizeof(buff)));
    printf("b:  %s\n", b.ToString_i8(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddb);
    printf("\npaddb results\n");
    printf("c:  %s\n", c.ToString_i8(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddsb);
    printf("\npaddsb results\n");
    printf("c:  %s\n", c.ToString_i8(buff, sizeof(buff)));
 
    // Packed byte addition - unsigned integers
    a.u8[0] = 50;  b.u8[0] = 30;
    a.u8[1] = 80;  b.u8[1] = 64;
    a.u8[2] = 132; b.u8[2] = 130;
    a.u8[3] = 200; b.u8[3] = 180;
 
    a.u8[4] = 42;  b.u8[4] = 90;
    a.u8[5] = 60;  b.u8[5] = 85;
    a.u8[6] = 140; b.u8[6] = 160;
    a.u8[7] = 10;  b.u8[7] = 14;
 
    printf("\n\nPacked byte addition - unsigned integers\n");
    printf("a:  %s\n", a.ToString_u8(buff, sizeof(buff)));
    printf("b:  %s\n", b.ToString_u8(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddb);
    printf("\npaddb results\n");
    printf("c:  %s\n", c.ToString_u8(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddusb);
    printf("\npaddusb results\n");
    printf("c:  %s\n", c.ToString_u8(buff, sizeof(buff)));
}
 
void MmxAddWords(void)
{
    MmxVal a, b, c;
    char buff [256];
 
    // Packed word addition - signed integers
    a.i16[0] = 550;     b.i16[0] = 830;
    a.i16[1] = 30000;   b.i16[1] =5000;
    a.i16[2] = -270;    b.i16[2] = -320;
    a.i16[3] = -7000;   b.i16[3] = -32000;
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    printf("\n\nPacked word addition - signed integers\n");
    printf("a:  %s\n", a.ToString_i16(buff, sizeof(buff)));
    printf("b:  %s\n", b.ToString_i16(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddw);
    printf("\npaddw results\n");
    printf("c:  %s\n", c.ToString_i16(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddsw);
    printf("\npaddsw results\n");
    printf("c:  %s\n", c.ToString_i16(buff, sizeof(buff)));
 
    // Packed word addition - unsigned integers
    a.u16[0] = 50;     b.u16[0] = 30;
    a.u16[1] = 48000;  b.u16[1] = 20000;
    a.u16[2] = 132;    b.u16[2] = 130;
    a.u16[3] = 10000;  b.u16[3] = 60000;
 
    printf("\n\nPacked word addition - unsigned integers\n");
    printf("a:  %s\n", a.ToString_u16(buff, sizeof(buff)));
    printf("b:  %s\n", b.ToString_u16(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddw);
    printf("\npaddw results\n");
    printf("c:  %s\n", c.ToString_u16(buff, sizeof(buff)));
 
    c = MmxAdd_(a, b, MmxAddOp::paddusw);
    printf("\npaddusw results\n");
    printf("c:  %s\n", c.ToString_u16(buff, sizeof(buff)));
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    MmxAddBytes();
    MmxAddWords();
    return 0;
}

Listing 6-4. MmxAddition_.asm

        .model flat,c
        .code
 
; extern "C" MmxVal MmxAdd_(MmxVal a, MmxVal b, MmxAddOp add_op);
;
; Description:  The following function demonstrates use of the
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;               padd* instructions.
;
; Returns:      Register pair edx:eax contains the calculated result.
 
MmxAdd_     proc
            push ebp
            mov ebp,esp
 
; Make sure 'add_op' is valid
            mov eax,[ebp+24]                ;load 'add_op'
            cmp eax,AddOpTableCount         ;compare to table count
            jae BadAddOp                    ;jump if 'add_op' is invalid
 
; Load parameters and execute specified instruction
            movq mm0,[ebp+8]                ;load 'a'
            movq mm1,[ebp+16]               ;load 'b'
            jmp [AddOpTable+eax*4]          ;jump to specified 'add_op'
 
MmxPaddb:   paddb mm0,mm1                   ;packed byte addition using
            jmp SaveResult                  ;wraparound
 
MmxPaddsb:  paddsb mm0,mm1                  ;packed byte addition using
            jmp SaveResult                  ;signed saturation
 
MmxPaddusb: paddusb mm0,mm1                 ;packed byte addition using
            jmp SaveResult                  ;unsigned saturation
 
MmxPaddw:   paddw mm0,mm1                   ;packed word addition using
            jmp SaveResult                  ;wraparound
 
MmxPaddsw:  paddsw mm0,mm1                  ;packed word addition using
            jmp SaveResult                  ;signed saturation
 
MmxPaddusw: paddusw mm0,mm1                 ;packed word addition using
            jmp SaveResult                  ;unsigned saturation
 
MmxPaddd:   paddd mm0,mm1                   ;packed dword addition using
            jmp SaveResult                  ;wraparound
 
BadAddOp:   pxor mm0,mm0                    ;return 0 if 'add_op' is bad
 
; Move final result into edx:eax
SaveResult: movd eax,mm0                    ;eax = low dword of mm0
            pshufw mm2,mm0,01001110b        ;swap high & low dwords
            movd edx,mm2                    ;edx:eax = final result
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            emms                            ;clear MMX state
            pop ebp
            ret
 
; The order of the labels in the following table must match
; the enum that is defined in MmxAddition.cpp.
 
        align 4
AddOpTable:
        dword MmxPaddb, MmxPaddsb, MmxPaddusb
        dword MmxPaddw, MmxPaddsw, MmxPaddusw, MmxPaddd
AddOpTableCount equ ($ - AddOpTable) / size dword
 
MmxAdd_ endp
        end
 

Near the top of MmxAddition.cpp (Listing 6-3) is a C++ enumeration named 
MmxAddOp, which defines a set of enumerators that specify the type of packed addition 
to perform. In this example, the C++ compiler assigns the enumerators consecutive 
unsigned integer values starting with 0. The order of these enumerators is important 
and must match the jump table that is defined in MmxAddition_.asm (Listing 6-4). You’ll 
review the jump table ordering requirement in more depth later in this section. Following 
the definition of MmxAddOp is a declaration for the assembly language function MmxAdd_. 
The MmxVal parameters a and b represent the two packed operands that will be added. 
The MmxAddOp parameter add_op specifies the type of packed addition to perform while 
packed sum is returned as an MmxVal.

The source code file MmxAddition.cpp contains two principal functions: 
MmxAddBytes and MmxAddWords. These functions demonstrate MMX addition using 
packed byte and packed word operands. The function MmxAddBytes starts by initializing 
two MmxVal variables using 8-bit signed integer values. The x86 assembly language 
function MmxAdd_ is then called twice to perform packed integer addition using both 
wraparound and saturated arithmetic. Following each call to MmxAdd_, the results are 
displayed on the screen. A similar sequence of C++ code is then used to carry out packed 
addition for 8-bit unsigned integers. The C++ function MmxAddWords follows the same 
pattern for 16-bit signed and unsigned integers.

Let’s now take a look at the assembly language file MmxAddition_.asm (Listing 6-4). 
Toward the bottom of this file is the previously mentioned assembly language jump 
table. The table named AddOpTable contains a list of assembly language labels that 
are defined in the function MmxAdd_. The target of each label contains a different MMX 
add instruction. The mechanics of jump table use is described shortly. The symbol 
AddOpTableCount defines the number of items in the jump table and is used to validate 
the function argument add_op. The align 4 statement instructs the assembler to locate 
the table AddOpTable on a doubleword boundary in order to avoid unaligned memory 
accesses. Also note that the jump table is defined between the proc and endp statements. 
This means that storage for the table is allocated in a code block. Clearly, the jump table 
does not contain executable instructions, which explains why it is positioned after the ret 
instruction. This also implies that the jump table is read-only; the processor will generate 
an exception on any write attempt to the table.
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Following its function prolog, function MmxAdd_ loads the value of add_op into 
register EAX. A mov eax,[ebp+24] instruction is used to load add_op since the MmxVal 
arguments a and b are passed by value and each one requires eight bytes of stack space.  
A cmp instruction followed by a jae conditional jump instruction is then used to validate 
the value of add_op.

Subsequent to the validation of add_op, the function MmxAdd_ loads argument a 
into register MM0 using a movq mm0,[ebp+8] (Move Quadword) instruction. A second 
movq instruction is used to load argument b into MM1. The next instruction, jmp 
[AddOpTable+eax*4], performs an indirect jump to the specified MMX add instruction. 
During execution of this instruction, the processor loads register EIP with the contents 
of the memory location that is specified by the instruction operand. In the current 
sample program, the processor reads the new EIP value from the memory location 
[AddOpTable+eax*4] (recall that register EAX contains add_op). This causes the processor 
to execute one of the MMX add instructions since the all of the label values in AddOpTable 
correspond to a padd instruction.

Each MMX add instruction sums the contents of MM0 and MM1 using the required 
packed element size and either wraparound or saturated arithmetic. Following each MMX 
addition, an unconditional jump is performed to a common block of code that saves the 
computed result. Note that if an invalid value for add_op was detected, a pxor mm0,mm0 
(Logical Exclusive OR) instruction is executed and it sets register MM0 to all zeros.

The computed packed sum is saved near the label SaveResult. This warrants a 
closer look. The Visual C++ calling convention uses register pair EDX:EAX for 64-bit 
return values, which means that the contents of MM0 must be copied to this register pair. 
The instruction movd eax,mm0 (Move Doubleword) copies the low-order doubleword 
of MM0 into EAX. Somewhat surprisingly, there is no MMX instruction that copies the 
high-order doubleword of an MMX register into a general-purpose register. In order to get 
around this limitation, a pshufw mm2,mm0,01001110b (Shuffle Packed Words) instruction 
is used to swap the high and low doublewords of MM0. This instruction uses an 8-bit 
immediate operand to specify a word shuffle (or ordering) pattern. Reading this pattern 
value from right to left, each two-bit field represents a word location in the destination 
operand (i.e. bits 0-1 = word 0, bits 2-3 = word 1, etc.). The value of each two-bit field 
denotes the source operand word that gets copied to the designated destination operand 
word, as illustrated in Figure 6-1. Following the high-low doubleword swap, a movd 
edx,mm2 instruction loads register EDX with the correct return value.

src[3] src[2] src[1] src[0]

src[ord[7:6]] src[ord[5:4]] src[ord[3:2]] src[ord[1:0]]

src

des

pshufw des,src,ord

ord[7:6] ord[5:4] ord[3:2] ord[1:0]

ord[x:y] = bits x – y of ord (order) operand

ord

Figure 6-1. Operation of the pshufw instruction
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The final instruction before the function epilog is emms (Empty MMX Technology 
State). As discussed in Chapter 5, the emms instruction must be used to reinstate the 
x87 FPU to normal floating-point operations following the execution of any MMX 
instruction. If an x87 FPU instruction is executed following an MMX instruction without 
an intervening emms, the x87 FPU may generate an exception or produce an invalid result.

Output 6-1 shows the results of the sample program MmxAddition. The test cases 
illustrate various combinations of signed and unsigned integers using both wraparound 
and saturated addition. In the first test case, byte integers are added. Note the difference 
when the values 80 and 64 are summed using wraparound (paddb results) and saturated 
addition (paddsb results); the former produces a result of -112 (an overflow), while 
the latter yields 127. At the other end of the range scale, adding -70 and -80 generates 
106 (another overflow) and -128 when using wraparound and saturated addition, 
respectively. Output 6-1 also illustrates variations between wraparound and saturated 
addition using unsigned byte integers, signed word integers, and unsigned word integers.

Output 6-1. Sample Program MmxAddition

Packed byte addition - signed integers
a:    50   80  -27  -70  -42   60   64  100
b:    30   64  -32  -80   90  -85   90  -30
 
paddb results
c:    80 -112  -59  106   48  -25 -102   70
 
paddsb results
c:    80  127  -59 -128   48  -25  127   70
  
Packed byte addition - unsigned integers
a:    50   80  132  200   42   60  140   10
b:    30   64  130  180   90   85  160   14
 
paddb results
c:    80  144    6  124  132  145   44   24
 
paddusb results
c:    80  144  255  255  132  145  255   24
  
Packed word addition - signed integers
a:       550    30000     -270    -7000
b:       830     5000     -320   -32000
 
paddw results
c:      1380   -30536     -590    26536
 
paddsw results
c:      1380    32767     -590   -32768
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Packed word addition - unsigned integers
a:        50    48000      132    10000
b:        30    20000      130    60000
 
paddw results
c:        80     2464      262     4464
 
paddusw results
c:        80    65535      262    65535

Packed Integer Shifts
The next sample program that you’ll examine is called MmxShift and it demonstrates 
the use of the MMX shift instructions. Listings 6-5 and 6-6 contain the source code 
files MmxShift.cpp and MmxShift_.asm, respectively. Since the logical organization of 
MmxShift is very similar to the sample program MmxAddition, the comments that follow 
are succinct.

Listing 6-5. MmxShift.cpp

#include "stdafx.h"
#include "MmxVal.h"
 
// The order of the name constants in the following enum must
// correspond to the table that is defined in MmxShift_.asm.
 
enum MmxShiftOp : unsigned int
{
    psllw,      // shift left logical word
    psrlw,      // shift right logical word
    psraw,      // shift right arithmetic word
    pslld,      // shift left logical dword
    psrld,      // shift right logical dword
    psrad,      // shift right arithmetic dword
};
 
extern "C" bool MmxShift_(MmxVal a, MmxShiftOp shift_op, int count, MmxVal*
b);
 
void MmxShiftWords(void)
{
    MmxVal a, b;
    int count;
    char buff[256];
 
    a.u16[0] = 0x1234;
    a.u16[1] = 0xFF00;

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ MMX teChnology prograMMing

157

    a.u16[2] = 0x00CC;
    a.u16[3] = 0x8080;
    count = 2;
 
    MmxShift_(a, MmxShiftOp::psllw, count, &b);
    printf("\nResults for psllw - count = %d\n", count);
    printf("a: %s\n", a.ToString_x16(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_x16(buff, sizeof(buff)));
 
    MmxShift_(a, MmxShiftOp::psrlw, count, &b);
    printf("\nResults for psrlw - count = %d\n", count);
    printf("a: %s\n", a.ToString_x16(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_x16(buff, sizeof(buff)));
 
    MmxShift_(a, MmxShiftOp::psraw, count, &b);
    printf("\nResults for psraw - count = %d\n", count);
    printf("a: %s\n", a.ToString_x16(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_x16(buff, sizeof(buff)));
}
 
void MmxShiftDwords(void)
{
    MmxVal a, b;
    int count;
    char buff[256];
 
    a.u32[0] = 0x00010001;
    a.u32[1] = 0x80008000;
    count = 3;
 
    MmxShift_(a, MmxShiftOp::pslld, count, &b);
    printf("\nResults for pslld - count = %d\n", count);
    printf("a: %s\n", a.ToString_x32(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_x32(buff, sizeof(buff)));
 
    MmxShift_(a, MmxShiftOp::psrld, count, &b);
    printf("\nResults for psrld - count = %d\n", count);
    printf("a: %s\n", a.ToString_x32(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_x32(buff, sizeof(buff)));
 
    MmxShift_(a, MmxShiftOp::psrad, count, &b);
    printf("\nResults for psrad - count = %d\n", count);
    printf("a: %s\n", a.ToString_x32(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_x32(buff, sizeof(buff)));
}
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int _tmain(int argc, _TCHAR* argv[])
{
    MmxShiftWords();
    MmxShiftDwords();
    return 0;
}

Listing 6-6. MmxShift_.asm

        .model flat,c
        .code
 
; extern "C" bool MmxShift_(MmxVal a, MmxShiftOp shift_op, int count,
MmxVal* b);
;
; Description:  The following function demonstrates use of various MMX
;               shift instructions.
;
; Returns:      0 = invalid 'shift_op' argument
;               1 = success
 
MmxShift_   proc
            push ebp
            mov ebp,esp
 
; Make sure 'shift_op' is valid
            xor eax,eax                     ;set error code
            mov edx,[ebp+16]                ;load 'shift_op'
            cmp edx,ShiftOpTableCount       ;compare against table count
            jae BadShiftOp                  ;jump if 'shift_op' invalid
 
; Jump to the specfied shift operation
            mov eax,1                       ;set success return code
            movq mm0,[ebp+8]                ;load 'a'
            movd mm1,dword ptr [ebp+20]     ;load 'count' into low dword
            jmp [ShiftOpTable+edx*4]
 
MmxPsllw:   psllw mm0,mm1                   ;shift left logical word
            jmp SaveResult
 
MmxPsrlw:   psrlw mm0,mm1                   ;shift right logical word
            jmp SaveResult
 
MmxPsraw:   psraw mm0,mm1                   ;shift right arithmetic word
            jmp SaveResult
 
MmxPslld:   pslld mm0,mm1                   ;shift left logical dword
            jmp SaveResult
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MmxPsrld:   psrld mm0,mm1                   ;shift right logical dword
            jmp SaveResult
 
MmxPsrad:   psrad mm0,mm1                   ;shift right arithmetic dword
            jmp SaveResult
 
BadShiftOp: pxor mm0,mm0                    ;use 0 if 'shift_op' is bad
 
SaveResult: mov edx,[ebp+24]                ;edx = ptr to 'b'
            movq [edx],mm0                  ;save shift result
            emms                            ;clear MMX state
 
            pop ebp
            ret
 
; The order of the labels in the following table must correspond
; to the enum that is defined in MmxShift.cpp.
 
            align 4
ShiftOpTable:
            dword MmxPsllw, MmxPsrlw, MmxPsraw
            dword MmxPslld, MmxPsrld, MmxPsrad
ShiftOpTableCount equ ($ - ShiftOpTable) / size dword
 
MmxShift_ endp
        end
 

Toward the top of file MmxShift.cpp (Listing 6-5), a C++ enumeration named 
ShiftOp defines enumerators for the various MMX shift operations. Next is a declaration 
statement for the x86 assembly language function MmxShift_. The prototype for this 
function differs slightly from MmxAdd_. MmxShift_ saves its result to a caller-provided 
memory location instead of returning an MmxVal.

Following its prolog, the assembly language function MmxShift_ (Listing 6-6) 
validates the value of argument shift_op. Next a movq mm0,[ebp+8] instruction loads the 
value of a into MMX register MM0. This is followed by a movd mm1,dword ptr [ebp+20] 
that loads the bit-shift count into the low-order doubleword of MM1. This count value 
specifies the number of bits that each word or doubleword element in a will be shifted 
(MMX instruction shift counts can also be specified using an immediate operand). The 
jmp [ShiftOpTable+edx*4] instruction transfers program control to the specified MMX 
shift instruction. Following completion of the shift operation, the results are saved to 
the memory location specified by the caller. Note that it is not necessary to use a pshufw 
instruction to swap the high and low doublewords of the result since all 64 bits are saved 
directly to memory by the movq instruction. Output 6-2 shows the results of the sample 
program MmxShift.
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Output 6-2. Sample Program MmxShift

Results for psllw - count = 2
a: 1234 FF00 00CC 8080
b: 48D0 FC00 0330 0200
 
Results for psrlw - count = 2
a: 1234 FF00 00CC 8080
b: 048D 3FC0 0033 2020
 
Results for psraw - count = 2
a: 1234 FF00 00CC 8080
b: 048D FFC0 0033 E020
 
Results for pslld - count = 3
a: 00010001 80008000
b: 00080008 00040000
 
Results for psrld - count = 3
a: 00010001 80008000
b: 00002000 10001000
 
Results for psrad - count = 3
a: 00010001 80008000
b: 00002000 F0001000

Packed Integer Multiplication
The final sample program of this section is called MmxMultiplication and it 
demonstrates how to perform signed integer multiplication using packed word operands. 
Listings 6-7 and 6-8 contain the source code for the files MmxMultiplication.cpp and 
MmxMultiplication_.asm, respectively. For the ensuing discussion, it’s helpful to recall 
that the multiplicative product of two-word (16-bit) integers is always a doubleword  
(32-bit) integer.

Listing 6-7. MmxMultiplication.cpp

#include "stdafx.h"
#include "MmxVal.h"
 
extern "C" void MmxMulSignedWord_(MmxVal a, MmxVal b, MmxVal* prod_lo,
MmxVal* prod_hi);
 
int _tmain(int argc, _TCHAR* argv[])
{
    MmxVal a, b, prod_lo, prod_hi;
    char buff[256];
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    a.i16[0] = 10;      b.i16[0] = 2000;
    a.i16[1] = 30;      b.i16[1] = -4000;
    a.i16[2] = -50;     b.i16[2] = 6000;
    a.i16[3] = -70;     b.i16[3] = -8000;
 
    MmxMulSignedWord_(a, b, &prod_lo, &prod_hi);
 
    printf("\nResults for MmxMulSignedWord_\n");
    printf("a: %s\n", a.ToString_i16(buff, sizeof(buff)));
    printf("b: %s\n\n", b.ToString_i16(buff, sizeof(buff)));
    printf("prod_lo: %s\n", prod_lo.ToString_i32(buff, sizeof(buff)));
    printf("prod_hi: %s\n", prod_hi.ToString_i32(buff, sizeof(buff)));
 
    return 0;
}

Listing 6-8. MmxMultiplication_.asm

        .model flat,c
        .code
 
; extern "C" void MmxMulSignedWord_(MmxVal a, MmxVal b, MmxVal* prod_lo,
MmxVal* prod_hi)
;
; Description:  The following function performs a SIMD multiplication of
;               two packed signed word operands. The resultant doubleword
;               products are saved to the specified memory locations.
 
MmxMulSignedWord_ proc
        push ebp
        mov ebp,esp
 
; Load arguments 'a' and 'b'
        movq mm0,[ebp+8]                    ;mm0 = 'a'
        movq mm1,[ebp+16]                   ;mm1 = 'b'
 
; Perform packed signed integer word multiplication
        movq mm2,mm0                        ;mm2 = 'a'
        pmullw mm0,mm1                      ;mm0 = product low result
        pmulhw mm1,mm2                      ;mm1 = product high result
 
; Unpack and interleave low and high products to form
; final packed doubleword products
        movq mm2,mm0                        ;mm2 = product low result
        punpcklwd mm0,mm1                   ;mm0 = low dword products
        punpckhwd mm2,mm1                   ;mm2 = high dword products
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; Save the packed doubleword results
        mov eax,[ebp+24]                    ;eax = pointer to 'prod_lo'
        mov edx,[ebp+28]                    ;edx = pointer to 'prod_hi'
        movq [eax],mm0                      ;save low dword products
        movq [edx],mm2                      ;save high dword products
 
        pop ebp
        ret
MmxMulSignedWord_ endp
        end
 

Let’s begin by examining the assembly language function MmxMulSignedWord_ 
(Listing 6-8). This function multiplies two packed signed word operands and saves 
the resultant packed doubleword products to memory. Immediately following the 
function prolog, the MmxVal arguments a and b are loaded into registers MM0 and 
MM1, respectively. The instruction pmullw mm0,mm1 (Multiply Packed Integers and 
Store Low Result) multiplies the two packed signed word integers and stores the 
low-order 16 bits of each product to register MM0. Similarly, the instruction pmulhw 
mm1,mm2 (Multiply Packed Integers and Store High Result) multiplies and stores the 
high-order 16 bits of each product to register MM1 (note that MM0 was copied to MM2 
prior to execution of the pmullw instruction). Figure 6-2 elucidates the operation of the 
pmullw and pmulhw instructions.

a3 a2 a1 a0

b3 b2 b1 b0

lo16(a3 * b3) lo16(a2 * b2) lo16(a1 * b1) lo16(a0 * b0)

lo16( ) = low-order 16 bits of 32-bit product; hi16( ) = high-order 16 bits of 32-bit product

src

des

des

pmullw des,src

a3 a2 a1 a0

b3 b2 b1 b0

hi16(a3 * b3) hi16(a2 * b2) hi16(a1 * b1) hi16(a0 * b0)

src

des

des

pmulhw des,src

Figure 6-2. Operation of the pmullw and pmulhw instructions
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Following calculation of the products, the high and low results need to be combined in 
order to create the final packed signed doublewords products. This is accomplished using 
the punpcklwd (Unpack Low Data, Word to Doubleword) and punpckhwd (Unpack High 
Data, Word to Doubleword) instructions. These instructions unpack and interleave the 
elements of a packed word value, as illustrated in Figure 6-3. The MMX instruction set also 
includes similar instructions that unpack and interleave the elements of packed byte and 
packed doubleword values. You’ll see an example of the former later in this chapter.

a3 a2 a1 a0

b3 b2 b1 b0

a1 b1 a0 b0

src

des

des

punpcklwd des,src

a3 a2 a1 a0

b3 b2 b1 b0

a3 b3 a2 b2

src

des

des

punpckhwd des,src

Figure 6-3. Operation of the punpcklwd and punpckhwd instructions

The final few instructions of MmxMulSignedWord_ save the packed doubleword 
data values in MM0 and MM2 to the memory locations specified by the caller. The file 
MmxMultiplication.cpp (Listing-6-7) contains some straightforward code that sets up a 
test case, calls MmxMulSignedWord_, and prints the result. Note that the display text strings 
for prod_lo and prod_hi are formatted using the member function MmxVal::ToString_i32, 
since both of these instances contain two doublewords. Output 6-3 shows the results of 
the sample program MmxMultiplication.

Output 6-3. Sample Program MmxMultiplication

Results for MmxMulSignedWord_
a:       10       30      -50      -70
b:     2000    -4000     6000    -8000
 
prod_lo:        20000      -120000
prod_hi:      -300000       560000

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ MMX teChnology prograMMing

164

MMX Advanced Programming
The sample programs of the previous section were intended as an introduction to MMX 
programming. Each program included a simple x86 assembly language function that 
demonstrated the operation of several MMX instructions using instances of the union 
MmxVal. For some real-world application programs, it may be acceptable to create a small 
set of functions similar to the ones you’ve seen thus far. However, in order to fully exploit 
the benefits of the x86’s SIMD architecture, you need to code functions that implement 
complete algorithms. That is the focus of this section.

The sample programs that follow illustrate the processing of 8-bit unsigned 
integer arrays using the MMX instruction set. In the first program, you’ll learn how to 
determine the minimum and maximum value of an array. This sample program has a 
certain practicality to it since digital images often use arrays of 8-bit unsigned integers to 
represent images in memory and many image-processing algorithms need to determine 
the minimum (darkest) and maximum (lightest) pixels in an image. The second sample 
program illustrates how to calculate the mean value of an array. This is another example 
of a realistic algorithm that is directly relevant to the province of image processing.

You read in the book’s Introduction that x86 assembly language can be used to 
accelerate the performance of certain algorithms, but you haven’t seen any evidence thus 
far to support this claim. That will change in this section. In both sample programs, the 
key algorithms are coded using both C++ and x86 assembly language in order to facilitate 
quantitative timing measurements and comparisons. The specific details of these timing 
measurements are included as part of the discussions that follow.

Integer Array Processing 
The sample program of this section is named MmxCalcMinMax and it computes the  
maximum and minimum values of an array of 8-bit unsigned integers. It also demonstrates 
some techniques that can be used to measure the performance of an x86 assembly 
language function. The source code files MmxCalcMinMax.h, MmxCalcMinMax.cpp, and 
MmxCalcMinMax_.asm are shown in Listings 6-9, 6-10, and 6-11, respectively.

Listing 6-9. MmxCalcMinMax.h

#pragma once
 
#include "MiscDefs.h"
 
// Functions defined in MmxCalcMinMax.cpp
extern bool MmxCalcMinMaxCpp(Uint8* x, int n, Uint8* x_min, Uint8* x_max);
 
// Functions defined in MmxCalcMinMaxTimed.cpp
extern void MmxCalcMinMaxTimed(void);
 
// Functions defined in MmxCalcMinMax_.asm
extern "C" bool MmxCalcMinMax_(Uint8* x, int n, Uint8* x_min, Uint8* x_max);
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// Common constants
const int NUM_ELEMENTS = 0x800000;
const int SRAND_SEED = 14;

Listing 6-10. MmxCalcMinMax.cpp

#include "stdafx.h"
#include "MmxCalcMinMax.h"
#include <stdlib.h>
 
extern "C" int NMIN = 16;           // Minimum number of array elements
 
bool MmxCalcMinMaxCpp(Uint8* x, int n, Uint8* x_min, Uint8* x_max)
{
    if ((n < NMIN) || ((n & 0x0f) != 0))
        return false;
 
    Uint8 x_min_temp = 0xff;
    Uint8 x_max_temp = 0;
 
    for (int i = 0; i < n; i++)
    {
        Uint8 val = *x++;
 
        if (val < x_min_temp)
            x_min_temp = val;
        else if (val > x_max_temp)
            x_max_temp = val;
    }
 
    *x_min = x_min_temp;
    *x_max = x_max_temp;
    return true;
}
 
void MmxCalcMinMax()
{
    const int n = NUM_ELEMENTS;
    Uint8* x = new Uint8[n];
 
    // Initialize test array with known min and max values
    srand(SRAND_SEED);
    for (int i = 0; i < n; i++)
        x[i] = (Uint8)((rand() % 240) + 10);
 
    x[n / 4] = 4;
    x[n / 2] = 252;
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    bool rc1, rc2;
    Uint8 x_min1 = 0, x_max1 = 0;
    Uint8 x_min2 = 0, x_max2 = 0;
 
    rc1 = MmxCalcMinMaxCpp(x, n, &x_min1, &x_max1);
    rc2 = MmxCalcMinMax_(x, n, &x_min2, &x_max2);
 
    printf("\nResults for MmxCalcMinMax()\n");
    printf("rc1: %d  x_min1: %3u  x_max1: %3u\n", rc1, x_min1, x_max1);
    printf("rc2: %d  x_min2: %3u  x_max2: %3u\n", rc2, x_min2, x_max2);
    delete[] x;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    MmxCalcMinMax();
    MmxCalcMinMaxTimed();
    return 0;
}

Listing 6-11. MmxCalcMinMax_.asm

        .model flat,c
        .const
StartMinVal qword 0ffffffffffffffffh    ;Initial packed min value
StartMaxVal qword  0000000000000000h    ;Initial packed max value
        .code
        extern NMIN:dword               ;Minimum size of array
 
; extern "C" bool MmxCalcMinMax__(Uint8* x, int n, Uint8* x_min, Uint8*
x_max);
;
; Description:  The following function calculates the minimum and
;               maximum values of an array of 8-bit unsigned integers.
;
; Returns:      0 = invalid 'n'
;               1 = success
 
MmxCalcMinMax_   proc
        push ebp
        mov ebp,esp
 
; Make sure 'n' is valid
        xor eax,eax                         ;set error return code
        mov ecx,[ebp+12]                    ;ecx = 'n'
        cmp ecx,[NMIN]
        jl Done                             ;jump if n < NMIN
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        test ecx,0fh
        jnz Done                            ;jump if n & 0x0f != 0
 
; Initialize
        shr ecx,4                           ;ecx = number of 16-byte blocks
        mov edx,[ebp+8]                     ;edx = pointer to 'x'
        movq mm4,[StartMinVal]
        movq mm6,mm4                        ;mm6:mm4 current min values
        movq mm5,[StartMaxVal]
        movq mm7,mm5                        ;mm7:mm5 current max values
 
; Scan array for min & max values
@@:     movq mm0,[edx]                      ;mm0 = packed 8 bytes
        movq mm1,[edx+8]                    ;mm1 = packed 8 bytes
        pminub mm6,mm0                      ;mm6 = updated min values
        pminub mm4,mm1                      ;mm4 = updated min values
        pmaxub mm7,mm0                      ;mm7 = updates max values
        pmaxub mm5,mm1                      ;mm5 = updates max values
        add edx,16                          ;set edx to next 16 byte block
        dec ecx
        jnz @B                              ;jump if more data remains
 
; Determine final minimum value
        pminub mm6,mm4                      ;mm6[63:0] = final 8 min vals
        pshufw mm0,mm6,00001110b            ;mm0[31:0] = mm6[63:32]
        pminub mm6,mm0                      ;mm6[31:0] = final 4 min vals
        pshufw mm0,mm6,00000001b            ;mm0[15:0] = mm6[31:16]
        pminub mm6,mm0                      ;mm6[15:0] = final 2 min vals
        pextrw eax,mm6,0                    ;ax = final 2 min vals
        cmp al,ah
        jbe @F                              ;jump if al <= ah
        mov al,ah                           ;al = final min value
@@:     mov edx,[ebp+16]
        mov [edx],al                        ;save final min value
 
; Determine final maximum value
        pmaxub mm7,mm5                      ;mm7[63:0] = final 8 max vals
        pshufw mm0,mm7,00001110b            ;mm0[31:0] = mm7[63:32]
        pmaxub mm7,mm0                      ;mm7[31:0] = final 4 max vals
        pshufw mm0,mm7,00000001b            ;mm0[15:0] = mm7[31:16]
        pmaxub mm7,mm0                      ;mm7[15:0] = final 2 max vals
        pextrw eax,mm7,0                    ;ax = final 2 max vals
        cmp al,ah
        jae @F                              ;jump if al >=ah
        mov al,ah                           ;al = final max value
@@:     mov edx,[ebp+20]
        mov [edx],al                        ;save final max value
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; Clear MMX state and set return code
        emms
        mov eax,1
 
Done:   pop ebp
        ret
MmxCalcMinMax_   endp
        end
 

Near the top of the MmxCalcMinMax.cpp file (Listing 6-10) is a function named 
MmxCalcMinMaxCpp. This function is a C++ implementation of an algorithm that scans an 
array of 8-bit unsigned integers to find the smallest and largest values. Parameters for this 
function include a pointer to the array, the number of elements in the array, and pointers 
for the minimum and maximum values. The algorithm itself consists of a simple loop 
that tests each array element to see if it’s smaller or larger than the current minimum or 
maximum values. One item to note in function MmxCalcMinMaxCpp is that the size of the 
array must be greater than or equal to 16 and evenly divisible by 16. There are two reasons 
for these restrictions. First, they simplify the code of the assembly language function that 
implements the same algorithm as MmxCalcMinMaxCpp. Second, they eliminate the need 
to add extra code to process partial pixel blocks, which ultimately improves performance.

The MmxCalcMinMax.cpp file also includes a function called MmxCalcMinMax, which 
initializes a test array, invokes the appropriate C++ and assembly language functions, 
and displays results. The test array is initialized using the standard library function 
rand except for two elements that help confirm the correctness of the algorithms. 
Function MmxCalcMinMax is called from _tmain. Also note that _tmain calls a function 
named MmxCalcMinMaxTimed, which contains code to measure the performance of both 
MmxCalcMinMax and MmxCalcMinMax_. I’ll discuss this function later in this section.

The assembly language function MmxCalcMinMax_ (Listing 6-11) implements the 
same algorithm as its C++ counterpart with one significant difference. It processes array 
elements using 8-byte packets, which is the maximum number of 8-bit integers that can 
be stored in an MMX register. The function MmxCalcMinMax_ begins by ensuring that the 
size of argument n is valid.

Following validation of n, function MmxCalcMinMax_ performs some basic 
initialization. A shr ecx,4 instruction computes the number of 16-byte blocks in 
the array. The number of 16-byte blocks is calculated since the processing loop in 
MmxCalcMinMax_ analyzes 16 bytes per iteration, which is slightly faster than analyzing 
8 bytes per iteration. You’ll learn why this is true in Chapter21. After initialization of 
register EDX as a pointer to array x, register pairs MM6:MM4 and MM7:MM5 are primed 
to maintain the current minimum and maximum of the array. Note than unlike the C++ 
implementation of the algorithm, the assembly language version will track 16 minimum 
and maximum values simultaneously. Following completion of the processing loop, the 
algorithm will determine the final array minimum and maximum using the values in the 
aforementioned register pairs.

The processing loop of MmxCalcMinMax_ is remarkably short. During each iteration, 
the instructions movq mm0[edx] and movq mm1,[edx+8] load registers MM0 and MM1 
with the next block of pixels. This block of pixels is then compared against the current 
minimums using two pminub (Minimum of Packed Unsigned Byte Integers) instructions. 
The pminub instruction performs an unsigned compare of matching elements in the 
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specified registers and saves the smaller values to the destination operand. The current 
maximum values are then updated in a similar manner using two consecutive pmaxub 
(Maximum of Packed Unsigned Byte Integers) instructions. Processing of the array 
continues until all elements have been examined. Subsequent to the completion of the 
processing loop, register pairs MM6:MM4 and MM7:MM5 contain the packed minimums 
and maximums, respectively.

Following the processing loop is a sequence of instructions that reduces the 16 
values in MM6:MM4 to the final minimum value. This is achieved using a series of 
pminub, pshufw, and pextrw (Extract Word) instructions, as illustrated in Figure 6-4.  
A pminub mm6,mm4 instruction reduces the packed minimums from 16 to 8 values, which 
means that they now fit in a single MMX register. Next, a pshufw mm0,mm6,00001110b 
instruction copies the upper four byte values in MM6 to the low-order positions of 
MM0. This is followed by the pminub mm6,mm0 instruction, which reduces the number 
of minimum values from eight to four (the upper doublewords of mm6 and mm0 are 
don’t-care values). Another pshufw/pminub instruction sequence reduces the number 
of minimum values to two. The final minimum value is determined as follows. First, a 
pextrw eax,mm6,0 instruction copies the low-order word element of MM6 (specified by 
the immediate operand 0) to the low-order word of register EAX; the high-order word of 
EAX is set to zero. Following execution of this instruction, the two penultimate minimum 
values are stored in registers AH and AL. The final minimum value is determined using 
an x86 compare and conditional jump instruction.

10

pminub mm6,mm4

12 12 5 15748 11 14 7 5 81396

Packed Minimums After Processing Loop

mm4 mm6

10 12 7 5 8746mm6

X X X 10 6712Xmm0

pshufw mm0,mm6,00001110b

pminub mm6,mm0

X X X 5 674X

X X X X 45XXmm0

pshufw mm0,mm6,00000001b

pminub mm6,mm0

X X X X 45XXmm6

mm6

Note: X = Don’t-Care

Figure 6-4. Reduction of packed minimum values. The data values in this figure 
illustrate operation of the MMX instruction sequence
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Function MmxCalcMinMax_ uses a similar sequence of instructions to compute the 
maximum value in the array. The only modifications are the use of a pmaxub instruction 
instead of pminub and a different conditional jump. Output 6-4 shows the results of the 
sample program MmxCalcMinMax.

Output 6-4. Sample Program MmxCalcMinMax

Results for MmxCalcMinMax()
rc1: 1  x_min1:   4  x_max1: 252
rc2: 1  x_min2:   4  x_max2: 252
 
Results for MmxCalcMinMaxTimed()
x_min1:   4  x_max1: 252
x_min2:   4  x_max2: 252
 
Benchmark times saved to file __MmxCalcMinMaxTimed.csv
 

Output 6-4 includes a reference to a CSV (comma-separated value) file that contains 
benchmark times. This file is created by the function MmxCalcMinMaxTimed, which 
measures the performance of the functions MmxCalcMinMaxCpp and MmxCalcMinMax_. 
Listing 6-12 shows the source code for the MmxCalcMinMaxTimed.cpp file.

Listing 6-12. MmxCalcMinMaxedTimed.cpp

#include "stdafx.h"
#include "MmxCalcMinMax.h"
#include "ThreadTimer.h"
#include <stdlib.h>
 
void MmxCalcMinMaxTimed(void)
{
    // Force current thread to execute on a single processor
    ThreadTimer::SetThreadAffinityMask();
 
    const int n = NUM_ELEMENTS;
    Uint8* x = new Uint8[n];
 
    // Initialize test array with known min and max values
    srand(SRAND_SEED);
    for (int i = 0; i < n; i++)
        x[i] = (Uint8)((rand() % 240) + 10);
 
    x[n / 4] = 4;
    x[n / 2] = 252;
 
    const int num_it = 100;
    const int num_alg = 2;
    const double et_scale = 1.0e6;
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    double et[num_it][num_alg];
    Uint8 x_min1 = 0, x_max1 = 0;
    Uint8 x_min2 = 0, x_max2 = 0;
    ThreadTimer tt;
 
    for (int i = 0; i < num_it; i++)
    {
        tt.Start();
        MmxCalcMinMaxCpp(x, n, &x_min1, &x_max1);
        tt.Stop();
        et[i][0] = tt.GetElapsedTime() * et_scale;
    }
 
    for (int i = 0; i < num_it; i++)
    {
        tt.Start();
        MmxCalcMinMax_(x, n, &x_min2, &x_max2);
        tt.Stop();
        et[i][1] = tt.GetElapsedTime() * et_scale;
    }
 
    const char* fn = "__MmxCalcMinMaxTimed.csv";
    ThreadTimer::SaveElapsedTimeMatrix(fn, (double*)et, num_it, num_alg);
 
    printf("\nResults for MmxCalcMinMaxTimed()\n");
    printf("x_min1: %3u  x_max1: %3d\n", x_min1, x_max1);
    printf("x_min2: %3u  x_max2: %3d\n", x_min2, x_max2);
    printf("\nBenchmark times saved to file %s\n", fn);
    delete[] x;
}
 

The function MmxCalcMinMaxTimed relies on a C++ class named ThreadTimer to measure 
how long a section of code takes to execute. This class uses a couple of Windows API functions, 
QueryPerformanceCounter and QueryPerformanceFrequency, to implement a simple software 
stopwatch. The member functions ThreadTimer::Start and ThreadTimer::Stop record the 
value of a system counter while ThreadTimer::GetElapsedTime computes the difference in 
seconds between the start and stop counters. Class ThreadTimer also includes several member 
functions that help manage process and thread affinity. These functions can be applied to 
select a specific execution CPU for a process or thread, which improves the accuracy of the 
timing measurements. The source code for class ThreadTimer is not shown here but included 
as part of the downloadable software package. Table 6-1 contains the mean execution times for 
the functions MmxCalcMinMaxCpp and MmxCalcMinMax_ using several different processors.
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As shown in Output 6-4, the file __MmxCalcMinMaxTimed.csv was generated by 
running the executable MmxCalcMinMax.exe. This EXE file was built using the Visual C++ 
Release Configuration option and the default settings for code optimization. All time 
measurements were made using ordinary desktop and notebook PCs running Windows 
8.x or Windows 7 with Service Pack 1. No attempt was made to account for any hardware, 
software, operating system, or configuration differences between the PCs prior to running 
the sample program executable file.

The values shown in Table 6-1 were computed using the Excel spreadsheet function 
TRIMMEAN(array,0.10) and the execution times in the CSV file. For sample program 
MmxCalcMinMax, the x86-32 MMX implementation of the min-max algorithm clearly 
outperforms the C++ version by a wide margin. I should mention that the performance 
gains observed in sample program MmxCalcMinMax are somewhat atypical. Nevertheless, 
it is not uncommon to achieve significant speed improvements using x86 assembly 
language, especially by algorithms that can exploit the SIMD parallelism of an x86 
processor. You’ll see additional examples of accelerated algorithmic performance 
throughout the remainder of this book.

Like automobile fuel economy estimates and smartphone battery run-time 
approximations, software performance benchmarking is not an exact science. 
Measurements must be made and results construed in a context that is appropriate 
for the specific benchmark and target execution environment. The methods used here 
to benchmark execution times are generally worthwhile, but results can vary between 
runs depending on the configuration of the test PC. When conducting performance 
benchmarking, I find that in most cases it is usually better to focus on the relative 
differences in execution times rather than on absolute measurements.

Using MMX and the x87 FPU
The final sample program of this chapter is called MmxCalcMean and it calculates the 
arithmetic mean of an array of 8-bit unsigned integers. The sample program MmxCalcMean 
also illustrates how to size-promote packed unsigned integers and use x87 FPU 
instructions in a function that includes MMX instructions. Listings 6-13, 6-14, and 6-15 
contain the source code for the sample program.

Table 6-1. Mean Execution Times (in Microseconds) for MmxCalcMinMax Functions

CPU MmxCalcMinMaxCpp (C++) MmxCalcMinMax_ (x86-32 MMX)

Intel Core i7-4770 10813 364

Intel Core i7-4600U 12833 570

Intel Core i3-2310M 20980 950
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Listing 6-13. MmxCalcMean.h

#pragma once
 
#include "MiscDefs.h"
 
// Functions defined in MmxCalcMean.cpp
extern bool MmxCalcMeanCpp(const Uint8* x, int n, Uint32* sum_x, double*
mean);
 
// Functions defined in MmxCalcMeanTimed.cpp
extern void MmxCalcMeanTimed(void);
 
// Functions defined in MmxCalcMean_.asm
extern "C" bool MmxCalcMean_(const Uint8* x, int n, Uint32* sum_x, double*
mean);
 
// Common constants
const int NUM_ELEMENTS = 0x800000;
const int SRAND_SEED = 23;

Listing 6-14. MmxCalcMean.cpp

#include "stdafx.h"
#include "MmxCalcMean.h"
#include <stdlib.h>
 
extern "C" int NMIN = 16;               // Minimum number of elements
extern "C" int NMAX = 16777216;         // Maximum number of elements
 
bool MmxCalcMeanCpp(const Uint8* x, int n, Uint32* sum_x, double* mean_x)
{
    if ((n < NMIN) || (n > NMAX) || ((n & 0x0f) != 0))
        return false;
 
    Uint32 sum_x_temp = 0;
    for (int i = 0; i < n; i++)
        sum_x_temp += x[i];
 
    *sum_x = sum_x_temp;
    *mean_x = (double)sum_x_temp / n;
    return true;
}
 
void MmxCalcMean()
{
    const int n = NUM_ELEMENTS;
    Uint8* x = new Uint8[n];
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    srand(SRAND_SEED);
    for (int i = 0; i < n; i++)
        x[i] = rand() % 256;
 
    bool rc1, rc2;
    Uint32 sum_x1 = 0, sum_x2 = 0;
    double mean_x1 = 0, mean_x2 = 0;
 
    rc1 = MmxCalcMeanCpp(x, n, &sum_x1, &mean_x1);
    rc2 = MmxCalcMean_(x, n, &sum_x2, &mean_x2);
 
    printf("\nResults for MmxCalcMean()\n");
    printf("rc1: %d sum_x1: %u mean_x1: %12.6lf\n", rc1, sum_x1, mean_x1);
    printf("rc2: %d sum_x2: %u mean_x2: %12.6lf\n", rc2, sum_x2, mean_x2);
    delete[] x;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    MmxCalcMean();
    MmxCalcMeanTimed();
    return 0;
}

Listing 6-15. MmxCalcMean_.asm

        .model flat,c
        .code
        extern NMIN:dword, NMAX:dword       ;min and max array sizes
 
; extern "C" bool MmxCalcMean_(const Uint8* x, int n, Uint32* sum_x, double* 
↳ mean);
;
; Description:  This function calculates the sum and mean of an array
;               containing 8-bit unsigned integers.
;
; Returns       0 = invalid 'n'
;               1 = success
 
MmxCalcMean_ proc
        push ebp
        mov ebp,esp
        sub esp,8                       ;local storage for x87 transfer
 
; Verify n is valid
        xor eax,eax                     ;set error return code
        mov ecx,[ebp+12]
        cmp ecx,[NMIN]
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        jl Done                         ;jump if n < NMIN
        cmp ecx,[NMAX]
        jg Done                         ;jump if n > NMAX
        test ecx,0fh
        jnz Done                        ;jump if n % 16 != 0
        shr ecx,4                       ;number of 16-byte blocks
 
; Perform required initializations
        mov eax,[ebp+8]                 ;pointer to array 'x'
        pxor mm4,mm4
        pxor mm5,mm5                    ;mm5:mm4 = packed sum (4 dwords)
        pxor mm7,mm7                    ;mm7 = packed zero for promotions
 
; Load the next block of 16 array values
@@:     movq mm0,[eax]
        movq mm1,[eax+8]                    ;mm1:mm0 = 16 byte block
 
; Promote array values from bytes to words, then sum the words
        movq mm2,mm0
        movq mm3,mm1
        punpcklbw mm0,mm7                   ;mm0 = 4 words
        punpcklbw mm1,mm7                   ;mm1 = 4 words
        punpckhbw mm2,mm7                   ;mm2 = 4 words
        punpckhbw mm3,mm7                   ;mm3 = 4 words
        paddw mm0,mm2
        paddw mm1,mm3
        paddw mm0,mm1                       ;mm0 = pack sums (4 words)
 
; Promote packed sums to dwords, then update dword sums in mm5:mm4
        movq mm1,mm0
        punpcklwd mm0,mm7               ;mm0 = packed sums (2 dwords)
        punpckhwd mm1,mm7               ;mm1 = packed sums (2 dwords)
        paddd mm4,mm0
        paddd mm5,mm1                   ;mm5:mm4 = packed sums (4 dwords)
 
        add eax,16                          ;eax = next 16 byte block
        dec ecx
        jnz @B                              ;repeat loop if not done
 
; Compute final sum_x
        paddd mm5,mm4                       ;mm5 = packed sums (2 dwords)
        pshufw mm6,mm5,00001110b            ;mm6[31:0] = mm5[63:32]
        paddd mm6,mm5                       ;mm6[31:0] = final sum_x
        movd eax,mm6                        ;eax = sum_x
        emms                                ;clear mmx state
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; Compute mean value
        mov dword ptr [ebp-8],eax           ;save sum_x as 64-bit value
        mov dword ptr [ebp-4],0
        fild qword ptr [ebp-8]              ;load sum_x
        fild dword ptr [ebp+12]             ;load n
        fdivp                               ;mean = sum_x / n
 
        mov edx,[ebp+20]
        fstp real8 ptr [edx]                ;save mean
        mov edx,[ebp+16]
        mov [edx],eax                       ;save sum_x
        mov eax,1                           ;set return code
 
Done:   mov esp,ebp
        pop ebp
        ret
MmxCalcMean_ endp
        end
 

The general structure of sample program MmxCalcMean is similar to MmxCalcMinMax. 
Near the top of MmxCalcMean.cpp (Listing 6-14) is a function named MmxCalcMeanCpp that 
computes the mean of an 8-bit unsigned integer array. The maximum size of the array 
is restricted in order to prevent an arithmetic overflow during summation of the array 
elements. The function MmxCalcMean creates a test array, invokes MmxCalcMeanCpp and 
MmxCalcMean_, and displays the results. Sample program MmxCalcMean also includes a 
benchmark function named MmxCalcMeanTimed (source code not shown) that measures 
the execution time of both MmxCalcMeanCpp and MmxCalcMean_.

Like its C++ counterpart, the x86 assembly language function MmxCalcMean_  
(Listing 6-15) starts by validating the size of the array. Next, the function sets up a 
processing loop that sums the array’s elements. During computation of the array sum, the 
processing loop performs two separate size promotions in order to avoid an arithmetic 
overflow. This process is illustrated in Figure 6-5. First, the 16 array elements are 
promoted from unsigned bytes to unsigned words using the punpcklbw and punpckhbw 
instructions (note that the source operand MM7 contains all zeros). These values are 
then summed using a series of paddw instructions. Following execution of the final paddw 
instruction, register MM0 contains four intermediate sums. The sum values are then 
promoted to doublewords and added to the packed doubleword sums in register pair 
MM5:MM4.
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Subsequent to the completion of the summation loop, the final value of sum_x is 
calculated using two paddd instructions and a pshufw instruction, which reduces the 
four intermediate doubleword sums to the required final value. This value is then copied 
into register EAX. Before the final mean value can be computed, an emms instruction is 
executed in order to return the x87 FPU to normal operation. The value of sum_x is then 
saved to a local memory location on the stack as a 64-bit signed integer (recall that the 
x87 FPU does not support unsigned integer operands or data transfers to or from an x86 
general-purpose registers). The final mean value is then calculated using the x87 FPU.

Output 6-5 shows the results of the sample program MmxCalcMean. Table 6-2 
also contains a summary of the benchmark times that were obtained for the C++ and 
assembly language versions of the array mean calculating algorithm.

15 100 200 210 804015035 240 170 65 50 190230120220

Byte Values

movq mm3,mm1 movq mm2,mm0

50 120 230 190210 150 40 80

15 100 200 35 240 170 65 220

Byte to Word Promotions

225 250 240 115

Packed Word Additions

515 540

Word to Doubleword Promotions

punpcklbw mm0,mm7punpcklbw mm1,mm7

punpckhbw mm3,mm7 punpckhbw mm2,mm7

535 525

punpckhwd mm1,mm7 punpcklwd mm0,mm7

Note: mm7 = 0x0000000000000000

290 290 295 410

paddw mm1,mm3 paddw mm0,mm2

515 540 535 525

paddw mm0,mm1

515 540 535 525

movq mm1,mm0

Figure 6-5. Processing loop array element size promotions

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ MMX teChnology prograMMing

178

Output 6-5. Sample Program MmxCalcMean

Results for MmxCalcMean()
rc1: 1 sum_x1: 1069226624 mean_x1:   127.461746
rc2: 1 sum_x2: 1069226624 mean_x2:   127.461746
 
Results for MmxCalcMeanTimed()
sum1: 1069226624  mean1:   127.461746
sum2: 1069226624  mean2:   127.461746
 
Benchmark times saved to file __MmxCalcMeanTimed.csv

Table 6-2. Mean Execution Times (in Microseconds) for MmxCalcMean Functions

CPU MmxCalcMeanCpp (C++) MmxCalcMean_ (x86-32 MMX)

Intel Core i7-4770 1750 843

Intel Core i7-4600U 2074 995

Intel Core i3-2310M 4184 1704

Summary
In this chapter, you learned how to perform some basic SIMD arithmetic and shift 
operations using the MMX instruction set. Additionally, you analyzed a couple of sample 
programs that demonstrated the performance benefits of using MMX technology to 
implement realistic integer array processing algorithms. These latter sample programs 
also elucidated proper use of several essential MMX instructions, including pshufw, 
punpcklbw, punpckhbw, punpcklwd, and punpckhwd.

In order to fully exploit the benefits of a SIMD architecture, software developers must 
frequently “forget” long-established coding strategies, techniques, and constructs. The 
design and implementation of effective SIMD algorithms usually requires an extreme 
shift in programming mindset; it’s not uncommon for even experienced software 
developers to undergo a little retooling of their programming ethos when learning to use 
a SIMD architecture. In the next four chapters, you’ll continue your exploration of the 
x86’s SIMD platforms by examining the computational resources of x86-SSE.
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Chapter 7

Streaming SIMD Extensions

In Chapters 5 and 6, you examined MMX technology, which was the x86 platform’s first 
SIMD enhancement. In this chapter, you'll explore the successor to MMX technology. 
X86 Streaming SIMD Extensions (x86-SSE) refers to a collection of architectural 
enhancements that have steadily advanced the SIMD computing capabilities of the x86 
platform. X86-SSE adds new registers and instructions that facilitate SIMD computations 
using packed floating-point data types. It also extends the integer SIMD processing 
capabilities of MMX technology.

Chapter 7 begins with a brief overview of x86-SSE, including its various versions and 
capabilities. This is followed by a detailed examination of the execution environment that 
focuses on x86-SSE’s registers, supported data types, and control-status mechanisms. 
You’ll also examine some fundamental x86-SSE processing techniques that will help 
elucidate the platform’s computational capabilities. The final section of this chapter 
presents an overview of the x86-SSE instruction set.

The explanations and discussions in this chapter focus on using x86-SSE in an 
x86-32 execution environment. If you’re interested in developing x86-64 based x86-SSE 
programs, you’ll need to thoroughly understand the material presented in this chapter, 
along with the content of Chapter 19.

X86-SSE Overview
The original Streaming SIMD Extension, called SSE, was introduced with the Pentium III 
processor. SSE adds new registers and instructions that facilitate SIMD operations using 
packed single-precision floating-point values. SSE also includes new instructions for scalar 
single-precision floating-point arithmetic. The Pentium IV processor included an upgrade 
to SSE called SSE2, which broadens SSE’s single-precision floating-point capabilities 
to include packed and scalar double-precision floating-point arithmetic. SSE2 also 
incorporates additional SIMD processing resources for packed integer data types. Later in 
this chapter, you’ll learn more about the packed and scalar data types of SSE and SSE2.

Since the introduction of SSE2, there have been a number of constructive x86-SSE 
enhancements. SSE3 and SSSE3 (Supplemental SSE3) incorporate new instructions that 
perform SIMD horizontal (or adjacent element) arithmetic using packed floating-point 
and packed integer operands, respectively. These extensions also include a number 
of data transfer instructions that offer either improved performance or additional 
programming flexibility. SSE4.1 augments the x86 platform with new instructions that 
perform advanced SIMD operations, including dot products and data blending. It also 
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adds new data insertion, data extraction, and floating-point rounding instructions. The 
final x86-SSE enhancement, called SSE4.2, adds SIMD text string processing capabilities 
to the x86 platform. Table 7-1 summarizes the evolution of x86-SSE, which uses the 
acronyms SPFP and DPFP to signify single-precision floating-point and double-precision 
floating-point, respectively.

Table 7-1. Evolution of X86-SSE

Release Data Types Key Features and Enhancements

SSE Packed SPFP
Scalar SPFP

SIMD arithmetic using packed SPFP
Scalar arithmetic using SPFP
Cache control instructions
Memory ordering instructions

SSE2 Packed SPFP, DPFP
Scalar SPFP, DPFP
Packed integers

SIMD arithmetic using packed SPFP and DPFP
Scalar arithmetic using SPFP and DPFP
SIMD processing using packed integers
Additional cache control instructions

SSE3 Same as SSE2 Horizontal addition and subtraction using packed 
SPFP and DPFP operands
Enhanced data transfer instructions

SSSE3 Same as SSE2 Horizontal addition and subtraction using packed 
integer operands
Enhanced SIMD processing instructions using 
packed integers

SSE4.1 Same as SSE2 SPFP and DPFP dot products
SPFP and DPFP blend instructions
XMM register insertion and extraction instructions
Packed integer blend instructions

SSE4.2 Same as SSE2
Packed text strings

Packed text strings instructions
CRC acceleration instructions

Additional details regarding the key features and enhancements shown in Table 7-1 are 
provided throughout this chapter and in Chapters 8 through 11. As a reminder, this book 
uses the term x86-SSE to describe generic or common capabilities of the x86 platform’s 
Streaming SIMD Extensions. When discussing aspects or instructions of a specific SIMD 
enhancement, the acronyms shown in Table 7-1 are used.

X86-SSE Execution Environment
In this section, you’ll examine the execution environment of x86-SSE starting with a 
description of its register set. This is followed by a discussion of the various packed and 
scalar data types that x86-SSE supports. You’ll also take a look at the x86-SSE control-status 
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register, which can be used to configure x86-SSE processing options and detect error 
conditions. The content of this section assumes that you have a basic understanding of 
MMX technology, which was described in Chapter 5.

X86-SSE Register Set
X86-SSE adds eight 128-bit wide registers to the x86-32 platform, as illustrated in 
Figure 7-1. These registers are named XMM0-XMM7 and can be employed to carry 
out computations using scalar and packed single-precision floating-point values. On 
processors that support SSE2, the XMM registers are capable of performing calculations 
using scalar and packed double-precision floating-point values. SSE2 also supports use of 
the XMM registers to perform a variety of SIMD operations using packed integer values.

XMM 0

XMM 1

XMM 5

XMM 6

XMM 7

XMM 4

XMM 3

XMM 2

0127

Figure 7-1. X86-SSE register set in x86-32 mode

Unlike the MMX registers, the XMM registers are not aliased with the x87 FPU 
registers. This means that a program can switch between x86-SSE and x87-FPU 
instructions without having to save or restore any state information. The XMM registers are 
also directly addressable; a stack-based architecture is not used. Data can be transferred 
between an XMM register and memory using any of the addressing modes described in 
Chapter 1. The XMM registers cannot be used to address operands in memory.

X86-SSE Data Types
X86-SSE supports a variety of packed and scalar data types, as illustrated in Figure 7-2. A 
128-bit wide XMM register or memory location can accommodate four single-precision 
or two double-precision floating-point values. When working with packed integer values, 
a 128-bit wide operand is capable of holding sixteen byte, eight word, four doubleword, or 
two quadword items. The low-order doubleword and quadword of an XMM register also 
can be used to perform computations using scalar single-precision and double-precision 
floating-point values, respectively.
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When referencing an operand in memory, nearly all x86-SSE instructions that use 
128-bit wide operands require such operands to be properly aligned. This means that 
the address of a packed integer or packed floating-point value in memory must be evenly 
divisible by 16. The only exception to this rule applies to a small set of x86-SSE move 
instructions that are intended to perform data transfers between an XMM register and 
an improperly aligned packed data value. Otherwise, the processor will generate an 
exception if an x86-SSE instruction attempts to access a misaligned operand in memory. 
It is important to recognize that this memory alignment requirement applies to x86-SSE 
data values that are defined in both C++ and assembly language functions. In Chapters 9  
and 10, you’ll learn a couple of techniques that can be used to specify the alignment of 
data values defined in a Visual C++ function.

Scalar single-precision and double-precision floating-point values can be copied 
from an unaligned memory location to an XMM register or vice versa. However, like all 
other x86 multi-byte values, proper alignment of scalar floating-point values is strongly 
recommended in order to avoid potential performance penalties. Finally, unlike the  
x87-FPU, x86-SSE does not support packed BCD data types.

112 0

Memory Address or XMM Register Byte Position

64127

Bit Position

Packed
Bytes

Packed
Words

Packed
Doublewords

Packed
Quadwords

N+14 N+12 N+10 N+8 N+6 N+4 N+2 N

96 80 48 32 16

Scalar
SPFP

Scalar
DPFP

Packed
SPFP

Packed
DPFP

Figure 7-2. X86-SSE supported data types
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X86-SSE Control-Status Register
The x86-SSE execution environment includes a 32-bit control-status register. This register, 
named MXCSR, contains a series of control flags that enable a program to specify options 
for floating-point calculations and exceptions. It also includes a set of status flags that 
can be tested to detect x86-SSE floating-point error conditions. Figure 7-3 shows the 
organization of the bits in MXCSR; Table 7-2 describes the purpose of each bit field.

FZ PM UMRC IM DAZ PE UE OE ZE DE IE

0123456789101112131415

Reserved

1631

DMZMOM

Figure 7-3. X86-SSE MXCSR control and status register

Table 7-2. X86-SSE MXCSR Control and Status Register Fields

Bit Field Name Description

IE Invalid operation 
flag

X86-SSE floating-point invalid operation error flag.

DE Denormal flag X86-SSE floating-point denormal error flag.

ZE Divide-by-zero flag X86-SSE floating-point division-by-zero error flag.

OE Overflow flag X86-SSE floating-point overflow error flag.

UE Underflow flag X86-SSE floating-point underflow error flag.

PE Precision flag X86-SSE floating-point precision error flag.

DAZ Denormals are zeros When set to 1, forcibly converts a denormal source operand 
to zero prior to its use in a calculation.

IM Invalid operation 
mask

X86-SSE floating-point invalid operation error  
exception mask.

DM Denormal mask X86-SSE floating-point denormal error exception mask.

ZM Divide-by-zero-mask X86-SSE floating-point divide-by-zero error exception mask.

OM Overflow mask X86-SSE floating-point overflow error exception mask.

UM Underflow mask X86-SSE floating-point underflow error exception mask.

PM Precision mask X86-SSE floating-point precision error exception mask.

(continued)
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An application program can modify any of the MXCSR’s control flags or status bits 
to accommodate its specific SIMD floating-point processing requirements. Any attempt 
to write a non-zero value to a reserved bit position will cause the processor to generate 
an exception. The MXCSR’s status flags are not automatically cleared by the processor 
following the occurrence of an error condition; they must be manually reset. The control 
flags and status bits of the MXCSR register can be modified using either the ldmxcsr (Load 
MXCSR Register) or fxrstor (Restore x87 FPU, MMX, XMM, and MXCSR State) instruction.

The processor sets an MXCSR error flag to 1 following the occurrence of an error 
condition. Setting the MXCSR.DAZ control flag to 1 can improve the performance of 
algorithms where the rounding of a denormal value to zero is acceptable. Similarly, the 
MXCSR.FZ control flag can be used to accelerate computations where floating-point 
underflows are common. The downside of using either of these control flag options is 
non-compliance with the IEEE 754 floating-point standard.

X86-SSE Processing Techniques
An x86 processor uses several different techniques to process x86-SSE data types. Most 
x86-SSE SIMD operations involving packed integer operands are carried out using the 
same calculations as MMX technology, except that the calculations are performed using 
128-bit instead of 64-bit wide operands. For example, Figure 7-4 illustrates x86-SSE  
SIMD addition using packed byte, word, and doubleword unsigned integers. X86-SSE  
also supports SIMD arithmetic using packed single-precision and double-precision 
floating-point data types. Figures 7-5 and 7-6 show some common x86-SSE SIMD 
arithmetic operations using packed single-precision and double-precision  
floating-point values.

Bit Field Name Description

RC Rounding control Specifies the method for rounding X86-SSE floating-point 
results. Valid options include round to nearest (00b), round 
down toward –∞ (01b), round up toward +∞ (10b), and 
round toward zero or truncate (11b).

FZ Flush to zero When set to 1, forces a zero result if the underflow exception 
is masked and an X86-SSE floating-point underflow error 
occurs.

Table 7-2. (continued)
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90 10 220 170 12060 15 105 25 130 50 75 20095 225 85

80 240 15 20 10575 50 80 60 15 60 70 30125 10 95

170 250 235 190 225135 65 185 85 145 110 145 230220 235 180

+

X86-SSE Packed Unsigned Byte Addition

1700 2300 6000 500 22000 15500 12000 18000

9000 80 300 900 8500 16750 32700 25000+

X86-SSE Packed Unsigned Word Addition

10700 2380 6300 1400 30500 32250 44700 43000

120000 275000 65000 420500

800000 1800 300750 70500+

920000 276800 365750 491000

X86-SSE Packed Unsigned Doubleword Addition

src

des

des

src

des

des

src

des

des

Figure 7-4. X86-SSE addition using packed unsigned integer values

12.0 37.25 100.875 0.125

88.0 98.5 -50.625 -0.375+

100.0 135.75 50.25 -0.25

X86-SSE Packed Single-Precision Floating-Point Addition

1.5 100.25 1000.0 -50.125

-200.25 3.625 250.875 -40.75

-300.375 363.40625 250875 .0 2042 .59375

X86-SSE Packed Single-Precision Floating-Point Multiplication

× 

src

des

des

src

des

des

Figure 7-5. X86-SSE arithmetic using packed single-precision floating-point values
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X86-SSE also can be used to perform scalar floating-point arithmetic using  
single-precision or double-precision values. Figure 7-7 illustrates a couple of examples. 
Note that when performing x86-SSE scalar floating-point arithmetic, only the low-order 
element of the destination operand is modified; the high-order elements are not affected. 
The scalar floating-point capabilities of x86-SSE are often used as a modern alternative 
to the x87 FPU. The reasons for this technological shift include faster performance and 
directly-addressable registers. Having directly-addressable registers enables high-level 
language compilers to generate machine code that is more efficient. It also simplifies 
considerably the coding of x86 assembly language functions that need to perform scalar 
floating-point arithmetic.

12.0 100.875

188.75 25.5-

-176.75 75.375

X86-SSE Packed Double-Precision Floating-Point Subtraction

X86-SSE Packed Double-Precision Floating-Point Division

÷ 

300.0 255.5

6.25 0.625

48.0 408.8

src

des

des

src

des

des

Figure 7-6. X86-SSE arithmetic using packed double-precision floating-point values
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X86-SSE also supports horizontal arithmetic operations. A horizontal arithmetic 
operation carries out its computations using the adjacent elements of a packed data 
type. Figure 7-8 illustrates horizontal addition using single-precision floating-point and 
horizontal subtraction using double-precision floating-point operands. The x86-SSE 
instruction set also supports integer horizontal addition and subtraction using packed 
words and doublewords. Horizontal operations are frequently used to reduce a packed 
data operand that contains multiple intermediate values to a single result.

17.0 42.375

+

X86-SSE Scalar Single-Precision Floating-Point Addition

X86-SSE Scalar Double-Precision Floating-Point Multiplication

×  

300.0 642.75

6.25 -0.50

6.25 -321.375

56.125 12.625

5.5 200.875 3216.75 2000.0

src

des

5.5 200.875 3216.75 2012 .625 des

src

des

des

Figure 7-7. X86-SSE arithmetic using scalar floating-point values
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X86-SSE Instruction Set Overview
The following section presents a brief overview of the x86-SSE instruction set. It observes 
the same format used by other instruction set summaries in this book. The x86-SSE 
instruction set can be partitioned into the following functional groups:

Scalar floating-point data transfer•	

Scalar floating-point arithmetic•	

Scalar floating-point comparison•	

Scalar floating-point conversion•	

Packed floating-point data transfer•	

10.0 12.0

X86-SSE Single-Precision Floating-Point Horizontal Addition

X86-SSE Double-Precision Floating-Point Horizontal Subtraction

475.0 900.0

500.0 350.0

425.0 -150.0

300.0 5.0

32.0 500.0 -470.0 8.0

src

des

22.0 305.0 532.0 -462.0 des

src

des

des

-

-

++

+ +

Figure 7-8. X86-SSE horizontal addition and subtraction using single-precison and  
double-precision floating-point values

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7 ■ Streaming SimD extenSionS

189

Packed floating-point arithmetic•	

Packed floating-point comparison•	

Packed floating-point conversion•	

Packed floating-point shuffle and unpack•	

Packed floating-point insertion and extraction•	

Packed floating-point blend•	

Packed floating-point logical•	

Packed integer extensions•	

Packed integer data transfer•	

Packed integer arithmetic•	

Packed integer comparison•	

Packed integer conversion•	

Packed integer shuffle and unpack•	

Packed integer insertion and extraction•	

Packed integer blend•	

Packed integer shift•	

Text string processing•	

Non-temporal data transfer and cache control•	

Miscellaneous•	

Unless otherwise stated, an x86-SSE instruction can use either an XMM register 
or a memory location as a source operand. Packed 128-bit wide source operands 
located in memory must be aligned on a 16-byte boundary, except for instructions that 
explicitly support unaligned data transfers. Aside from the data transfer instructions, the 
destination operand of an x86-SSE instruction must be an XMM register.

A program can intermix x86-SSE and MMX instructions. This may be appropriate 
for code maintenance and migration scenarios. X86-SSE based programs that use the 
MMX instruction set are still required to use the emms instruction before using any x87 
FPU instructions. Intermixing of x86-SSE and MMX instructions is not recommended for 
new development.

The instruction descriptions use the acronyms SPFP and DPFP to denote single-
precision floating-point and double-precision floating-point, respectively. Most x86-SSE 
floating-point instruction mnemonics use two-letter codes to denote the operand type, 
including ps (Packed SPFP), pd (Packed DPFP), ss (Scalar SPFP), and sd (Scalar DPFP). 
Additional information regarding x86-SSE instruction use, including valid operands and 
potential exceptions, is available in the reference manuals published by AMD and Intel. 
A list of these manuals is included in Appendix C. The sample code of Chapters 8 through 
11 also contains elucidatory comments regarding specific x86-SSE instructions.
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Scalar Floating-Point Data Transfer
The scalar floating-point data transfer group contains instructions that are used to 
transfer scalar SPFP and DPFP values between an XMM register and a memory location, 
as shown in Table 7-3.

Table 7-3. X86-SSE Scalar Floating-Point Data Transfer Instructions

Mnemonic Description Version

movss
movsd

Copies a scalar floating-point value between two 
XMM registers or between a memory location and an 
XMM register.

SSE/SSE2

Scalar Floating-Point Arithmetic
The scalar floating-point arithmetic group contains instructions that perform basic 
arithmetic using scalar operands. These instructions can be used instead of or in 
conjunction with the x87 FPU. For all instructions, the source operand can be a memory 
location or an XMM register. The destination operand must be an XMM register. Table 7-4 
summarizes the scalar floating-point arithmetic instructions.

Table 7-4. X86-SSE Scalar Floating-Point Arithmetic Instructions

Mnemonic Description Version

addss
addsd

Performs a scalar addition using the specified operands. SSE/SSE2

subss
subsd

Performs a scalar subtraction using the specified operands. 
The source operand specifies the subtrahend and the 
destination operand specifies the minuend.

SSE/SSE2

mulss
mulsd

Performs a scalar multiplication using the specified 
operands.

SSE/SSE2

divss
divsd

Performs a scalar division using the specified operands. The 
source specifies the divisor and the destination operand 
specifies the dividend.

SSE/SSE2

sqrtss
sqrtsd

Computes the square root of the specified source operand. SSE/SSE2

maxss
maxsd

Compares the source and destination operands and saves the 
larger value in the destination operand.

SSE/SSE2

(continued)
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Mnemonic Description Version

minss
minsd

Compares the source and destination operands and saves the 
smaller value in the destination operand.

SSE/SSE2

roundss
roundsd

Rounds a scalar floating-point value using the rounding 
method specified by an immediate operand.

SSE4.1

rcpss Computes an approximate reciprocal of the specified 
operand.

SSE

rsqrtss Computes an approximate reciprocal square root of the 
specified operand.

SSE

Table 7-4. (continued)

Scalar Floating-Point Comparison
The scalar floating-point comparison group contains instructions that perform compare 
operations between two scalar floating-point values. These instructions are summarized 
in Table 7-5.

Table 7-5. X86-SSE Scalar Floating-Point Comparison Instructions

Mnemonic Description Version

cmpss
cmpsd

Compares two scalar floating-point values. An immediate 
operand specifies the comparison operator. The results of 
the comparison are saved to the destination operand (all 1s 
signifies true; all 0s signifies false).

SSE/SSE2

comiss
comisd

Performs an ordered compare of two scalar floating-point 
values and reports the results using EFLAGS.ZF, EFLAGS.PF, 
and EFLAGS.CF.

SSE/SSE2

ucomiss
ucomisd

Performs an unordered compare of two scalar floating-
point values and reports the results using EFLAGS.ZF, 
EFLAGS.PF, and EFLAGS.CF.

SSE/SSE2

Scalar Floating-Point Conversion
The floating-point scalar conversion group contains instructions that are used to convert 
scalar SPFP values to DPFP and vice versa. Conversions to and from doubleword integers 
are also supported. Table 7-6 summarizes the scalar floating-point conversion instructions.
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Packed Floating-Point Data Transfer
The packed floating-point data transfer group includes instructions that copy packed 
floating-point data values between a memory location and an XMM register or two XMM 
registers. Table 7-7 summarizes the packed floating-point data transfer instructions.

Table 7-6. X86-SSE Scalar Floating-Point Conversion Instructions

Mnemonic Description Version

cvtsi2ss
cvtsi2sd

Converts a signed-doubleword integer to a floating-point 
value. The source operand can be a memory location or a 
general-purpose register. The destination operand must 
be an XMM register.

SSE/SSE2

cvtss2si
cvtsd2si

Converts a floating-point value to a signed doubleword 
integer. The source operand can be a memory location 
or an XMM register. The destination operand must be a 
general-purpose register.

SSE/SSE2

cvttss2si
cvttsd2si

Converts a floating-point value to a doubleword integer 
using truncation. The source operand can be a memory 
location or an XMM register. The destination operand 
must be a general-purpose register.

SSE/SSE2

cvtss2sd Converts a SPFP value to a DPFP value. The source 
operand can be a memory location or an XMM register. 
The destination operand must be an XMM register.

SSE2

cvtsd2ss Converts a DPFP value to a SPFP value. The source 
operand can be a memory location or an XMM register. 
The destination operand must be an XMM register.

SSE2

Table 7-7. X86-SSE Packed Floating-Point Data Transfer Instructions

Mnemonic Description Version

movaps
movapd

Copies a packed SPFP/DPFP value between a memory 
location and an XMM register or two XMM registers.

SSE/SSE2

movups
movupd

Copies a packed SPFP/DPFP value between an unaligned 
memory location and an XMM register or two XMM registers.

SSE/SSE2

(continued)
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Mnemonic Description Version

movlps
movlpd

Copies the low-order quadword of a packed SPFP/DPFP 
value from memory to an XMM register or vice versa. If the 
destination is an XMM register, the high-order quadword is 
not modified.

SSE/SSE2

movhps
movhpd

Copies the high-order quadword of a packed SPFP/DPFP 
value from memory to an XMM register or vice versa. If the 
destination is an XMM register, the low-order quadword is not 
modified.

SSE/SSE2

movlhps Copies the low-order quadword of a packed SPFP source 
operand to the high-order quadword of the destination 
operand. Both operands must be XMM registers.

SSE

movhlps Copies the high-order quadword of a packed SPFP source 
operand to the low-order quadword of the destination 
operand. Both operands must be XMM registers.

SSE

movsldup Copies the low-order SPFP value of each quadword in the 
source operand to the same position in the destination 
operand. The low-order SPFP value of each destination 
operand quadword is then duplicated in the high-order  
32 bits.

SSE3

movshdup Copies the high-order SPFP value of each quadword in 
the source operand to the same position in the destination 
operand. The high-order SPFP value of each destination 
operand quadword is then duplicated in the low-order 32 bits.

SSE3

movddup Copies the low-order DPFP value of the source operand to 
the low-order and high-order quadwords of the destination 
operand.

SSE3

movmskps
movmskpd

Extracts the sign bits from each packed SPFP/DPFP data 
element in the source operand and stores them in the low-
order bits of a general-purpose register. The high-order bits 
are set to zero.

SSE/SSE2

Table 7-7. (continued)

Packed Floating-Point Arithmetic
The packed floating-point arithmetic group includes instructions that perform basic 
arithmetic operations using packed single-precision and double-precision floating-point 
operands. Table 7-8 outlines these instructions.
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Table 7-8. X86-SSE Packed Floating-Point Arithmetic Instructions

Mnemonic Description Version

addps
addpd

Performs a packed floating-point addition 
using the data elements of the source and 
destination operands.

SSE/SSE2

subps
subpd

Performs a packed floating-point subtraction 
using the data elements of the source and 
destination operands. The source operand 
contains the subtrahends and the destination 
operands contain the minuends.

SSE/SSE2

mulps
mulpd

Performs a packed floating-point 
multiplication using the data elements of the 
source and destination operands.

SSE/SSE2

divps
divpd

Performs a packed floating-point division 
using the data elements of the source and 
destination operands. The source operand 
contains the divisors and the destination 
operand contains the dividends.

SSE/SSE2

sqrtps
sqrtpd

Computes the square roots of the packed 
floating-point data elements in the source 
operand.

SSE/SSE2

maxps
maxpd

Compares the floating-point data elements 
of the source and destination operands and 
saves the larger values in the destination 
operand.

SSE/SSE2

minps
minpd

Compares the floating-point data elements 
of the source and destination operands and 
saves the smaller values in the destination 
operand.

SSE/SSE2

rcpps Computes an approximate reciprocal of each 
floating-point element.

SSE/SSE2

rsqrtps Computes an approximate reciprocal square 
root of each floating-point element.

SSE

addsubps
addsubpd

Adds the odd-numbered floating-point 
elements and subtracts the even-numbered 
floating-point elements.

SSE3

(continued)
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Packed Floating-Point Comparison
The packed floating-point comparison group includes instructions that perform compare 
operations using the data elements of a packed floating-point data value. Table 7-9 lists 
the instructions in this group.

Mnemonic Description Version

dpps
dppd

Performs a conditional multiplication of the 
packed floating-point elements followed by an 
addition. This instruction is used to calculate 
dot products.

SSE4.1

roundps
roundpd

Rounds the specified packed floating-point 
data elements using the rounding mode that 
is specified by an immediate operand.

SSE4.1

haddps
haddpd

Adds adjacent floating-point data elements 
contained in the source and destination 
operands.

SSE3

hsubps
hsubpd

Subtracts adjacent floating-point data 
elements contained in the source and 
destination operands.

SSE3

Table 7-8. (continued)

Table 7-9. X86-SSE Packed Floating-Point Comparison Instructions

Mnemonic Description Version

cmpps
cmppd

Compares the floating-point data elements of the source 
and destination operands using the specified immediate 
comparison operator. The results of the comparison are 
saved to the destination operand (all 1s signifies true; all 0s 
signifies false).

SSE/SSE2

Packed Floating-Point Conversion
The packed floating-point conversion group contains instructions that convert the data 
elements of a packed floating-point operand from one data type to another. Table 7-10 
reviews the instructions in this group.
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Table 7-10. X86-SSE Packed Floating-Point Conversion Instructions

Mnemonic Description Version

cvtpi2ps
cvtpi2pd

Converts two packed signed doubleword integers to two 
packed floating-point values. The source operand can be 
a memory location or an MMX register. The destination 
operand must be an XMM register.

SSE/SSE2

cvtps2pi
cvtpd2pi

Converts two packed floating-point values to two packed 
signed doubleword integers. The source operand can be 
a memory location or an XMM register. The destination 
operand must be an MMX register.

SSE/SSE2

cvttps2pi
cvttpd2pi

Converts two packed floating-point values to two signed 
doubleword integers using truncation. The source operand 
can be a memory location or an XMM register. The 
destination operand must be an MMX register.

SSE/SSE2

cvtdq2ps Converts four packed signed doubleword integers to four 
packed single-precision floating-point values.

SSE2

cvtdq2pd Converts two packed signed doubleword integers to two 
packed double-precision floating-point values.

SSE2

cvtps2dq Converts four packed single-precision floating-point values 
to four packed signed-doubleword integers.

SSE2

cvttps2dq Converts four packed single-precision floating-point values 
to four packed signed doubleword integers using truncation 
as the rounding mode.

SSE2

cvtpd2dq Converts two packed double-precision floating-point values 
to two packed signed doubleword integers.

SSE2

cvttpd2pq Converts two packed double-precision floating-point values 
to two packed signed doubleword integers using truncation 
as the rounding mode.

SSE2

cvtps2pd Converts two packed single-precision floating-point values 
to two packed double-precision floating-point values.

SSE2

cvtpd2ps Converts two packed double-precision floating-point values 
to two packed single-precision floating-point values.

SSE2

Packed Floating-Point Shuffle and Unpack
The packed floating-point shuffle and unpack group contains instructions that are used 
to reorder the data elements of a packed floating-point operand. These instructions are 
shown in Table 7-11.
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Table 7-11. X86-SSE Packed Floating-Point Shuffle and Unpack Instructions

Mnemonic Description Version

shufps
shufpd

Moves the specified elements in both the source and 
destination operands to the destination operand. An 8-bit 
immediate operand specifies which elements to move.

SSE/SSE2

unpcklps
unpcklpd

Unpacks and interleaves the low-order elements of the 
source and destination operands and places the result in 
the destination operand.

SSE/SSE2

unpckhps
unpckhpd

Unpacks and interleaves the high-order elements of the 
source and destination operands and places the result in 
the destination operand.

SSE/SSE2

Packed Floating-Point Insertion and Extraction
The floating-point insertion and extraction group contains instructions that insert or 
extract elements from packed single-precision floating-point operands. Table 7-12 
summarizes these instructions.

Table 7-12. X86-SSE Packed Floating-Point Insertion and Extraction Instructions

Mnemonic Description Version

insertps Copies a SPFP value from the source operand and inserts it into 
the destination operand. The source operand can be a memory 
location or an XMM register. The destination operand must be 
an XMM register. The destination operand element is specified 
by an immediate operand.

SSE4.1

extractps Extracts a SPFP element from the source operand and copies it to 
the destination operand. The source operand must be an XMM 
register. The destination operand can be a memory location or a 
general-purpose register. The location of the element to extract is 
specified by an immediate operand.

SSE4.1

Packed Floating-Point Blend
The packed floating-point blend group contains instructions that are used to 
conditionally copy and merge packed floating-point data values. Table 7-13 presents an 
overview of these instructions.
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Packed Floating-Point Logical
The packed floating-point logical group contains instructions that perform bitwise logical 
operations using packed floating-point operands. Table 7-14 describes these instructions.

Table 7-13. X86-SSE Packed Floating-Point Blend Instructions

Mnemonic Description Version

blendps
blendpd

Conditionally copies floating-point elements from the source 
and destination operands to the destination operand. An 
immediate operand designates the specific elements to copy.

SSE4.1

blendvps
blendvpd

Conditionally copies floating-point elements from the source 
and destination operands to the destination operand. A mask 
value in the XMM0 register designates the specific to copy.

SSE4.1

Table 7-14. X86-SSE Packed Floating-Point Logical Instructions

Mnemonic Description Version

andps
andpd

Performs a bitwise logical AND of the data elements in the 
specified packed floating-point operands.

SSE/SSE2

andnps
andnpd

Performs a bitwise logical NOT of the destination operand 
following by a bitwise logical AND of the source and 
destination operands.

SSE/SSE2

orps
orpd

Performs a bitwise logical inclusive OR of the data elements 
in the specified packed floating-point operands.

SSE/SSE2

xorps
xorpd

Performs a bitwise logical exclusive OR of the data elements 
in the specified packed floating-point operands.

SSE/SSE2

Packed Integer Extensions
SSE2 extends the packed-integer capabilities of the x86-platform in two ways. First, all of 
the packed integer instructions defined by MMX technology (except pshufw) can use the 
XMM registers and 128-bit wide memory locations as operands. Second, SSE2 and the 
subsequent x86 SIMD extensions include a number of new packed integer instructions 
that require at least one operand to be an XMM register or a 128-bit memory location. 
These instructions are reviewed in the following sections.
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Packed Integer Data Transfer
The packed integer data transfer group contains instructions that are used to move packed 
integer values between an XMM register and memory location or two XMM registers. This 
group also contains instructions that perform data moves between an XMM register and 
an MMX register. Table 7-15 lists the packed integer data transfer group instructions.

Table 7-15. X86-SSE Packed Integer Data Transfer Instructions

Mnemonic Description Version

movdqa Copies an aligned double quadword from memory to an 
XMM register or vice versa. This instruction also can be used 
to perform XMM register-to-register transfers.

SSE2

movdqu Copies an unaligned double quadword from memory to an 
XMM register or vice versa.

SSE2

movq2dq Copies the contents of an MMX register to the lower 
quadword of an XMM register. This instruction causes a 
transition of the x87 FPU to MMX mode.

SSE2

movdq2q Copies the lower quadword of an XMM register to an MMX 
register. This instruction causes a transition of the x87 FPU to 
MMX mode.

SSE2

Packed Integer Arithmetic
The packed integer arithmetic group contains instructions that perform arithmetic 
operations using packed integer operands. Table 7-16 describes these instructions.

Table 7-16. X86-SSE Packed Integer Arithmetic Instructions

Mnemonic Description Version

pmulld Performs a packed signed multiplication between the source 
and destination operands. The low-order doubleword of each 
product is saved in the destination operand.

SSE4.1

pmuldq Multiplies the first and third signed doublewords of source 
and destination operands. The quadword products are saved 
to the destination operand.

SSE4.1

pminub
pminuw
pminud

Compares two packed unsigned integer values and saves the 
smaller data element of each comparison to the destination 
operand. The source operand can be a memory location or a 
register. The destination operand must be a register.

SSE2
(pminub)
SSE4.1

(continued)
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Mnemonic Description Version

pminsb
pminsw
pminsd

Compares two packed signed integer values and saves the 
smaller data element of each comparison to the destination 
operand. The source operand can be a memory location or 
register. The destination operand must be a register.

SSE2
(pminsw)
SSE4.1

pmaxub
pmaxuw
pmaxud

Compares two packed unsigned integer values and saves the 
larger data element of each comparison to the destination 
operand. The source operand can be a memory location or 
register. The destination operand must be a register.

SSE2
(pmaxub)
SSE4.1

pmaxsb
pmaxsw
pmaxsd

Compares two packed signed integer values and saves the 
larger data element of each comparison to the destination 
operand. The source operand can be a memory location or 
register. The destination operand must be a register.

SSE2
(pmaxsw)
SSE4.1

Table 7-16. (continued)

Packed Integer Comparison
The packed integer comparison group contains instructions that perform compare 
operations between two packed integer values. Table 7-17 summarizes the packed integer 
comparison instructions.

Table 7-17. X86-SSE Packed Integer Comparison Instructions

Mnemonic Description Version

pcmpeqb
pcmpeqw
pcmpeqd
pcmpeqq

Compares two packed integer values element-by-element for 
equality. If the source and destination data elements are equal, 
the corresponding data element in the destination operand is 
set to all 1s; otherwise, the destination operand data element is 
set to all 0s.

SSE2
SSE4.1
(pcmpeqq)

pcmpgtb
pcmpgtw
pcmpgtd
pcmpgtq

Compares two packed signed-integer values element-by-
element for greater magnitude. If the destination element 
is larger, the corresponding data element is set to all 1s; 
otherwise, the destination operand data element is set to all 0s.

SSE2
SSE4.2
(pcmpgtq)
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Packed Integer Conversion
The packed integer data conversion group contains instructions that convert packed 
integers from one type to another type. This group includes both sign-extend and zero-
extend instruction variants. Table 7-18 lists the packed integer conversion instructions.

Table 7-18. X86-SSE Packed Integer Conversion Instructions

Mnemonic Description Version

packuswb
packusdw

Converts n packed unsigned integers in both the source 
and destination operands to 2 * n packed unsigned 
integers using unsigned saturation.

SSE2
(packuswb)
SSE4.1
(packusdw)

pmovsxbw
pmovsxbd
pmovsxbq

Sign extends the low-order signed-byte integers of the 
source operand and copies these values to the destination 
operand.

SSE4.1

pmovsxwd
pmovsxwq

Sign extends the low-order signed-word integers of the 
source operand and copies these values to the destination 
operand.

SSE4.1

pmovsxdq Sign extends the two low-order signed doublewords 
integers of the source operand and copies the resultant 
quadword values to the destination operand.

SSE4.1

pmovzxbw
pmovzxbd
pmovzxbq

Zero extends the low-order unsigned-integer bytes of the 
source operand and copies these values to the destination 
operand.

SSE4.1

pmovzxwd
pmovzxwq

Zero extends the low-order unsigned-integer words of the 
source operand and copies these values to the destination 
operand.

SSE4.1

pmovzxdq Zero extends the two low-order unsigned integer 
doublewords of the source operand and copies the 
resultant quadword values to the destination operand.

SSE4.1
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Packed Integer Shuffle and Unpack
The packed integer shuffle and unpack group contains instructions that are used to  
re-order or unpack the elements of a packed integer data value. For all instructions in this 
group, the source operand can be an XMM register or a memory location; the destination 
operand must be an XMM register. Table 7-19 outlines the packed integer shuffle and 
unpack instructions.

Table 7-19. X86-SSE Packed Integer Shuffle and Unpack Instructions

Mnemonic Description Version

pshufd Copies the doublewords of the source operand to the 
destination operand using an ordering scheme specified by 
an immediate operand.

SSE2

pshuflw Copies the low-order words of the source operand to the 
low-order words of the destination operand using an 
ordering scheme specified by an immediate operand.

SSE2

pshufhw Copies the high-order words of the source operand to the 
high-order words of the destination operand using an 
ordering scheme specified by an immediate operand.

SSE2

punpcklqdq Copies the low-order quadword of the source operand 
to the high-order quadword of the destination operand. 
The low-order quadword of the destination operand is 
unmodified.

SSE2

punpckhqdq Copies the high-order quadword of the source operand to 
the high-order quadword of the destination operand. It also 
copies the high-order quadword of the destination to the 
low-order quadword of the destination.

SSE2

Packed Integer Insertion and Extraction
The packed integer insertion and extraction group contains byte, word, and doubleword 
insertion and extraction instructions. These instructions can be used to copy the  
low-order value of a general-purpose register into an XMM register location or vice versa. 
Table 7-20 lists the packed integer insertion and extraction instructions.
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Packed Integer Blend
The packed integer blend group contains instructions that are used to conditionally copy 
and merge packed integer data values. Table 7-21 outlines these instructions.

Table 7-20. X86-SSE Packed Integer Insertion and Extraction Instructions

Mnemonic Description Version

pinsrb
pinsrw
pinsrd

Copies an integer from the source operand to the destination 
operand. The position of the integer in the destination 
operand is specified using an immediate operand. The source 
operand can be a memory location or general-purpose 
register. The destination operand must be an XMM register.

SSE2
(pinsrw)
SSE4.1

pextrb
pextrw
pextrd

Copies an integer from the source operand to the destination 
operand. The position of the integer in the source operand is 
specified using an immediate operand. The source operand 
must be an XMM register. The destination operand must be a 
memory location or a general-purpose register.

SSE2
(pextrw)
SSE4.1

Table 7-21. X86-SSE Packed Integer Blend Instructions

Mnemonic Description Version

pblendw Conditionally copies word values from the source and destination 
operands to the destination operand. An immediate mask 
value designates the specific word values that are copied.

SSE4.1

pblendvb Conditionally copies byte values from the source and destination 
operands to the destination operand. A mask value in register 
XMM0 designates the specific byte values that are copied.

SSE4.1

Packed Integer Shift
The packed integer shift group contains instructions that perform byte-oriented logical 
shifts using values in an XMM register. Table 7-22 describes these instructions.

Table 7-22. X86-SSE Packed Integer Shift Instructions

Mnemonic Description Version

pslldq Performs a byte-oriented left shift of a packed integer value 
in an XMM register, filling the low-order bytes with zeros. 
The shift count is specified as an immediate operand.

SSE2

psrldq Performs a byte-oriented right shift of a packed integer 
value in an XMM register, filling the high-order bytes with 
zeros. The shift count is specified as an immediate operand.

SSE2
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Text String Processing
The text string processing group contains instructions that are used to perform string 
operations using explicit or implicit length strings. An explicit-length text string is a 
text string whose length is known in advance, while the length of an implicit-length 
text string must be determined by searching for an end-of-string character. The text 
string processing instructions can be used to perform SIMD text string compares and 
length calculations. They also can be used to accelerate text string search and replace 
algorithms. Table 7-23 summarizes the text string processing instructions.

Table 7-23. X86-SSE Text String Processing Instructions

Mnemonic Description Version

pcmpestri Performs a packed compare of two explicit-length text strings; 
returns the index result in ECX.

SSE4.2

pcmpestrm Performs a packed compare of two explicit-length text strings; 
returns the mask result in XMM0.

SSE4.2

pcmpistri Performs a packed compare of two implicit-length text 
strings; returns the index result in ECX.

SSE4.2

pcmpistrm Performs a packed compare of two implicit-length text 
strings; returns the mask result in XMM0.

SSE4.2

Non-Temporal Data Transfer and Cache Control
The non-temporal data transfer and cache control group contains instructions that 
perform non-temporal memory stores, cache pre-fetching and flushing, and memory load 
and store fencing. A non-temporal memory store notifies the processor that the data value 
can be written directly to memory without being stored in a processor memory cache. 
This can improve cache efficiency in certain applications (such as with audio and video 
encoding) since cache clutter is eliminated. The cache pre-fetching instructions notify the 
processor to load a cache data line into a specific cache level for future use. A memory-
fence instruction serializes any pending memory load or store operations, which can 
improve the performance of multi-processor-based producer-consumer algorithms.

It should be noted that non-temporal memory stores, cache pre-fetching operations, 
and memory-fencing transactions are simply hints to the processor; the processor may 
choose to exploit or ignore any provided hints. Also note that the use of any hints does not 
affect the program execution state of the processor including its registers and status flags. 
It is neither necessary nor possible to include additional code that ascertains whether 
or not the processor accepted a hint. Table 7-24 lists the non-temporal data transfer and 
cache control instructions.
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Miscellaneous
The miscellaneous instruction group contains instructions that can be used to manipulate 
x86-SSE control-status register MXCSR. It also contains several algorithm-specific 
acceleration instructions. These instructions are shown in Table 7-25.

Table 7-24. X86-SSE Non-Temporal Data Transfer and Cache Control Instructions

Mnemonic Description Version

movnti Copies the contents of a general-purpose register to memory 
using a non-temporal hint.

SSE2

movntdq Copies the contents of an XMM register to memory using a 
non-temporal hint.

SSE2

maskmovdqu Conditionally copies the bytes of an XMM register to memory 
using a non-temporal hint. A mask value, which is contained 
in a second XMM register, specifies the bytes that will be 
copied. Register EDI points to the destination memory 
location.

SSE2

movntdqa Loads a memory-based double quadword into an XMM 
register using a non-temporal hint.

SSE4.1

sfence Serializes all previously issued memory-store operations. SSE

lfence Serializes all previously issued memory-load operations. SSE2

mfence Serializes all previously issued memory-load and memory-
store operations.

SSE2

prefetchH Provides a hint to the processor that data can be loaded from 
main memory into cache memory. The source operand 
specifies the main memory location. The H is a placeholder 
that specifies the cache-hint type. Valid options are T0 
(temporal data; all cache levels), T1 (temporal data;  
level 1 cache), T2 (temporal data; level 2 cache), or NTA  
(non-temporal data aligned; all cache levels).

SSE

clflush Flushes and invalidates a cache line. The source operand 
specifies the memory location of the cache line.

SSE2
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Summary
In this chapter, you examined the fundamentals of x86-SSE, including its register set, 
supported packed and scalar data types, and basic processing techniques. You also 
reviewed the x86-SSE instruction set in order to gain a better understanding of x86-SSE’s 
computational potential. The breadth of x86-SSE’s execution environment, data types, 
and instruction set make it an extremely suitable programming tool for a wide variety of 
algorithmic problems. In the next four chapters, you’ll put your knowledge of X86-SSE to 
good use by examining a variety of sample programs that expound on material presented 
in this chapter.

Table 7-25. X86-SSE Miscellaneous Instructions

Mnemonic Description Version

ldmxcsr Loads the x86-SSE MXCSR control-status register from memory. SSE

stmxcsr Saves the x86-SSE MXCSR control-status register to memory. SSE

fxsave Saves the current x87 FPU, MMX technology, XMM, and MXCSR 
state to memory. This instruction is intended to support operating 
system task switching but also can be used by application 
programs.

SSE

fxrstor Loads an x87 FPU, MMX technology, XMM, and MXCSR state 
from memory. This instruction is intended to support operating 
system task switching but also can be used by application 
programs.

SSE

crc32 Accelerates the calculation of a 32-bit cyclic redundancy check 
(CRC). The source operand can be a memory location or general-
purpose register. The destination operand must be a 32-bit 
general-purpose register and contain the previous intermediate 
result. The polynomial used to calculate the CRC is 0x11EDC6F41.

SSE4.2

popcnt Counts the number of bits that are set to 1 in the source operand. 
The source operand can be a memory location or a general-
purpose register. The destination operand must be a general-
purpose register.

SSE4.2
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Chapter 8

X86-SSE programming – 
Scalar Floating-Point

In the previous chapter, you explored the computational resources of x86-SSE, including its 
data types and instruction set. In this chapter, you learn how to perform scalar floating-point 
arithmetic using the x86-SSE instruction set. The content of this chapter is divided into two 
sections. The first section illustrates basic x86-SSE scalar floating-point operations, including 
simple arithmetic, compares, and type conversions. The second section contains a couple of 
sample programs that demonstrate advanced x86-SSE scalar floating-point techniques.

All of the sample programs in this chapter require a processor that supports SSE2, which 
includes virtually all AMD and Intel processors marketed since 2003. The documentation 
header of each assembly language source code listing in this and subsequent x86-SSE 
programming chapters specifies the minimum version that’s required to run the program. 
Appendix C also lists a couple of freely available utilities that can be used to determine the 
version of x86-SSE that’s supported by the processor in your PC and its operating system.

Scalar Floating-Point Fundamentals
The scalar floating-point capabilities of x86-SSE provides programmers with a modern 
alternative to the x87 FPU. The ability to directly access the XMM registers means that 
performing elementary scalar floating-point operations such as addition, subtraction, 
multiplication, and division is very similar to performing integer arithmetic using the general-
purpose registers. Each instruction requires both a source and destination operand and the 
arithmetic operation that gets performed is des = des ★ src, where ★ represents the specific 
operation. Not having to worry about the state of a register stack improves program readability 
significantly, which is exemplified by the sample programs of this section.

Scalar Floating-Point Arithmetic
The first x86-SSE scalar floating-point sample program that you examine is called 
SseScalarFloatingPointArithmetic. This program describes how to use the x86-SSE scalar 
floating-point instruction set to perform basic arithmetic operations using single-precision 
and double-precision values. The C++ and x86-32 assembly language source code are shown 
in Listings 8-1 and 8-2.
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Listing 8-1. SseScalarFloatingPointArithmetic.cpp

#include "stdafx.h"
#define _USE_MATH_DEFINES
#include <math.h>
 
extern "C" void SseSfpArithmeticFloat_(float a, float b, float c[8]);
extern "C" void SseSfpArithmeticDouble_(double a, double b, double c[8]);
 
void SseSpfArithmeticFloat(void)
{
    float a = 2.5f;
    float b = -7.625f;
    float c[8];
 
    SseSfpArithmeticFloat_(a, b, c);
    printf("\nResults for SseSfpArithmeticFloat_()\n");
    printf("  a:             %.6f\n", a);
    printf("  b:             %.6f\n", b);
    printf("  add:           %.6f\n", c[0]);
    printf("  sub:           %.6f\n", c[1]);
    printf("  mul:           %.6f\n", c[2]);
    printf("  div:           %.6f\n", c[3]);
    printf("  min:           %.6f\n", c[4]);
    printf("  max:           %.6f\n", c[5]);
    printf("  fabs(b):       %.6f\n", c[6]);
    printf("  sqrt(fabs(b)): %.6f\n", c[7]);
}
 
void SseSpfArithmeticDouble(void)
{
    double a = M_PI;
    double b = M_E;
    double c[8];
 
    SseSfpArithmeticDouble_(a, b, c);
    printf("\nResults for SseSfpArithmeticDouble_()\n");
    printf("  a:             %.14f\n", a);
    printf("  b:             %.14f\n", b);
    printf("  add:           %.14f\n", c[0]);
    printf("  sub:           %.14f\n", c[1]);
    printf("  mul:           %.14f\n", c[2]);
    printf("  div:           %.14f\n", c[3]);
    printf("  min:           %.14f\n", c[4]);
    printf("  max:           %.14f\n", c[5]);
    printf("  fabs(b):       %.14f\n", c[6]);
    printf("  sqrt(fabs(b)): %.14f\n", c[7]);
}
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int _tmain(int argc, _TCHAR* argv[])
{
    SseSpfArithmeticFloat();
    SseSpfArithmeticDouble();
} 

Listing 8-2. SseScalarFloatingPointArithmetic_.asm

        .model flat,c
        .const
 
; Mask values for floating-point absolute values
                align 16
AbsMaskFloat    dword 7fffffffh,0ffffffffh,0ffffffffh,0ffffffffh
AbsMaskDouble   qword 7fffffffffffffffh,0ffffffffffffffffh
        .code
 
; extern "C" void SseSfpArithmeticFloat_(float a, float b, float c[8])
;
; Description:  The following function demonstrates basic arithmetic
;               operations using scalar single-precision floating-point
;               values.
;
; Requires      SSE
 
SseSfpArithmeticFloat_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        movss xmm0,real4 ptr [ebp+8]        ;xmm0 = a
        movss xmm1,real4 ptr [ebp+12]       ;xmm1 = b
        mov eax,[ebp+16]                    ;eax = c
 
; Perform single-precision arithmetic operations
        movss xmm2,xmm0
        addss xmm2,xmm1                     ;xmm2 = a + b
        movss real4 ptr [eax],xmm2
 
        movss xmm3,xmm0
        subss xmm3,xmm1                     ;xmm3 = a - b
        movss real4 ptr [eax+4],xmm3
 
        movss xmm4,xmm0
        mulss xmm4,xmm1                     ;xmm4 = a * b
        movss real4 ptr [eax+8],xmm4
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        movss xmm5,xmm0
        divss xmm5,xmm1                     ;xmm5 = a / b
        movss real4 ptr [eax+12],xmm5
 
        movss xmm6,xmm0
        minss xmm6,xmm1                     ;xmm6 = min(a, b)
        movss real4 ptr [eax+16],xmm6
 
        movss xmm7,xmm0
        maxss xmm7,xmm1                     ;xmm7 = max(a, b)
        movss real4 ptr [eax+20],xmm7
 
        andps xmm1,[AbsMaskFloat]           ;xmm1 = fabs(b)
        movss real4 ptr [eax+24],xmm1
 
        sqrtss xmm0,xmm1                    ;xmm0 = sqrt(fabs(b))
        movss real4 ptr [eax+28],xmm0
 
        pop ebp
        ret
SseSfpArithmeticFloat_ endp
 
; extern "C" void SseSfpArithmeticDouble_(double a, double b, double c[8])
;
; Description:  The following function demonstrates basic arithmetic
;               operations using scalar double-precision floating-point
;               values.
;
; Requires      SSE2
 
SseSfpArithmeticDouble_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        movsd xmm0,real8 ptr [ebp+8]        ;xmm0 = a
        movsd xmm1,real8 ptr [ebp+16]       ;xmm1 = b
        mov eax,[ebp+24]                    ;eax = c
 
; Perform double-precision arithmetic operations
        movsd xmm2,xmm0
        addsd xmm2,xmm1                     ;xmm2 = a + b
        movsd real8 ptr [eax],xmm2
 
        movsd xmm3,xmm0
        subsd xmm3,xmm1                     ;xmm3 = a - b
        movsd real8 ptr [eax+8],xmm3
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        movsd xmm4,xmm0
        mulsd xmm4,xmm1                     ;xmm4 = a * b
        movsd real8 ptr [eax+16],xmm4
 
        movsd xmm5,xmm0
        divsd xmm5,xmm1                     ;xmm5 = a / b
        movsd real8 ptr [eax+24],xmm5
 
        movsd xmm6,xmm0
        minsd xmm6,xmm1                     ;xmm6 = min(a, b)
        movsd real8 ptr [eax+32],xmm6
 
        movsd xmm7,xmm0
        maxsd xmm7,xmm1                     ;xmm7 = max(a, b)
        movsd real8 ptr [eax+40],xmm7
 
        andpd xmm1,[AbsMaskDouble]          ;xmm1 = fabs(b)
        movsd real8 ptr [eax+48],xmm1
 
        sqrtsd xmm0,xmm1                    ;xmm0 = sqrt(fabs(b))
        movsd real8 ptr [eax+56],xmm0
 
        pop ebp
        ret
SseSfpArithmeticDouble_ endp
        end
 

The C++ code for sample program SseScalarFloatingPointArithmetic  
(see Listing 8-1) contains a function called SseSfpArithmeticFloat, which initializes a 
couple of single-precision floating-point variables and invokes an x86 assembly language 
function to perform a variety of basic floating-point arithmetic operations. The assembly 
language function saves the result of each arithmetic operation to a caller-supplied array. 
These results are then printed. A similar function named SseSfpArithmeticDouble 
performs the same operations using double-precision values.

The assembly language file SseScalarFloatingPointArithmetic_.asm (see Listing 8-2) 
includes a function named SseSfpArithmeticFloat_, which illustrates use the x86-SSE 
scalar single-precision floating-point instructions. Following the function prolog, a movss 
xmm0,real4 ptr [ebp+8] instruction (Move Scalar Single-Precision Floating-Point Value) 
copies the argument value a to the low-order 32 bits of register XMM0. The high-order 
bits of XMM0 are not modified by this instruction. The function uses another movss 
instruction to copy argument value b into XMM1. It then loads the results array pointer 
into register EAX.

The code block following register initialization exemplifies use of the scalar  
single-precision floating-point arithmetic instructions, which should be self-explanatory. 
Unlike the x87-FPU, there is no x86-SSE scalar floating-point absolute value (fabs) 
instruction. A scalar single-precision floating-point absolute value can easily be calculated 
using the andps (Bitwise Logical AND of Packed Single-Precision Floating-Point Values) 
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instruction to clear the sign bit. All of the x86-SSE scalar single-precision floating-point 
arithmetic instructions modify only the low-order 32 bits of the destination XMM register; 
the high-order bits are not modified. (Note that the andps instruction is a packed instruction, 
which means that the high-order bits of the destination operand are modified.) The result of 
each arithmetic instruction is saved to the caller-provided array using a movss instruction. 
Proper alignment of a movss operand in memory is not required but recommended for 
performance reasons.

The x86-SSE scalar double-precision floating-point arithmetic instructions are shown 
in the function SseSfpArithmeticDouble_. The logical organization of this function mirrors 
the single-precision version. When using scalar double-precision floating-point values in an 
XMM register, only the low-order 64-bits are used; the high-order 64-bits are not modified. 
Proper alignment of scalar double-precision floating-point operands in memory is also not 
required but strongly recommended. The results of the SseScalarFloatingPointArithmetic 
sample program are shown in Output 8-1.

Output 8-1. Sample Program SseScalarFloatingPointArithmetic

Results for SseSfpArithmeticFloat_()
  a:             2.500000
  b:             -7.625000
  add:           -5.125000
  sub:           10.125000
  mul:           -19.062500
  div:           -0.327869
  min:           -7.625000
  max:           2.500000
  fabs(b):       7.625000
  sqrt(fabs(b)): 2.761340
 
Results for SseSfpArithmeticDouble_()
  a:             3.14159265358979
  b:             2.71828182845905
  add:           5.85987448204884
  sub:           0.42331082513075
  mul:           8.53973422267357
  div:           1.15572734979092
  min:           2.71828182845905
  max:           3.14159265358979
  fabs(b):       2.71828182845905
  sqrt(fabs(b)): 1.64872127070013

Scalar Floating-Point Compare
The next x86-SSE scalar floating-point sample program that you’ll study is called 
SseScalarFloatingPointCompare. This program shows you how to use the x86-SSE scalar 
floating-point compare instructions comiss and comisd. The C++ and x86 assembly language 
source code for SseScalarFloatingPointCompare is shown in Listings 8-3 and 8-4, 
respectively.
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Listing 8-3. SseScalarFloatingPointCompare.cpp

#include "stdafx.h"
#include <limits>
 
using namespace std;
 
extern "C" void SseSfpCompareFloat_(float a, float b, bool* results);
extern "C" void SseSfpCompareDouble_(double a, double b, bool* results);
 
const int m = 7;
const char* OpStrings[m] = {"UO", "LT", "LE", "EQ", "NE", "GT", "GE"};
 
void SseSfpCompareFloat()
{
    const int n = 4;
    float a[n] = {120.0, 250.0, 300.0, 42.0};
    float b[n] = {130.0, 240.0, 300.0, 0.0};
 
    // Set NAN test value
    b[n - 1] = numeric_limits<float>::quiet_NaN();
 
    printf("Results for SseSfpCompareFloat()\n");
    for (int i = 0; i < n; i++)
    {
        bool results[m];
 
        SseSfpCompareFloat_(a[i], b[i], results);
        printf("a: %8f b: %8f\n", a[i], b[i]);
 
        for (int j = 0; j < m; j++)
            printf("  %s=%d", OpStrings[j], results[j]);
        printf("\n");
    }
}
 
void SseSfpCompareDouble(void)
{
    const int n = 4;
    double a[n] = {120.0, 250.0, 300.0, 42.0};
    double b[n] = {130.0, 240.0, 300.0, 0.0};
 
    // Set NAN test value
    b[n - 1] = numeric_limits<double>::quiet_NaN();
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    printf("\nResults for SseSfpCompareDouble()\n");
    for (int i = 0; i < n; i++)
    {
        bool results[m];
 
        SseSfpCompareDouble_(a[i], b[i], results);
        printf("a: %8lf b: %8lf\n", a[i], b[i]);
 
        for (int j = 0; j < m; j++)
            printf("  %s=%d", OpStrings[j], results[j]);
        printf("\n");
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    SseSfpCompareFloat();
    SseSfpCompareDouble();
    return 0;
}
 

Listing 8-4. SseScalarFloatingPointCompare_.asm

        .model flat,c
        .code
 
; extern "C" void SseSfpCompareFloat_(float a, float b, bool* results);
;
; Description:  The following function demonstrates use of the comiss
;               instruction.
;
; Requires  SSE
 
SseSfpCompareFloat_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        movss xmm0,real4 ptr [ebp+8]        ;xmm0 = a
        movss xmm1,real4 ptr [ebp+12]       ;xmm1 = b
        mov edx,[ebp+16]                    ;edx = results array
 
; Set result flags based on compare status
        comiss xmm0,xmm1
        setp byte ptr [edx]                 ;EFLAGS.PF = 1 if unordered
        jnp @F
        xor al,al
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        mov byte ptr [edx+1],al             ;Use default result values
        mov byte ptr [edx+2],al
        mov byte ptr [edx+3],al
        mov byte ptr [edx+4],al
        mov byte ptr [edx+5],al
        mov byte ptr [edx+6],al
        jmp Done
 
@@:     setb byte ptr [edx+1]               ;set byte if a < b
        setbe byte ptr [edx+2]              ;set byte if a <= b
        sete byte ptr [edx+3]               ;set byte if a == b
        setne byte ptr [edx+4]              ;set byte if a != b
        seta byte ptr [edx+5]               ;set byte if a > b
        setae byte ptr [edx+6]              ;set byte if a >= b
 
Done:   pop ebp
        ret
SseSfpCompareFloat_ endp
 
; extern "C" void SseSfpCompareDouble_(double a, double b, bool* results);
;
; Description:  The following function demonstrates use of the comisd
;               instruction.
;
; Requires      SSE2
 
SseSfpCompareDouble_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        movsd xmm0,real8 ptr [ebp+8]        ;xmm0 = a
        movsd xmm1,real8 ptr [ebp+16]       ;xmm1 = b
        mov edx,[ebp+24]                    ;edx = results array
 
; Set result flags based on compare status
        comisd xmm0,xmm1
        setp byte ptr [edx]                 ;EFLAGS.PF = 1 if unordered
        jnp @F
        xor al,al
        mov byte ptr [edx+1],al             ;Use default result values
        mov byte ptr [edx+2],al
        mov byte ptr [edx+3],al
        mov byte ptr [edx+4],al
        mov byte ptr [edx+5],al
        mov byte ptr [edx+6],al
        jmp Done
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@@:     setb byte ptr [edx+1]               ;set byte if a < b
        setbe byte ptr [edx+2]              ;set byte if a <= b
        sete byte ptr [edx+3]               ;set byte if a == b
        setne byte ptr [edx+4]              ;set byte if a != b
        seta byte ptr [edx+5]               ;set byte if a > b
        setae byte ptr [edx+6]              ;set byte if a >= b
 
Done:   pop ebp
        ret
SseSfpCompareDouble_ endp
        end
 

The logical organization of SseScalarFloatingPointCompare.cpp (see Listing 8-2) 
is similar to the previous sample program. It also contains two functions that initialize 
test cases for scalar single-precision and double-precision floating-point values. Note 
that each test array pair includes a NaN value in order to verify proper handling of an 
unordered compare. The C++ code also contains statements that display the results of 
each test case.

The assembly language code in SseScalarFloatingPointCompare_.asm  
(see Listing 8-4) includes separate single-precision and double-precision functions. 
Following its prolog, function SseSfpCompareFloat_ uses a movss instruction to load 
argument values a and b into registers XMM0 and XMM1, respectively. It then loads a 
pointer to the results array into register EDX. The comiss xmm0,xmm1 (Compare Scalar 
Ordered Single-Precision Floating-Point Values and Set EFLAGS) instruction compares 
the scalar single-precision floating-point values in registers XMM0 and XMM1. This 
instruction sets status bits in the EFLAGS register to report its results as outlined in 
Table 8-1. Note that the condition codes shown in this table are the same as the ones used 
by the x87 FPU f(u)comi(p) instructions, which were discussed in Chapter 4.

Table 8-1. EFLAG Results for comiss and comisd Instructions

Relational Operator Condition Code  
(for jcc or setcc)

EFLAGS Test

XMM0 < XMM1 b CF == 1

XMM0 <= XMM1 be CF == 1 || ZF == 1

XMM0 == XMM1 z ZF == 1

XMM0 != XMM1 nz ZF == 0

XMM0 > XMM1 a CF == 0 && ZF == 0

XMM0 >= XMM1 ae CF == 0
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The SseSfpCompareFloat_ function uses a series of setcc instructions to decode 
and save the results of the compare operation. Note that if register XMM0 or XMM1 
contains an unordered floating-point value, the status bit EFLAGS.PF is set and the 
function will assign each Boolean flag in the results array to false. It is also possible to 
use a conditional jump instruction following a comiss or comisd instruction. The function 
SseSfpCompareDouble_ is virtually identical to SseSfpCompareFloat_ except for the use 
of movsd instead of movss, comisd instead of comiss, and stack offsets that are appropriate 
for scalar double-precision floating-point values. Output 8-2 shows the results of the 
SseScalarFloatingPointCompare sample program.

Output 8-2. Sample Program SseScalarFloatingPointCompare

Results for SseSfpCompareFloat()
a: 120.000000 b: 130.000000
  UO=0  LT=1  LE=1  EQ=0  NE=1  GT=0  GE=0
a: 250.000000 b: 240.000000
  UO=0  LT=0  LE=0  EQ=0  NE=1  GT=1  GE=1
a: 300.000000 b: 300.000000
  UO=0  LT=0  LE=1  EQ=1  NE=0  GT=0  GE=1
a: 42.000000 b: 1.#QNAN0
  UO=1  LT=0  LE=0  EQ=0  NE=0  GT=0  GE=0
 
Results for SseSfpCompareDouble()
a: 120.000000 b: 130.000000
  UO=0  LT=1  LE=1  EQ=0  NE=1  GT=0  GE=0
a: 250.000000 b: 240.000000
  UO=0  LT=0  LE=0  EQ=0  NE=1  GT=1  GE=1
a: 300.000000 b: 300.000000
  UO=0  LT=0  LE=1  EQ=1  NE=0  GT=0  GE=1
a: 42.000000 b: 1.#QNAN0
  UO=1  LT=0  LE=0  EQ=0  NE=0  GT=0  GE=0

Scalar Floating-Point Conversions
X86-SSE includes a number of instructions that perform conversions between 
different data types. For example, a common operation in many C++ programs is 
to convert a floating-point value to an integer or vice versa. The sample program 
SseScalarFloatingPointConversions demonstrates how to use the x86-SSE conversion 
instructions to perform this type of operation. It also illustrates how to modify the rounding 
control field of the MXCSR register in order to change the x86-SSE floating-point rounding 
mode. Listings 8-5 and 8-6 contain the C++ and x86-32 assembly language source code, 
respectively, for the SseScalarFloatingPointConversions sample program.
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Listing 8-5. SseScalarFloatingPointConversions.cpp

#include "stdafx.h"
#define _USE_MATH_DEFINES
#include <math.h>
#include "MiscDefs.h"
 
// Simple union for data exchange
union XmmScalar
{
    float r32;
    double r64;
    Uint32 i32;
    Uint64 i64;
};
 
// The order of values below must match the jump table
// that's defined in SseScalarFloatingPointConversions_.asm.
enum CvtOp : unsigned int
{
    Cvtsi2ss,       // Int32 to float
    Cvtss2si,       // float to Int32
    Cvtsi2sd,       // Int32 to double
    Cvtsd2si,       // double to Int32
    Cvtss2sd,       // float to double
    Cvtsd2ss,       // double to float
};
 
// Enumerated type for x86-SSE rounding mode
enum SseRm : unsigned int
{
    Nearest, Down, Up, Truncate
};
 
extern "C" Uint32 SseGetMxcsr_(void);
extern "C" Uint32 SseSetMxcsr_(Uint32 mxcsr);
 
extern "C" SseRm SseGetMxcsrRoundingMode_(void);
extern "C" void SseSetMxcsrRoundingMode_(SseRm rm);
extern "C" bool SseSfpConversion_(XmmScalar* a, XmmScalar* b, CvtOp cvt_op);
 
const SseRm SseRmVals[] = {SseRm::Nearest, SseRm::Down, SseRm::Up,
SseRm::Truncate};
const char* SseRmStrings[] = {"Nearest", "Down", "Up", "Truncate"};
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void SseSfpConversions(void)
{
    XmmScalar src1, src2;
    XmmScalar des1, des2;
    const int num_rm = sizeof(SseRmVals) / sizeof (SseRm);
    Uint32 mxcsr_save = SseGetMxcsr_();
 
    src1.r32 = (float)M_PI;
    src2.r64 = -M_E;
 
    for (int i = 0; i < num_rm; i++)
    {
        SseRm rm1 = SseRmVals[i];
        SseRm rm2;
 
        SseSetMxcsrRoundingMode_(rm1);
        rm2 = SseGetMxcsrRoundingMode_();
         
        if (rm2 != rm1)
        {
            printf("  SSE rounding mode change failed)\n");
            printf("  rm1: %d  rm2: %d\n", rm1, rm2);
        }
        else
        {
            printf("X86-SSE rounding mode = %s\n", SseRmStrings[rm2]);
 
            SseSfpConversion_(&des1, &src1, CvtOp::Cvtss2si);
            printf("  cvtss2si: %12lf --> %6d\n", src1.r32, des1.i32);
 
            SseSfpConversion_(&des2, &src2, CvtOp::Cvtsd2si);
            printf("  cvtsd2si: %12lf --> %6d\n", src2.r64, des2.i32);
        }
    }
 
    SseSetMxcsr_(mxcsr_save);
}
int _tmain(int argc, _TCHAR* argv[])
{
    SseSfpConversions();
    return 0;
}
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Listing 8-6. SseScalarFloatingPointConversions_.asm

        .model flat,c
        .code
 
; extern "C" bool SseSfpConversion_(XmmScalar* des, const XmmScalar* src,
CvtOp cvt_op)
;
; Description:  The following function demonstrates use of the x86-SSE
;               scalar floating-point conversion instructions.
;
; Requires:     SSE2
 
SseSfpConversion_ proc
        push ebp
        mov ebp,esp
 
; Load argument values and make sure cvt_op is valid
        mov eax,[ebp+16]                    ;cvt_op
        mov ecx,[ebp+12]                    ;ptr to src
        mov edx,[ebp+8]                     ;ptr to des
        cmp eax,CvtOpTableCount
        jae BadCvtOp                        ;jump if cvt_op is invalid
        jmp [CvtOpTable+eax*4]              ;jump to specified conversion
 
SseCvtsi2ss:
        mov eax,[ecx]                       ;load integer value
        cvtsi2ss xmm0,eax                   ;convert to float
        movss real4 ptr [edx],xmm0          ;save result
        mov eax,1
        pop ebp
        ret
 
SseCvtss2si:
        movss xmm0,real4 ptr [ecx]          ;load float value
        cvtss2si eax,xmm0                   ;convert to integer
        mov [edx],eax                       ;save result
        mov eax,1
        pop ebp
        ret
 
SseCvtsi2sd:
        mov eax,[ecx]                       ;load integer value
        cvtsi2sd xmm0,eax                   ;convert to double
        movsd real8 ptr [edx],xmm0          ;save result
        mov eax,1
        pop ebp
        ret
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SseCvtsd2si:
        movsd xmm0,real8 ptr [ecx]          ;load double value
        cvtsd2si eax,xmm0                   ;convert to integer
        mov [edx],eax                       ;save result
        mov eax,1
        pop ebp
        ret
 
SseCvtss2sd:
        movss xmm0,real4 ptr [ecx]          ;load float value
        cvtss2sd xmm1,xmm0                  ;convert to double
        movsd real8 ptr [edx],xmm1          ;save result
        mov eax,1
        pop ebp
        ret
 
SseCvtsd2ss:
        movsd xmm0,real8 ptr [ecx]          ;load double value
        cvtsd2ss xmm1,xmm0                  ;convert to float
        movss real4 ptr [edx],xmm1          ;save result
        mov eax,1
        pop ebp
        ret
 
BadCvtOp:
        xor eax,eax                         ;set error return code
        pop ebp
        ret
 
; The order of values in following table must match the enum CvtOp
; that's defined in SseScalarFloatingPointConversions.cpp
            align 4
CvtOpTable  dword SseCvtsi2ss, SseCvtss2si
            dword SseCvtsi2sd, SseCvtsd2si
            dword SseCvtss2sd, SseCvtsd2ss
CvtOpTableCount equ ($ - CvtOpTable) / size dword
SseSfpConversion_ endp
 
; extern "C" Uint32 SseGetMxcsr_(void);
;
; Description:  The following function obtains the current contents of
;               the MXCSR register.
;
; Returns:      Contents of MXCSR
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SseGetMxcsr_ proc
        push ebp
        mov ebp,esp
        sub esp,4
 
        stmxcsr [ebp-4]                     ;save mxcsr register
        mov eax,[ebp-4]                     ;move to eax for return
 
        mov esp,ebp
        pop ebp
        ret
SseGetMxcsr_ endp
 
; extern "C" Uint32 SseSetMxcsr_(Uint32 mxcsr);
;
; Description:  The following function loads a new value into the
;               MXCSR register.
 
SseSetMxcsr_ proc
        push ebp
        mov ebp,esp
        sub esp,4
 
        mov eax,[ebp+8]                 ;eax = new mxcsr value
        and eax,0ffffh                  ;bits mxcsr[31:16] must be 0
        mov [ebp-4],eax
        ldmxcsr [ebp-4]                 ;load mxcsr register
 
        mov esp,ebp
        pop ebp
        ret
SseSetMxcsr_ endp
 
; extern "C" SseRm SseGetMxcsrRoundingMode_(void);
;
; Description:  The following function obtains the current x86-SSE
;               floating-point rounding mode from MXCSR.RC.
;
; Returns:      Current x86-SSE rounding mode.
 
MxcsrRcMask equ 9fffh                     ;bit pattern for MXCSR.RC
MxcsrRcShift equ 13                       ;shift count for MXCSR.RC
 
SseGetMxcsrRoundingMode_ proc
        push ebp
        mov ebp,esp
        sub esp,4
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        stmxcsr [ebp-4]                 ;save mxcsr register
        mov eax,[ebp-4]
        shr eax,MxcsrRcShift            ;eax[1:0] = MXCSR.RC bits
        and eax,3                       ;masked out unwanted bits
 
        mov esp,ebp
        pop ebp
        ret
SseGetMxcsrRoundingMode_ endp
 
;extern "C" void SseSetMxcsrRoundingMode_(SseRm rm);
;
; Description:  The following function updates the rounding mode
;               value in MXCSR.RC.
 
SseSetMxcsrRoundingMode_ proc
        push ebp
        mov ebp,esp
        sub esp,4
 
        mov ecx,[ebp+8]                     ;ecx = rm
        and ecx,3                           ;masked out unwanted bits
        shl ecx,MxcsrRcShift                ;ecx[14:13] = rm
 
        stmxcsr [ebp-4]                     ;save current MXCSR
        mov eax,[ebp-4]
        and eax,MxcsrRcMask                 ;masked out old MXCSR.RC bits
        or eax,ecx                          ;insert new MXCSR.RC bits
        mov [ebp-4],eax
        ldmxcsr [ebp-4]                     ;load updated MXCSR
 
        mov esp,ebp
        pop ebp
        ret
SseSetMxcsrRoundingMode_ endp
        end
 

Near the top of SseScalarFloatingPointConversions.cpp (see Listing 8-5) is a 
declaration for a C++ union named XmmScalar, which is used by the sample program for 
data exchange purposes. This is followed by two enumerations: one to select a floating-
point conversion type (CvtOp) and another to specify an x86-SSE floating-point rounding 
mode (SseRm). The C++ function SseSfpConversions initializes a couple of XmmScalar 
instances as test values and invokes an x86 assembly language function to perform 
floating-point to integer conversions using different rounding modes. The result of each 
conversion operation is displayed for verification and comparison purposes.
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The x86-SSE floating-point rounding mode is determined by the rounding control 
field (bits 14 and 13) of register MXCSR. The default rounding mode for Visual C++ 
programs is round to nearest. According to the Visual C++ calling convention, the default 
values in MXCSR[15:6] (i.e., MXCSR register bits 15 through 6) must be preserved across 
most function boundaries. The function SseSfpConversions fulfills this requirement 
by saving the contents of MXCSR prior to changing the x86-SSE rounding mode. It also 
restores the original contents of MXCSR before exiting.

The assembly language file SseScalarFloatingPointConversions_.asm  
(see Listing 8-6) contains the conversion and MXCSR control functions. The function 
SseSfpConversion_ performs floating-point conversions using the specified 
values and conversion operator. This function uses a jump table similar to what 
you’ve already seen in previous sample programs. The assembly language file 
SseScalarFloatingPointConversions_.asm also contains several MXCSR management 
methods. The functions SseGetMxcsr_ and SseSetMxcsr_ are employed to perform reads 
and writes of the MXCSR register. These functions use the stmxcsr (Store MXCSR Register 
State) and ldmxcsr (Load MXCSR Register) instructions, respectively. Both stmxcsr and 
ldmxcsr require their sole operand to be a doubleword value in memory. The functions 
SseGetMxcsrRoundingMode_ and SseSetMxcsrRoundingMode_ can be used to change the 
current x86-SSE floating-point rounding mode. These functions exercise the enumeration 
SseRm to save or select an x86-SSE floating-point rounding mode.

Conversions between two different numerical data types are not always possible. 
For example, the cvtss2si instruction is unable convert large floating-point values to 
signed doubleword integers. If a particular conversion is impossible and invalid operation 
exceptions (MXCSR.IM) are masked (the default for Visual C++), the processor sets MXCSR.
IE (Invalid Operation Error Flag) and the value 0x80000000 is copied to the destination 
operand. Output 8-3 contains the results of the SseScalarFloatingPointConversions 
sample program.

Output 8-3. Sample Program SseScalarFloatingPointConversions

X86-SSE rounding mode = Nearest
  cvtss2si:     3.141593 -->      3
  cvtsd2si:    -2.718282 -->     -3
X86-SSE rounding mode = Down
  cvtss2si:     3.141593 -->      3
  cvtsd2si:    -2.718282 -->     -3
X86-SSE rounding mode = Up
  cvtss2si:     3.141593 -->      4
  cvtsd2si:    -2.718282 -->     -2
X86-SSE rounding mode = Truncate
  cvtss2si:     3.141593 -->      3
  cvtsd2si:    -2.718282 -->     -2
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Advanced Scalar Floating-Point Programming
The sample programs in this section demonstrate how to use the x86-SSE scalar  
floating-point instruction set to perform advanced computations. The first sample 
program is a rehash of an earlier program that highlights key differences between the 
original x87 FPU and x86-SSE. In the second sample program, you learn how to exploit 
data structures and standard C++ library functions in an assembly language function that 
uses x86-SSE instructions.

Scalar Floating-Point Spheres
Now that you’re acquainted with the scalar floating-point capabilities of x86-SSE, it’s  
time to examine some code that performs practical calculations. The sample program 
that you study in this section is called SseScalarFloatingPointSpheres. This program 
contains an assembly language function that calculates the surface area and volume  
of a sphere using the scalar floating-point instructions of x86-SSE. You may recall that 
Chapter 4 included a sample program that calculated the surface area and volume of a 
sphere using the x87 FPU instruction set. The refactoring of the sphere area-volume code 
from x87 FPU to x86-SSE is carried out in order to emphasize how much easier the latter 
is to create. Listings 8-7 and 8-8 show the source code for the C++ and assembly language 
files SseScalarFloatingPointSpheres.cpp and ScalarFloatingPointSpheres_.asm, 
respectively.

Listing 8-7. SseScalarFloatingPointSpheres.cpp

#include "stdafx.h"
 
extern "C" bool SseSfpCalcSphereAreaVolume_(double r, double* sa, double* v);
 
int _tmain(int argc, _TCHAR* argv[])
{
    const double r[] = {-1.0, 0.0, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0};
    int num_r = sizeof(r) / sizeof(double);
 
    for (int i = 0; i < num_r; i++)
    {
        double sa, v;
        bool rc = SseSfpCalcSphereAreaVolume_(r[i], &sa, &v);
 
        printf("rc: %d  r: %8.2lf  sa: %10.4lf  vol: %10.4lf\n", rc, r[i], 
sa, v);
    }
 
    return 0;
}
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Listing 8-8. SseScalarFloatingPointSpheres_.asm

            .model flat,c
 
; Constants required to calculate sphere surface area and volume.
            .const
r8_pi       real8 3.14159265358979323846
r8_four     real8 4.0
r8_three    real8 3.0
r8_neg_one  real8 -1.0
            .code
 
; extern "C" bool SseSfpCalcSphereAreaVolume_(double r, double* sa, double* v);
;
; Description:  The following function calculates the surface area and
;               volume of a sphere.
;
; Returns:      0 = invalid radius
;               1 = success
;
; Requires:     SSE2
 
SseSfpCalcSphereAreaVolume_ proc
        push ebp
        mov ebp,esp
 
; Load arguments and make sure radius is valid
        movsd xmm0,real8 ptr [ebp+8]        ;xmm0 = r
        mov ecx,[ebp+16]                    ;ecx = sa
        mov edx,[ebp+20]                    ;edx = v
        xorpd xmm7,xmm7                     ;xmm7 = 0.0
        comisd xmm0,xmm7                    ;compare r against 0.0
        jp BadRadius                        ;jump if r is NAN
        jb BadRadius                        ;jump if r < 0.0
 
; Compute the surface area
        movsd xmm1,xmm0                     ;xmm1 = r
        mulsd xmm1,xmm1                     ;xmm1 = r * r
        mulsd xmm1,[r8_four]                ;xmm1 =  4 * r * r
        mulsd xmm1,[r8_pi]                  ;xmm1 =  4 * pi r * r
        movsd real8 ptr [ecx],xmm1          ;save surface area
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; Compute the volume
        mulsd xmm1,xmm0                 ;xmm1 =  4 * pi * r * r * r
        divsd xmm1,[r8_three]           ;xmm1 =  4 * pi * r * r * r / 3
        movsd real8 ptr [edx],xmm1      ;save volume
        mov eax,1                       ;set success return code
        pop ebp
        ret
 
; Invalid radius - set surface area and volume to -1.0
BadRadius:
        movsd xmm0,[r8_neg_one]         ;xmm0 = -1.0
        movsd real8 ptr [ecx],xmm0      ;*sa = -1.0
        movsd real8 ptr [edx],xmm0      ;*v = -1.0;
        xor eax,eax                     ;set error return code
        pop ebp
        ret
SseSfpCalcSphereAreaVolume_ endp
        end
 

The C++ portion of project SseScalarFloatingPointSpheres (see Listing 8-7)  
contains some simple code that exercises the assembly language function 
SseSfpCalcSphereAreaVolume_ using different test values for the radius. Following its 
prolog, the function SseSfpCalcSphereAreaVolume_ (see Listing 8-8) loads argument 
values r, sa, and v into registers XMM0, ECX, and EDX, respectively. A comisd xmm0,xmm7 
instruction compares the value of r against 0.0 and uses status bits in EFLAGS to indicate 
the results. Unlike the x87 FPU, the x86-SSE instruction set does not support load-constant 
instructions such as fldz and fldpi. All floating-point constants must be loaded from 
memory or computed using available x86-SSE instructions, which explains why an xorpd 
(Bitwise Logical XOR for Double-Precision Floating-Point Values) instruction is used before 
comisd. Two conditional jump instructions, jp and jb, are employed to prevent the function 
from using an invalid radius value during calculation of the surface area and volume.

Computation of the surface area occurs next and is carried out using the mulsd 
instruction. This is followed by a section of code that calculates the sphere’s volume 
using mulsd and divsd. The function SseSfpCalcSphereAreaVolume_ is a good 
example of how much simpler it is to perform scalar floating-point arithmetic using 
the x86-SSE vs. the x87 FPU instruction set. Output 8-4 shows the results of the 
SseScalarFloatingPointSpheres sample program.

Output 8-4. Sample Program SseScalarFloatingPointSpheres

rc: 0  r:    -1.00  sa:    -1.0000  vol:    -1.0000
rc: 1  r:     0.00  sa:     0.0000  vol:     0.0000
rc: 1  r:     1.00  sa:    12.5664  vol:     4.1888
rc: 1  r:     2.00  sa:    50.2655  vol:    33.5103
rc: 1  r:     3.00  sa:   113.0973  vol:   113.0973
rc: 1  r:     5.00  sa:   314.1593  vol:   523.5988
rc: 1  r:    10.00  sa:  1256.6371  vol:  4188.7902
rc: 1  r:    20.00  sa:  5026.5482  vol: 33510.3216
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Scalar Floating-Point Parallelograms
The final scalar floating-point sample program of this chapter is called 
SseScalarFloatingPointParallelograms. This program demonstrates how to 
use x86-SSE scalar floating-point instruction set to calculate the area and diagonal 
lengths of a parallelogram using its side lengths and one angle measurement. It also 
illustrates how to invoke a C++ library routine from an assembly language function 
that exercises x86-SSE instructions. The C++ and assembly language files for sample 
program SseScalarFloatingPointParallelograms are shown in Listings 8-9 and 8-10, 
respectively.

Listing 8-9. SseScalarFloatingPointParallelograms.cpp

#include "stdafx.h"
#define _USE_MATH_DEFINES
#include <math.h>
#include <stddef.h>
 
// Uncomment line below to enable display of PDATA information
//#define DISPLAY_PDATA_INFO
 
// This structure must agree with the structure that's defined
// in file SseScalarFloatingPointParallelograms_.asm.
typedef struct
{
    double A;               // Length of left and right
    double B;               // Length of top and bottom
    double Alpha;           // Angle alpha in degrees
    double Beta;            // Angle beta in degrees
    double H;               // Height of parallelogram
    double Area;            // Parallelogram area
    double P;               // Length of diagonal P
    double Q;               // Length of diagonal Q
    bool BadValue;          // Set to true if A, B, or Alpha is invalid
    char Pad[7];            // Reserved for future use
} PDATA;
 
extern "C" bool SseSfpParallelograms_(PDATA* pdata, int n);
extern "C" double DegToRad = M_PI / 180.0;
extern "C" int SizeofPdataX86_;
const bool PrintPdataInfo = true;
 
void SetPdata(PDATA* pdata, double a, double b, double alpha)
{
    pdata->A = a;
    pdata->B = b;
    pdata->Alpha = alpha;
}
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int _tmain(int argc, _TCHAR* argv[])
{
#ifdef DISPLAY_PDATA_INFO
    size_t spd1 = sizeof(PDATA);
    size_t spd2 =  SizeofPdataX86_;
 
    if (spd1 != spd2)
        printf("PDATA size discrepancy [%d, %d]", spd1, spd2);
    else
    {
        printf("sizeof(PDATA):      %d\n", spd1);
        printf("Offset of A:        %d\n", offsetof(PDATA, A));
        printf("Offset of B:        %d\n", offsetof(PDATA, B));
        printf("Offset of Alpha:    %d\n", offsetof(PDATA, Alpha));
        printf("Offset of Beta:     %d\n", offsetof(PDATA, Beta));
        printf("Offset of H         %d\n", offsetof(PDATA, H));
        printf("Offset of Area:     %d\n", offsetof(PDATA, Area));
        printf("Offset of P:        %d\n", offsetof(PDATA, P));
        printf("Offset of Q:        %d\n", offsetof(PDATA, Q));
        printf("Offset of BadValue  %d\n", offsetof(PDATA, BadValue));
        printf("Offset of Pad       %d\n", offsetof(PDATA, Pad));
    }
#endif
 
    const int n = 10;
    PDATA pdata[n];
 
    // Create some test parallelograms
    SetPdata(&pdata[0], -1.0, 1.0, 60.0);
    SetPdata(&pdata[1], 1.0, -1.0, 60.0);
    SetPdata(&pdata[2], 1.0, 1.0, 181.0);
    SetPdata(&pdata[3], 1.0, 1.0, 90.0);
    SetPdata(&pdata[4], 3.0, 4.0, 90.0);
    SetPdata(&pdata[5], 2.0, 3.0, 30.0);
    SetPdata(&pdata[6], 3.0, 2.0, 60.0);
    SetPdata(&pdata[7], 4.0, 2.5, 120.0);
    SetPdata(&pdata[8], 5.0, 7.125, 135.0);
    SetPdata(&pdata[9], 8.0, 8.0, 165.0);
 
    SseSfpParallelograms_(pdata, n);
 
    for (int i = 0; i < n; i++)
    {
        PDATA* p = &pdata[i];
        printf("\npdata[%d] - BadValue = %d\n", i, p->BadValue);
        printf("A: %12.6lf B: %12.6lf\n", p->A, p->B);
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        printf("Alpha: %12.6lf Beta: %12.6lf\n", p->Alpha, p->Beta);
        printf("H: %12.6lf Area: %12.6lf\n", p->H, p->Area);
        printf("P: %12.6lf Q: %12.6lf\n", p->P, p->Q);
    }
 
    return 0;
} 

Listing 8-10. SseScalarFloatingPointParellelograms_.asm

        .model flat,c
 
; This structure must agree with the structure that's defined
; in file SseScalarFloatingPointParallelograms.cpp.
PDATA   struct
A       real8 ?
B       real8 ?
Alpha   real8 ?
Beta    real8 ?
H       real8 ?
Area    real8 ?
P       real8 ?
Q       real8 ?
BadVal  byte ?
Pad     byte 7 dup(?)
PDATA   ends
 
; Constant values used by function
            .const
            public SizeofPdataX86_
r8_2p0      real8 2.0
r8_180p0    real8 180.0
r8_MinusOne real8 -1.0
SizeofPdataX86_ dword size PDATA
 
            .code
            extern sin:proc, cos:proc
            extern DegToRad:real8
 
; extern "C" bool SseSfpParallelograms_(PDATA* pdata, int n);
;
; Description:  The following function calculates area and length
;               values for parallelograms.
;
; Returns:      0   n <= 0
;               1   n > 0
;
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; Local stack:  [ebp-8]     x87 FPU transfer location
;               [ebp-16]    Alpha in radians
;
; Requires SSE2
 
SseSfpParallelograms_ proc
        push ebp
        mov ebp,esp
        sub esp,16                          ;allocate space for local vars
        push ebx
 
; Load arguments and validate n
        xor eax,eax                         ;set error code
        mov ebx,[ebp+8]                     ;ebx = pdata
        mov ecx,[ebp+12]                    ;ecx = n
        test ecx,ecx
        jle Done                            ;jump if n <= 0
 
; Initialize constant values
Loop1:  movsd xmm6,real8 ptr [r8_180p0]     ;xmm6 = 180.0
        xorpd xmm7,xmm7                     ;xmm7 = 0.0
        sub esp,8                           ;space for sin/cos arg value
 
; Load and validate A and B
        movsd xmm0,real8 ptr [ebx+PDATA.A]  ;xmm0 = A
        movsd xmm1,real8 ptr [ebx+PDATA.B]  ;xmm0 = B
        comisd xmm0,xmm7
        jp InvalidValue
        jbe InvalidValue                    ;jump if A <= 0.0
        comisd xmm1,xmm7
        jp InvalidValue
        jbe InvalidValue                    ;jump if B <= 0.0
 
; Load and validate Alpha
        movsd xmm2,real8 ptr [ebx+PDATA.Alpha]
        comisd xmm2,xmm7
        jp InvalidValue
        jbe InvalidValue                    ;jump if Alpha <= 0.0
        comisd xmm2,xmm6
        jae InvalidValue                    ;jump if Alpha >= 180.0
 
; Compute Beta
        subsd xmm6,xmm2                         ;Beta = 180.0 - Alpha
        movsd real8 ptr [ebx+PDATA.Beta],xmm6   ;Save Beta
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; Compute sin(Alpha)
        mulsd xmm2,real8 ptr [DegToRad]         ;convert Alpha to radians
        movsd real8 ptr [ebp-16],xmm2           ;save value for later
        movsd real8 ptr [esp],xmm2              ;copy Alpha onto stack
        call sin
        fstp real8 ptr [ebp-8]                  ;save sin(Alpha)
 
; Compute parallelogram Height and Area
        movsd xmm0,real8 ptr [ebx+PDATA.A]      ;A
        mulsd xmm0,real8 ptr [ebp-8]            ;A * sin(Alpha)
        movsd real8 ptr [ebx+PDATA.H],xmm0      ;save height
        mulsd xmm0,real8 ptr [ebx+PDATA.B]      ;A * sin(Alpha) * B
        movsd real8 ptr [ebx+PDATA.AREA],xmm0   ;save area
 
; Compute cos(Alpha)
        movsd xmm0,real8 ptr [ebp-16]           ;xmm0 = Alpha in radians
        movsd real8 ptr [esp],xmm0              ;copy Alpha onto stack
        call cos
        fstp real8 ptr [ebp-8]                  ;save cos(Alpha)
 
; Compute 2.0 * A * B * cos(Alpha)
        movsd xmm0,real8 ptr [r8_2p0]
        movsd xmm1,real8 ptr [ebx+PDATA.A]
        movsd xmm2,real8 ptr [ebx+PDATA.B]
        mulsd xmm0,xmm1                         ;2 * A
        mulsd xmm0,xmm2                         ;2 * A * B
        mulsd xmm0,real8 ptr [ebp-8]            ;2 * A * B * cos(Alpha)
 
; Compute A * A + B * B
        movsd xmm3,xmm1
        movsd xmm4,xmm2
        mulsd xmm3,xmm3                         ;A * A
        mulsd xmm4,xmm4                         ;B * B
        addsd xmm3,xmm4                         ;A * A + B * B
        movsd xmm4,xmm3                         ;A * A + B * B
 
; Compute P and Q
        subsd xmm3,xmm0
        sqrtsd xmm3,xmm3                        ;xmm3 = P
        movsd real8 ptr [ebx+PDATA.P],xmm3
        addsd xmm4,xmm0
        sqrtsd xmm4,xmm4                        ;xmm4 = Q
        movsd real8 ptr [ebx+PDATA.Q],xmm4
        mov dword ptr [ebx+PDATA.BadVal],0      ;set BadVal to false
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8 ■ X86-SSe programming – SCalar Floating-point

233

NextItem:
        add ebx,size PDATA                  ;ebx = next element in array
        dec ecx
        jnz Loop1                           ;repeat loop until done
 
        add esp,8                           ;restore ESP
Done:   pop ebx
        mov esp,ebp
        pop ebp
        ret
 
; Set structure members to know values for display purposes
InvalidValue:
        movsd xmm0,real8 ptr [r8_MinusOne]
        movsd real8 ptr [ebx+PDATA.Beta],xmm0
        movsd real8 ptr [ebx+PDATA.H],xmm0
        movsd real8 ptr [ebx+PDATA.Area],xmm0
        movsd real8 ptr [ebx+PDATA.P],xmm0
        movsd real8 ptr [ebx+PDATA.Q],xmm0
        mov dword ptr [ebx+PDATA.BadVal],1
        jmp NextItem
 
SseSfpParallelograms_ endp
        end
 

Before examining the source code for the sample program 
SseScalarFloatingPointParallelograms, let’s review some basic parallelogram 
geometry. Figure 8-1 illustrates a standard parallelogram. This figure (as well as the 
source code) uses the letter A to represent the length of the left and right sides; B to 
denote the length of the top and bottom sides; H to indicate the height; a and b to signify 
the left and right angles; and the letters P and Q to symbolize the lengths of the diagonals.

H

B

B

A A

QP

Figure 8-1. Illustration of a standard parallelogram
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The values of H, b, P, and Q can be derived from A, B, and a using the following 
formulas:

b a a a= - = =

= + - = + +

180

2 22 2 2 2

H A Area AB

P A B AB A Q A B AB

sin( ) sin( )

cos( ) coos( )A

The sample program SseScalarFloatingPointParallelograms employs 
a structure to help manage the parallelogram parameters. The C++ version 
of this structure is named PDATA and is declared near the top of source file 
SseScalarFloatingPointParallelograms.cpp (see Listing 8-9). When declaring a C++ 
structure that contains more than a few items, it is often helpful to know the offset of 
each structure item in order to confirm congruence with the assembly language version. 
The block of code near the top of function _tmain can be enabled by defining a C++ 
preprocessor named DISPLAY_PDATA_INFO. It is also important to verify size equality 
of the C++ and assembly language versions of structure PDATA given that the assembly 
language function SseSfpParallelograms_ processes an array of PDATA items.

Near the top of file SseScalarFloatingPointParallelograms_,asm (see Listing 8-10) 
is the assembly language version of structure PDATA. Keep in mind that unlike the C++ 
compiler, the assembler does not automatically align structure members to their natural 
boundaries. It is often necessary to add padding bytes to an assembly language structure 
in order to achieve equivalence with its C++ counterpart. The assembly language function 
SseSfpParallelograms_ uses a processing loop to compute the required values for each 
parallelogram. The sub esp,8 statement near the label Loop1 creates space on the stack 
for a double-precision floating-point function argument that’s used later. During each 
iteration, the processing loop begins by validating the parallelogram values A, B, and 
Alpha using a series of comisd and conditional jump instructions. If these values are valid, 
it then calculates and saves the value of angle Beta.

The next computation is the calculation of sin(Alpha), which opens with the 
conversion of Alpha from degrees to radians. A movsd real8 ptr [ebp-16],xmm2 
instruction saves the converted angle value in a local stack variable for later use. The 
angle value is also saved on the stack using a movsd real8 ptr [esp],xmm2 instruction. 
This is followed by a call sin instruction, which computes the sine of Alpha using 
the C++ library function. Unlike the x87 FPU, x86-SSE does not include transcendental 
instructions such as fsin and fcos. The return value from function sin is saved on the 
x87 FPU register stack per the Visual C++ calling convention. A fstp real8 ptr [ebp-8] 
instruction copies sin(Alpha) to a local stack variable and removes this value from the 
x87 FPU register stack. It is important to note that the Visual C++ calling convention for 
32-bit programs treats all XMM registers as volatile, which means that no assumptions 
can be made about the values in XMM0-XMM7 following execution of the function sin or 
any other library function.

Following calculation of sin(Alpha), the parallelogram’s area and height are 
computed and saved to the instance of PDATA pointed to by EBX. Calculation of 
cos(Alpha) occurs next using the C++ library function cos. Finally, the lengths of P and 
Q are calculated. Note that the common sub-expressions required for both P and Q are 
computed only once. All loop variables are updated in the code block following the 
label NextItem. Subsequent to the completion of the processing loop, an add esp,8 
instruction restores register ESP to its proper value before the function epilog. The results 
of SseScalarFloatingPointParallelograms are shown in Output 8-5.
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Output 8-5. Sample Program SseScalarFloatingPointParallelograms

pdata[0] - BadValue = 1
  A:         -1.000000  B:        1.000000
  Alpha:     60.000000  Beta:    -1.000000
  H:         -1.000000  Area:    -1.000000
  P:         -1.000000  Q:       -1.000000
 
pdata[1] - BadValue = 1
  A:          1.000000  B:       -1.000000
  Alpha:     60.000000  Beta:    -1.000000
  H:         -1.000000  Area:    -1.000000
  P:         -1.000000  Q:       -1.000000
 
pdata[2] - BadValue = 1
  A:          1.000000  B:        1.000000
  Alpha:    181.000000  Beta:    -1.000000
  H:         -1.000000  Area:    -1.000000
  P:         -1.000000  Q:       -1.000000
 
pdata[3] - BadValue = 0
  A:          1.000000  B:        1.000000
  Alpha:     90.000000  Beta:    90.000000
  H:          1.000000  Area:     1.000000
  P:          1.414214  Q:        1.414214
 
pdata[4] - BadValue = 0
  A:          3.000000  B:        4.000000
  Alpha:     90.000000  Beta:    90.000000
  H:          3.000000  Area:    12.000000
  P:          5.000000  Q:        5.000000
 
pdata[5] - BadValue = 0
  A:          2.000000  B:        3.000000
  Alpha:     30.000000  Beta:   150.000000
  H:          1.000000  Area:     3.000000
  P:          1.614836  Q:        4.836559
 
pdata[6] - BadValue = 0
  A:          3.000000  B:        2.000000
  Alpha:     60.000000  Beta:   120.000000
  H:          2.598076  Area:     5.196152
  P:          2.645751  Q:        4.358899
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pdata[7] - BadValue = 0
  A:          4.000000  B:        2.500000
  Alpha:    120.000000  Beta:    60.000000
  H:          3.464102  Area:     8.660254
  P:          5.678908  Q:        3.500000
 
pdata[8] - BadValue = 0
  A:          5.000000  B:        7.125000
  Alpha:    135.000000  Beta:    45.000000
  H:          3.535534  Area:    25.190679
  P:         11.231517  Q:        5.038280
 
pdata[9] - BadValue = 0
  A:          8.000000  B:        8.000000
  Alpha:    165.000000  Beta:    15.000000
  H:          2.070552  Area:    16.564419
  P:         15.863118  Q:        2.088419

Summary
In this chapter, you learned how to perform essential scalar floating-point arithmetic 
using the x86-SSE instruction set. You also examined a couple of sample programs that 
illustrated advanced x86-SSE scalar floating-point techniques. In the next chapter, you’ll 
continue your x86-SSE assembly language programming education, which focuses on the 
packed floating-point capabilities of x86-SSE.
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Chapter 9

X86-SSE Programming – 
Packed Floating-Point

In this chapter, you learn how to create assembly language functions that manipulate 
the packed floating-point resources of x86-SSE. You begin by examining a few sample 
programs that demonstrate essential x86-SSE packed floating-point operations, including 
basic arithmetic, compares, and data type conversions. This is followed by a section that 
illustrates use of the x86-SSE instruction set to carry out more sophisticated mathematical 
techniques using packed single-precision and double-precision floating-point values.

The sample code in this chapter exercises various levels of x86-SSE. The specific level 
that’s required for each assembly language function is shown in its documentation header. As 
a reminder, you can use one of the freely available utilities listed in Appendix C to determine 
the version of x86-SSE that’s supported by your PC’s processor and operating system.

Packed Floating-Point Fundamentals
The sample code in this section explains how to perform fundamental packed floating-point 
operations, including basic arithmetic, compares, and type conversions. Some of the ensuing 
sample programs in this chapter use a C++ union named XmmVal (see Listing 9-1) to facilitate 
data exchange between a C++ and assembly language function. The items that are declared 
in this union match the packed data types supported by x86-SSE. The union XmmVal also 
includes several declarations for text string formatting functions. The file XmmVal.cpp  
(source code not shown) contains definitions for the ToString_ formatting functions and is 
included in the sample code distribution file subfolder CommonFiles.

Listing 9-1. XmmVal.h

#pragma once
 
#include "MiscDefs.h"
 
union XmmVal
{
    Int8 i8[16];
    Int16 i16[8];
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    Int32 i32[4];
    Int64 i64[2];
    Uint8 u8[16];
    Uint16 u16[8];
    Uint32 u32[4];
    Uint64 u64[2];
    float r32[4];
    double r64[2];
 
    char* ToString_i8(char* s, size_t len);
    char* ToString_i16(char* s, size_t len);
    char* ToString_i32(char* s, size_t len);
    char* ToString_i64(char* s, size_t len);
 
    char* ToString_u8(char* s, size_t len);
    char* ToString_u16(char* s, size_t len);
    char* ToString_u32(char* s, size_t len);
    char* ToString_u64(char* s, size_t len);
 
    char* ToString_x8(char* s, size_t len);
    char* ToString_x16(char* s, size_t len);
    char* ToString_x32(char* s, size_t len);
    char* ToString_x64(char* s, size_t len);
 
    char* ToString_r32(char* s, size_t len);
    char* ToString_r64(char* s, size_t len);
};

Packed Floating-Point Arithmetic
The first x86-SSE packed floating-point program that you look at is called 
SsePackedFloatingPointArithmetic. This program illustrates how to perform basic 
arithmetic operations using packed floating-point operands. The C++ and x86 assembly 
language source code for this project are shown in Listings 9-2 and 9-3, respectively.

Listing 9-2. SsePackedFloatingPointArithmetic.cpp

#include "stdafx.h"
#include "XmmVal.h"
#define _USE_MATH_DEFINES
#include <math.h>
 
extern "C" void SsePackedFpMath32_(const XmmVal* a, const XmmVal* b, XmmVal c[8]);
extern "C" void SsePackedFpMath64_(const XmmVal* a, const XmmVal* b, XmmVal c[8]);
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void SsePackedFpMath32(void)
{
    _declspec(align(16)) XmmVal a;
    _declspec(align(16)) XmmVal b;
    _declspec(align(16)) XmmVal c[8];
    char buff[256];
 
    a.r32[0] = 36.0f;
    a.r32[1] = (float)(1.0 / 32.0);
    a.r32[2] = 2.0f;
    a.r32[3] = 42.0f;
 
    b.r32[0] = -(float)(1.0 / 9.0);
    b.r32[1] = 64.0f;
    b.r32[2] = -0.0625f;
    b.r32[3] = 8.666667f;
 
    SsePackedFpMath32_(&a, &b, c);
    printf("\nResults for SsePackedFpMath32_\n");
    printf("a:         %s\n", a.ToString_r32(buff, sizeof(buff)));
    printf("b:         %s\n", b.ToString_r32(buff, sizeof(buff)));
    printf("\n");
    printf("addps:     %s\n", c[0].ToString_r32(buff, sizeof(buff)));
    printf("subps:     %s\n", c[1].ToString_r32(buff, sizeof(buff)));
    printf("mulps:     %s\n", c[2].ToString_r32(buff, sizeof(buff)));
    printf("divps:     %s\n", c[3].ToString_r32(buff, sizeof(buff)));
    printf("absps a:   %s\n", c[4].ToString_r32(buff, sizeof(buff)));
    printf("sqrtps a:  %s\n", c[5].ToString_r32(buff, sizeof(buff)));
    printf("minps:     %s\n", c[6].ToString_r32(buff, sizeof(buff)));
    printf("maxps:     %s\n", c[7].ToString_r32(buff, sizeof(buff)));
}
 
void SsePackedFpMath64(void)
{
    _declspec(align(16)) XmmVal a;
    _declspec(align(16)) XmmVal b;
    _declspec(align(16)) XmmVal c[8];
    char buff[256];
 
    a.r64[0] = 2.0;
    a.r64[1] = M_PI;
    b.r64[0] = M_E;
    b.r64[1] = -M_1_PI;
 
    SsePackedFpMath64_(&a, &b, c);
    printf("\nResults for SsePackedFpMath64_\n");
    printf("a: %s\n", a.ToString_r64(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_r64(buff, sizeof(buff)));
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    printf("\n");
    printf("addpd:    %s\n", c[0].ToString_r64(buff, sizeof(buff)));
    printf("subpd:    %s\n", c[1].ToString_r64(buff, sizeof(buff)));
    printf("mulpd:    %s\n", c[2].ToString_r64(buff, sizeof(buff)));
    printf("divpd:    %s\n", c[3].ToString_r64(buff, sizeof(buff)));
    printf("abspd a:  %s\n", c[4].ToString_r64(buff, sizeof(buff)));
    printf("sqrtpd a: %s\n", c[5].ToString_r64(buff, sizeof(buff)));
    printf("minpd:    %s\n", c[6].ToString_r64(buff, sizeof(buff)));
    printf("maxpd:    %s\n", c[7].ToString_r64(buff, sizeof(buff)));
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    SsePackedFpMath32();
    SsePackedFpMath64();
} 

Listing 9-3. SsePackedFloatingPointArithmetic_.asm

        .model flat,c
        .const
 
; Mask values used to calculate floating-point absolute values
        align 16
Pfp32Abs    dword 7fffffffh,7fffffffh,7fffffffh,7fffffffh
Pfp64Abs    qword 7fffffffffffffffh,7fffffffffffffffh
        .code
 
; extern "C" void SsePackedFpMath32_(const XmmVal* a, const XmmVal* b,
XmmVal c[8]);
;
; Description:  The following function demonstrates basic math using
;               packed single-precision floating-point values.
;
; Requires:     SSE
 
SsePackedFpMath32_ proc
        push ebp
        mov ebp,esp
 
; Load packed SP floating-point values
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'b'
        mov edx,[ebp+16]                    ;edx = 'c'
        movaps xmm0,[eax]                   ;xmm0 = *a
        movaps xmm1,[ecx]                   ;xmm1 = *b
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; Packed SP floating-point addition
        movaps xmm2,xmm0
        addps xmm2,xmm1
        movaps [edx+0],xmm2
 
; Packed SP floating-point subtraction
        movaps xmm2,xmm0
        subps xmm2,xmm1
        movaps [edx+16],xmm2
 
; Packed SP floating-point multiplication
        movaps xmm2,xmm0
        mulps xmm2,xmm1
        movaps [edx+32],xmm2
 
; Packed SP floating-point division
        movaps xmm2,xmm0
        divps xmm2,xmm1
        movaps [edx+48],xmm2
 
; Packed SP floating-point absolute value
        movaps xmm2,xmm0
        andps xmm2,xmmword ptr [Pfp32Abs]
        movaps [edx+64],xmm2
 
; Packed SP floating-point square root
        sqrtps xmm2,xmm0
        movaps [edx+80],xmm2
 
; Packed SP floating-point minimum
        movaps xmm2,xmm0
        minps xmm2,xmm1
        movaps [edx+96],xmm2
 
; Packed SP floating-point maximum
        maxps xmm0,xmm1
        movaps [edx+112],xmm0
 
        pop ebp
        ret
SsePackedFpMath32_ endp
 
; extern "C" void SsePackedFpMath64_(const XmmVal* a, const XmmVal* b,
XmmVal c[8]);
;
; Description:  The following function demonstrates basic math using
;               packed double-precision floating-point values.
;
; Requires:     SSE2
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ X86-SSe programming – paCked Floating-point

242

SsePackedFpMath64_ proc
        push ebp
        mov ebp,esp
 
; Load packed DP floating-point values
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'b'
        mov edx,[ebp+16]                    ;edx = 'c'
        movapd xmm0,[eax]                   ;xmm0 = *a
        movapd xmm1,[ecx]                   ;xmm1 = *b
 
; Packed DP floating-point addition
        movapd xmm2,xmm0
        addpd xmm2,xmm1
        movapd [edx+0],xmm2
 
; Packed DP floating-point subtraction
        movapd xmm2,xmm0
        subpd xmm2,xmm1
        movapd [edx+16],xmm2
 
; Packed DP floating-point multiplication
        movapd xmm2,xmm0
        mulpd xmm2,xmm1
        movapd [edx+32],xmm2
 
; Packed DP floating-point division
        movapd xmm2,xmm0
        divpd xmm2,xmm1
        movapd [edx+48],xmm2
 
; Packed DP floating-point absolute value
        movapd xmm2,xmm0
        andpd xmm0,xmmword ptr [Pfp64Abs]
        movapd [edx+64],xmm2
 
; Packed DP floating-point square root
        sqrtpd xmm2,xmm0
        movapd [edx+80],xmm2
 
; Packed DP floating-point minimum
        movapd xmm2,xmm0
        minpd xmm2,xmm1
        movapd [edx+96],xmm2
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; Packed DP floating-point maximum
        maxpd xmm0,xmm1
        movapd [edx+112],xmm0
 
        pop ebp
        ret
SsePackedFpMath64_ endp
        end
 

The C++ file SsePackedFloatingPointArithmetic.cpp (see Listing 9-2) contains 
a function named SsePackedFpMath32 that defines and initializes a couple of XmmVal 
instances using packed single-precision floating-point values. Note that the XmmVal 
variables are declared using the Visual C++ extended attribute __declspec(align(16)), 
which aligns each instance to a 16-byte boundary. The assembly language function 
SsePackedFpMath32_ performs the required packed arithmetic and returns its results 
to the specified array. The result of each packed arithmetic operation is then displayed. 
The functions SsePackedFpMath64 and SsePackedFpMath64_ perform a similar set of 
operations for packed double-precision floating-point values.

The functions SsePackedFpMath32_ and SsePackedFpMath64_ are defined in 
SsePackedFloatingPointArithmetic_.asm (see Listing 9-3). These functions illustrate 
use of common x86-SSE packed single-precision and double-precision floating-point 
instructions. Note that the movaps and movapd (Move Aligned Packed Single-Precision/
Double-Precision Floating-Point Values) instructions require 16-byte alignment of a 
source or destination operand in memory. The rounding mode that’s specified in MXCSR.
RC also applies to packed floating-point arithmetic. Output 9-1 shows the results of 
SsePackedFloatingPointArithmetic.

Output 9-1. Sample Program SsePackedFloatingPointArithmetic

Results for SsePackedFpMath32_
a:            36.000000     0.031250 |     2.000000    42.000000
b:            -0.111111    64.000000 |    -0.062500     8.666667
 
addps:        35.888889    64.031250 |     1.937500    50.666668
subps:        36.111111   -63.968750 |     2.062500    33.333332
mulps:        -4.000000     2.000000 |    -0.125000   364.000000
divps:      -324.000000     0.000488 |   -32.000000     4.846154
absps a:      36.000000     0.031250 |     2.000000    42.000000
sqrtps a:      6.000000     0.176777 |     1.414214     6.480741
minps:        -0.111111     0.031250 |    -0.062500     8.666667
maxps:        36.000000    64.000000 |     2.000000    42.000000
 
Results for SsePackedFpMath64_
a:                   2.000000000000  |           3.141592653590
b:                   2.718281828459  |          -0.318309886184
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addpd:               4.718281828459  |           2.823282767406
subpd:              -0.718281828459  |           3.459902539774
mulpd:               5.436563656918  |          -1.000000000000
divpd:               0.735758882343  |          -9.869604401089
abspd a:             2.000000000000  |           3.141592653590
sqrtpd a:            1.414213562373  |           1.772453850906
minpd:               2.000000000000  |          -0.318309886184
maxpd:               2.718281828459  |           3.141592653590

Packed Floating-Point Compare
In Chapter 8, you learned how to compare scalar single-precision and double-precision 
floating-point values using the comiss and comisd instructions, respectively. X86-SSE 
also includes instructions that perform packed floating-point compares. The cmpps and 
cmppd (Compare Packed Single-Precision and Double-Precision Floating-Point Values) 
instructions perform SIMD compare operations using two packed values. Unlike their 
scalar counterparts, the packed compare instructions require a third operand that 
specifies a compare predicate. They also report their results by loading doubleword mask 
values into an XMM register instead of setting status bits in the EFLAGS register.

The required syntax of a cmppX (X = s or d) instruction is cmppX 
CmpOp1,CmpOp2,PredOp, where CmpOp1 is the first source operand and must be an XMM 
register; CmpOp2 is the second source operand and can be an XMM register or 128-bit 
wide packed operand in memory; and PredOp is an immediate value that specifies the 
compare predicate. Table 9-1 summarizes the eight compare predicates supported 
by x86-SSE. The results of a packed compare are saved to CmpOp1 as a doubleword 
mask, where all 1s represent a true compare and all 0s signify false. As an alternative 
to using an immediate compare predicate, many assemblers including MASM support 
packed compare pseudo-instructions, which enhance code readability. These pseudo-
instructions are included in Table 9-1.

Table 9-1. Compare Predicate Information for cmpps and cmppd Instructions

PredOp Predicate Description Pseudo-Instructions

0 EQ CmpOp1 == CmpOp2 cmpeqp(s|d)

1 LT CmpOp1 < CmpOp2 cmpltp(s|d)

2 LE CmpOp1 <= CmpOp2 cmplep(s|d)

3 UNORD CmpOp1 && CmpOp2 are unordered cmpunordp(s|d)

4 NEQ !(CmpOp1 == CmpOp2) cmpneqp(s|d)

5 NLT !(CmpOp1 < CmpOp2) cmpnltp(s|d)

6 NLE !(CmpOp1 <= CmpOp2) cmpnlep(s|d)

7 ORD CmpOp1 && CmpOp2 are ordered cmpordp(s|d)
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Note that in Table 9-1 the NLT predicate is equivalent to greater than or equal (GE) 
and NLE is equivalent to greater than (GT).

Figure 9-1 depicts the execution of a cmpps xmm0,xmm1,0 (or cmpeqps xmm0,xmm1) 
instruction. In this example, the single-precision floating-point values in XMM0 and 
XMM1 are compared for equality. If the values are equal, a mask of 0xFFFFFFFF is written 
to the corresponding position in XMM0; otherwise, 0x00000000 is written.

SsePackedFloatingPointCompare is the name of the sample program in this section. 
This program elucidates execution of the cmpps instruction using packed single-precision 
floating-point values (operation of cmppd is the same except that it uses packed  
double-precision floating-point values). The C++ and assembly language source code  
is shown in Listings 9-4 and 9-5, respectively.

Listing 9-4. SsePackedFloatingPointCompare.cpp

#include "stdafx.h"
#include "XmmVal.h"
#include <limits>
using namespace std;
 
extern "C" void SsePfpCompareFloat_(const XmmVal* a, const XmmVal* b, XmmVal c[8]);
 
const char* CmpStr[8] =
{
    "EQ", "LT", "LE", "UNORDERED", "NE", "NLT", "NLE", "ORDERED"
};
 
void SsePfpCompareFloat(void)
{
    __declspec(align(16)) XmmVal a;
    __declspec(align(16)) XmmVal b;
    __declspec(align(16)) XmmVal c[8];
    char buff[256];
 
    a.r32[0] = 2.0;         b.r32[0] = 1.0;
    a.r32[1] = 7.0;         b.r32[1] = 12.0;
    a.r32[2] = -6.0;        b.r32[2] = -6.0;
    a.r32[3] = 3.0;         b.r32[3] = 8.0;
 

4.125 2.375 -72.5 44.125

8.625 2.375 -72.5 15.875

0x00000000 0xFFFFFFFF 0xFFFFFFFF 0x00000000

cmpps xmm0,xmm1,0 (or cmpeqps xmm0, xmm1)

xmm 1

xmm 0

xmm 0

Figure 9-1. Execution of a cmpps instruction
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    for (int i = 0; i < 2; i++)
    {
        if (i == 1)
            a.r32[0] = numeric_limits<float>::quiet_NaN();
 
        SsePfpCompareFloat_(&a, &b, c);
 
        printf("\nResults for SsePfpCompareFloat_ (Iteration %d)\n", i);
        printf("a: %s\n", a.ToString_r32(buff, sizeof(buff)));
        printf("b: %s\n", b.ToString_r32(buff, sizeof(buff)));
        printf("\n");
 
        for (int j = 0; j < 8; j++)
        {
            char* s =  c[j].ToString_x32(buff, sizeof(buff));
            printf("%10s: %s\n", CmpStr[j], s);
        }
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    SsePfpCompareFloat();
    return 0;
} 

Listing 9-5. SsePackedFloatingPointCompare_.asm

        .model flat,c
        .code
 
; extern "C" void SsePfpCompareFloat_(const XmmVal* a, const XmmVal* b,
XmmVal c[8]);
;
; Description:  The following program illustrates use of the cmpps
;               instruction.
;
; Requires:     SSE2
 
SsePfpCompareFloat_ proc
        push ebp
        mov ebp,esp
 
        mov eax,[ebp+8]                     ;eax = ptr to 'a'
        mov ecx,[ebp+12]                    ;ecx = ptr to 'b'
        mov edx,[ebp+16]                    ;edx = ptr to 'c'
        movaps xmm0,[eax]                   ;load 'a' into xmm0
        movaps xmm1,[ecx]                   ;load 'b' into xmm1
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ X86-SSe programming – paCked Floating-point

247

; Perform packed EQUAL compare
        movaps xmm2,xmm0
        cmpeqps xmm2,xmm1
        movdqa [edx],xmm2
 
; Perform packed LESS THAN compare
        movaps xmm2,xmm0
        cmpltps xmm2,xmm1
        movdqa [edx+16],xmm2
 
; Perform packed LESS THAN OR EQUAL compare
        movaps xmm2,xmm0
        cmpleps xmm2,xmm1
        movdqa [edx+32],xmm2
 
; Perform packed UNORDERED compare
        movaps xmm2,xmm0
        cmpunordps xmm2,xmm1
        movdqa [edx+48],xmm2
 
; Perform packed NOT EQUAL compare
        movaps xmm2,xmm0
        cmpneqps xmm2,xmm1
        movdqa [edx+64],xmm2
 
; Perform packed NOT LESS THAN compare
        movaps xmm2,xmm0
        cmpnltps xmm2,xmm1
        movdqa [edx+80],xmm2
 
; Perform packed NOT LESS THAN OR EQUAL compare
        movaps xmm2,xmm0
        cmpnleps xmm2,xmm1
        movdqa [edx+96],xmm2
 
; Perform packed ORDERED compare
        movaps xmm2,xmm0
        cmpordps xmm2,xmm1
        movdqa [edx+112],xmm2
 
        pop ebp
        ret
SsePfpCompareFloat_ endp
        end
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The C++ source code (see Listing 9-4) contains a simple function that initializes 
a couple of packed floating-point variables, invokes the assembly language compare 
function, and prints the results. Note that on the second iteration of the for loop,  
a NaN value is copied into XmmVal variable a in order to verify correct operation 
of the ordered and unordered predicates. The assembly language function 
SsePfpCompareFloat_ (see Listing 9-5) loads registers XMM0 and XMM1 with the packed  
values a and b. It then executes all eight predicate compares and saves the results of each 
operation to the specified array. The assembly language function uses the compare 
pseudo-instructions in order to improve readability. Another reason for becoming familiar 
with the pseudo-instructions is that the x86-AVX version of cmpps supports 32 compare 
predicates, which are significantly more challenging to remember than the eight supported 
by x86-SSE. Output 9-2 shows the results of the SsePackedFloatingPointCompare 
sample program.

Output 9-2. Sample Program SsePackedFloatingPointCompare

Results for SsePfpCompareFloat_ (Iteration 0)
a:     2.000000     7.000000 |    -6.000000     3.000000
b:     1.000000    12.000000 |    -6.000000     8.000000
 
        EQ: 00000000 00000000 | FFFFFFFF 00000000
        LT: 00000000 FFFFFFFF | 00000000 FFFFFFFF
        LE: 00000000 FFFFFFFF | FFFFFFFF FFFFFFFF
 UNORDERED: 00000000 00000000 | 00000000 00000000
        NE: FFFFFFFF FFFFFFFF | 00000000 FFFFFFFF
       NLT: FFFFFFFF 00000000 | FFFFFFFF 00000000
       NLE: FFFFFFFF 00000000 | 00000000 00000000
   ORDERED: FFFFFFFF FFFFFFFF | FFFFFFFF FFFFFFFF
 
Results for SsePfpCompareFloat_ (Iteration 1)
a:     1.#QNAN0     7.000000 |    -6.000000     3.000000
b:     1.000000    12.000000 |    -6.000000     8.000000
 
        EQ: 00000000 00000000 | FFFFFFFF 00000000
        LT: 00000000 FFFFFFFF | 00000000 FFFFFFFF
        LE: 00000000 FFFFFFFF | FFFFFFFF FFFFFFFF
 UNORDERED: FFFFFFFF 00000000 | 00000000 00000000
        NE: FFFFFFFF FFFFFFFF | 00000000 FFFFFFFF
       NLT: FFFFFFFF 00000000 | FFFFFFFF 00000000
       NLE: FFFFFFFF 00000000 | 00000000 00000000
   ORDERED: 00000000 FFFFFFFF | FFFFFFFF FFFFFFFF

Packed Floating-Point Conversions
The next x86-SSE packed floating-point program that you examine is called 
SsePackedFloatingPointConversions. This program demonstrates how to convert a 
packed doubleword signed integer value to a packed single-precision or packed  
double-precision floating-point value and vice versa. It also shows conversions between  
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packed single-precision and double-precision floating-point values. Listings 9-6 
and 9-7 show the C++ and assembly language source code for the sample program 
SsePackedFloatingPointConversions.

Listing 9-6. SsePackedFloatingPointConversions.cpp

#include "stdafx.h"
#include "XmmVal.h"
#define _USE_MATH_DEFINES
#include <math.h>
 
// The order of values in the following enum must match the table
// that's defined in SsePackedFloatingPointConversions_.asm.
enum CvtOp : unsigned int
{
    Cvtdq2ps,           // Packed signed doubleword to SPFP
    Cvtdq2pd,           // Packed signed doubleword to DPFP
    Cvtps2dq,           // Packed SPFP to signed doubleword
    Cvtpd2dq,           // Packed DPFP to signed doubleword
    Cvtps2pd,           // Packed SPFP to DPFP
    Cvtpd2ps            // Packed DPFP to SPFP
};
 
extern "C" void SsePfpConvert_(const XmmVal* a, XmmVal* b, CvtOp cvt_op);
 
void SsePfpConversions32(void)
{
    _declspec(align(16)) XmmVal a;
    _declspec(align(16)) XmmVal b;
    char buff[256];
 
    a.i32[0] = 10;
    a.i32[1] = -500;
    a.i32[2] = 600;
    a.i32[3] = -1024;
    SsePfpConvert_(&a, &b, CvtOp::Cvtdq2ps);
    printf("\nResults for CvtOp::Cvtdq2ps\n");
    printf("  a: %s\n", a.ToString_i32(buff, sizeof(buff)));
    printf("  b: %s\n", b.ToString_r32(buff, sizeof(buff)));
 
    a.r32[0] = 1.0f / 3.0f;
    a.r32[1] = 2.0f / 3.0f;
    a.r32[2] = -a.r32[0] * 2.0f;
    a.r32[3] = -a.r32[1] * 2.0f;
    SsePfpConvert_(&a, &b, CvtOp::Cvtps2dq);
    printf("\nResults for CvtOp::Cvtps2dq\n");
    printf("  a: %s\n", a.ToString_r32(buff, sizeof(buff)));
    printf("  b: %s\n", b.ToString_i32(buff, sizeof(buff)));
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    // cvtps2pd converts the two low-order SPFP values of 'a'
    a.r32[0] = 1.0f / 7.0f;
    a.r32[1] = 2.0f / 9.0f;
    a.r32[2] = 0;
    a.r32[3] = 0;
    SsePfpConvert_(&a, &b, CvtOp::Cvtps2pd);
    printf("\nResults for CvtOp::Cvtps2pd\n");
    printf("  a: %s\n", a.ToString_r32(buff, sizeof(buff)));
    printf("  b: %s\n", b.ToString_r64(buff, sizeof(buff)));
}
 
void SsePfpConversions64(void)
{
    _declspec(align(16)) XmmVal a;
    _declspec(align(16)) XmmVal b;
    char buff[256];
 
    // cvtdq2pd converts the two low-order doubleword integers of 'a'
    a.i32[0] = 10;
    a.i32[1] = -20;
    a.i32[2] = 0;
    a.i32[3] = 0;
    SsePfpConvert_(&a, &b, CvtOp::Cvtdq2pd);
    printf("\nResults for CvtOp::Cvtdq2pd\n");
    printf("  a: %s\n", a.ToString_i32(buff, sizeof(buff)));
    printf("  b: %s\n", b.ToString_r64(buff, sizeof(buff)));
 
    // cvtpd2dq sets the two high-order doublewords of 'b' to zero
    a.r64[0] = M_PI;
    a.r64[1] = M_E;
    SsePfpConvert_(&a, &b, CvtOp::Cvtpd2dq);
    printf("\nResults for CvtOp::Cvtpd2dq\n");
    printf("  a: %s\n", a.ToString_r64(buff, sizeof(buff)));
    printf("  b: %s\n", b.ToString_i32(buff, sizeof(buff)));
 
    // cvtpd2ps sets the two high-order SPFP values of 'b' to zero
    a.r64[0] = M_SQRT2;
    a.r64[1] = M_SQRT1_2;
    SsePfpConvert_(&a, &b, CvtOp::Cvtpd2ps);
    printf("\nResults for CvtOp::Cvtpd2ps\n");
    printf("  a: %s\n", a.ToString_r64(buff, sizeof(buff)));
    printf("  b: %s\n", b.ToString_r32(buff, sizeof(buff)));
}
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int _tmain(int argc, _TCHAR* argv[])
{
    SsePfpConversions32();
    SsePfpConversions64();
    return 0;
} 

Listing 9-7. SsePackedFloatingPointConversions_.asm

        .model flat,c
        .code
 
; extern "C" void SsePfpConvert_(const XmmVal* a, XmmVal* b, CvtOp cvt_op);
;
; Description:  The following function demonstrates use of the packed
;               floating-point conversion instructions.
;
; Requires:     SSE2
 
SsePfpConvert_ proc
        push ebp
        mov ebp,esp
 
; Load arguments and make sure 'cvt_op' is valid
        mov eax,[ebp+8]                     ;eax = 'a'
        mov ecx,[ebp+12]                    ;ecx = 'b'
        mov edx,[ebp+16]                    ;edx =cvt_op
        cmp edx,CvtOpTableCount
        jae BadCvtOp
        jmp [CvtOpTable+edx*4]              ;jump to specified conversion
 
; Convert packed doubleword signed integers to packed SPFP values
SseCvtdq2ps:
        movdqa xmm0,[eax]
        cvtdq2ps xmm1,xmm0
        movaps [ecx],xmm1
        pop ebp
        ret
 
; Convert packed doubleword signed integers to packed DPFP values
SseCvtdq2pd:
        movdqa xmm0,[eax]
        cvtdq2pd xmm1,xmm0
        movapd [ecx],xmm1
        pop ebp
        ret
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; Convert packed SPFP values to packed doubleword signed integers
SseCvtps2dq:
        movaps xmm0,[eax]
        cvtps2dq xmm1,xmm0
        movdqa [ecx],xmm1
        pop ebp
        ret
 
; Convert packed DPFP values to packed doubleword signed integers
SseCvtpd2dq:
        movapd xmm0,[eax]
        cvtpd2dq xmm1,xmm0
        movdqa [ecx],xmm1
        pop ebp
        ret
 
; Convert packed SPFP to packed DPFP
SseCvtps2pd:
        movaps xmm0,[eax]
        cvtps2pd xmm1,xmm0
        movapd [ecx],xmm1
        pop ebp
        ret
 
; Convert packed DPFP to packed SPFP
SseCvtpd2ps:
        movapd xmm0,[eax]
        cvtpd2ps xmm1,xmm0
        movaps [ecx],xmm1
        pop ebp
        ret
 
BadCvtOp:
        pop ebp
        ret
 
; The order of values in the following table must match the enum CvtOp
; that's defined in SsePackedFloatingPointConversions.cpp.
            align 4
CvtOpTable  dword SseCvtdq2ps, SseCvtdq2pd, SseCvtps2dq
            dword SseCvtpd2dq, SseCvtps2pd, SseCvtpd2ps
CvtOpTableCount equ ($ - CvtOpTable) / size dword
SsePfpConvert_ endp
        end
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The C++ file SsePackedFloatingPointConversions.cpp (see Listing 9-6) contains 
an enum named CvtOp that lists the valid conversion operators. Note that a few of 
the enumeration names and corresponding x86 assembly language mnemonics are 
somewhat confusing. The letters dq are used to designate a packed doubleword signed 
integer and not a double quadword as might be expected. Also note that the actual 
number of items converted depends on the data types. For example, the enumeration 
CvtOp::Cvtps2pd (or cvtps2pd instruction) converts the two low-order single-precision 
floating-point values to two double-precision floating-point values. When converting 
packed double-precision floating-point values to single-precision or doubleword signed 
integers, the high-order values in the destination operand are set to zero.

The assembly language file SsePackedFloatingPointConversions_asm  
(see Listing 9-7) employs a jump table to execute the chosen conversion instruction.  
For each conversion code block, packed data transfers to and from memory are carried 
out using a movaps, movapd, or movdqa (Move Aligned Double Quadword) instruction. 
All of these instructions require proper alignment of any memory-based operand. The 
packed conversion instructions use the rounding mode that’s specified by MXCSR.
RC. The default rounding mode for Visual C++ is round to nearest. Some of the packed 
conversion instructions also set the invalid operation flag (MXCSR.IE) if invalid 
operation exceptions (MXCSR.IM) are masked and the specific conversion cannot be 
performed. The results of the SsePackedFloatingPointConversions sample program 
are shown in Output 9-3.

Output 9-3. Sample Program SsePackedFloatingPointConversions

Results for CvtOp::Cvtdq2ps
  a:           10         -500 |          600        -1024
  b:    10.000000  -500.000000 |   600.000000 -1024.000000
 
Results for CvtOp::Cvtps2dq
  a:     0.333333     0.666667 |    -0.666667    -1.333333
  b:            0            1 |           -1           -1
 
Results for CvtOp::Cvtps2pd
  a:     0.142857     0.222222 |     0.000000     0.000000
  b:           0.142857149243  |           0.222222223878
 
Results for CvtOp::Cvtdq2pd
  a:           10          -20 |            0            0
  b:          10.000000000000  |         -20.000000000000
 
Results for CvtOp::Cvtpd2dq
  a:           3.141592653590  |           2.718281828459
  b:            3            3 |            0            0
 
Results for CvtOp::Cvtpd2ps
  a:           1.414213562373  |           0.707106781187
  b:     1.414214     0.707107 |     0.000000     0.000000
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Advanced Packed Floating-Point Programming
The sample code in this section illustrates the use of the x86-SSE instruction set to 
implement common mathematical techniques using packed single-precision and 
double-precision floating-point values. In the first sample program, you learn how to 
perform SIMD arithmetic using double-precision floating-point arrays. The second 
sample program explains how to use the computational resources of x86-SSE to improve 
the performance of algorithms that exercise 4 × 4 matrices.

Packed Floating-Point Least Squares
In Chapter 4 you studied a sample program that calculated the slope and intercept of 
a least squares regression line using the x87 FPU. The sample program of this section 
calculates a regression line slope and intercept using x86-SSE packed double-precision 
floating-point arithmetic. Listings 9-8 and 9-9 show the source for the sample program 
SsePackedFloatingPointLeastSquares.

Listing 9-8. SsePackedFloatingPointLeastSquares.cpp

#include "stdafx.h"
#include <stddef.h>
#include <math.h>
 
extern "C" double LsEpsilon = 1.0e-12;
extern "C" bool SsePfpLeastSquares_(const double* x, const double* y,
int n, double* m, double* b);
 
bool SsePfpLeastSquaresCpp(const double* x, const double* y, int n,
double* m, double* b)
{
    if (n < 2)
        return false;
 
    // Make sure x and y are properly aligned
    if ((((uintptr_t)x & 0xf) != 0) || (((uintptr_t)y & 0xf) != 0))
        return false;
 
    double sum_x = 0, sum_y = 0.0, sum_xx = 0, sum_xy = 0.0;
 
    for (int i = 0; i < n; i++)
    {
        sum_x += x[i];
        sum_xx += x[i] * x[i];
        sum_xy += x[i] * y[i];
        sum_y += y[i];
    }
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    double denom = n * sum_xx - sum_x * sum_x;
 
    if (fabs(denom) >= LsEpsilon)
    {
        *m = (n * sum_xy - sum_x * sum_y) / denom;
        *b = (sum_xx * sum_y - sum_x * sum_xy) / denom;
        return true;
    }
    else
    {
        *m = *b = 0.0;
        return false;
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 11;
    __declspec(align(16)) double x[n] = {10, 13, 17, 19, 23, 7, 35, 51,
89, 92, 99};
    __declspec(align(16)) double y[n] = {1.2, 1.1, 1.8, 2.2, 1.9, 0.5,
3.1, 5.5, 8.4, 9.7, 10.4};
 
    double m1, m2, b1, b2;
    bool rc1 = SsePfpLeastSquaresCpp(x, y, n, &m1, &b1);
    bool rc2 = SsePfpLeastSquares_(x, y, n, &m2, &b2);
 
    printf("\nResults from SsePackedFloatingPointLeastSquaresCpp\n");
    printf("  rc:        %12d\n", rc1);
    printf("  slope:     %12.8lf\n", m1);
    printf("  intercept: %12.8lf\n", b1);
    printf("\nResults from SsePackedFloatingPointLeastSquares_\n");
    printf("  rc:        %12d\n", rc2);
    printf("  slope:     %12.8lf\n", m2);
    printf("  intercept: %12.8lf\n", b2);
    return 0;
} 

Listing 9-9. SsePackedFloatingPointLeastSquares_.asm

        .model flat,c
        extern LsEpsilon:real8
        .const
PackedFp64Abs qword 7fffffffffffffffh,7fffffffffffffffh
        .code
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; extern "C" bool SsePfpLeastSquares_(const double* x, const double* y,  
int n, double* m, double* b);
;
; Description:  The following function computes the slope and intercept
;               of a least squares regression line.
;
; Returns       0 = error (invalid n or improperly aligned array)
;               1 = success
;
; Requires:     SSE3
 
SsePfpLeastSquares_ proc
        push ebp
        mov ebp,esp
        push ebx
 
; Load and validate arguments
        xor eax,eax                             ;set error return code
        mov ebx,[ebp+8]                         ;ebx = 'x'
        test ebx,0fh
        jnz Done                                ;jump if 'x' not aligned
        mov edx,[ebp+12]                        ;edx ='y'
        test edx,0fh
        jnz Done                                ;jump if 'y' not aligned
        mov ecx,[ebp+16]                        ;ecx = n
        cmp ecx,2
        jl Done                                 ;jump if n < 2
 
; Initialize sum registers
        cvtsi2sd xmm3,ecx                       ;xmm3 = DPFP n
        mov eax,ecx
        and ecx,0fffffffeh                      ;ecx = n / 2 * 2
        and eax,1                               ;eax = n % 2
 
        xorpd xmm4,xmm4                         ;sum_x (both qwords)
        xorpd xmm5,xmm5                         ;sum_y (both qwords)
        xorpd xmm6,xmm6                         ;sum_xx (both qwords)
        xorpd xmm7,xmm7                         ;sum_xy (both qwords)
 
; Calculate sum variables. Note that two values are processed each cycle.
@@:     movapd xmm0,xmmword ptr [ebx]           ;load next two x values
        movapd xmm1,xmmword ptr [edx]           ;load next two y values
        movapd xmm2,xmm0                        ;copy of x
 
        addpd xmm4,xmm0                         ;update sum_x
        addpd xmm5,xmm1                         ;update sum_y
        mulpd xmm0,xmm0                         ;calc x * x
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        addpd xmm6,xmm0                         ;update sum_xx
        mulpd xmm2,xmm1                         ;calc x * y
        addpd xmm7,xmm2                         ;update sum_xy
 
        add ebx,16                              ;ebx = next x array value
        add edx,16                              ;edx = next x array value
        sub ecx,2                               ;adjust counter
        jnz @B                                  ;repeat until done
 
; Update sum variables with final x, y values if 'n' is odd
        or eax,eax
        jz CalcFinalSums                        ;jump if n is even
        movsd xmm0,real8 ptr [ebx]              ;load final x
        movsd xmm1,real8 ptr [edx]              ;load final y
        movsd xmm2,xmm0
 
        addsd xmm4,xmm0                         ;update sum_x
        addsd xmm5,xmm1                         ;update sum_y
        mulsd xmm0,xmm0                         ;calc x * x
        addsd xmm6,xmm0                         ;update sum_xx
        mulsd xmm2,xmm1                         ;calc x * y
        addsd xmm7,xmm2                         ;update sum_xy
 
; Calculate final sum values
CalcFinalSums:
        haddpd xmm4,xmm4                        ;xmm4[63:0] = final sum_x
        haddpd xmm5,xmm5                        ;xmm5[63:0] = final sum_y
        haddpd xmm6,xmm6                        ;xmm6[63:0] = final sum_xx
        haddpd xmm7,xmm7                        ;xmm7[63:0] = final sum_xy
 
; Compute denom and make sure it's valid
; denom = n * sum_xx - sum_x * sum_x
        movsd xmm0,xmm3                         ;n
        movsd xmm1,xmm4                         ;sum_x
        mulsd xmm0,xmm6                         ;n * sum_xx
        mulsd xmm1,xmm1                         ;sum_x * sum_x
        subsd xmm0,xmm1                         ;xmm0 = denom
        movsd xmm2,xmm0
        andpd xmm2,xmmword ptr [PackedFp64Abs]  ;xmm2 = fabs(denom)
        comisd xmm2,real8 ptr [LsEpsilon]
        jb BadDenom                             ;jump if denom < fabs(denom)
 
; Compute and save slope
; slope = (n * sum_xy - sum_x * sum_y) / denom
        movsd xmm1,xmm4                         ;sum_x
        mulsd xmm3,xmm7                         ;n * sum_xy
        mulsd xmm1,xmm5                         ;sum_x * sum_y
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        subsd xmm3,xmm1                         ;slope_numerator
        divsd xmm3,xmm0                         ;xmm3 = final slope
        mov edx,[ebp+20]                        ;edx = 'm'
        movsd real8 ptr [edx],xmm3              ;save slope
 
; Compute and save intercept
; intercept = (sum_xx * sum_y - sum_x * sum_xy) / denom
        mulsd xmm6,xmm5                         ;sum_xx * sum_y
        mulsd xmm4,xmm7                         ;sum_x * sum_xy
        subsd xmm6,xmm4                         ;intercept_numerator
        divsd xmm6,xmm0                         ;xmm6 = final intercept
        mov edx,[ebp+24]                        ;edx = 'b'
        movsd real8 ptr [edx],xmm6              ;save intercept
        mov eax,1                               ;success return code
 
Done:   pop ebx
        pop ebp
        ret
 
; Set 'm' and 'b' to 0.0
BadDenom:
        xor eax,eax                             ;set error code
        mov edx,[ebp+20]                        ;eax = 'm'
        mov [edx],eax
        mov [edx+4],eax                         ;*m = 0.0
        mov edx,[ebp+24]                        ;edx = 'b'
        mov [edx],eax
        mov [edx+4],eax                         ;*b = 0.0
        jmp Done
 
SsePfpLeastSquares_ endp
        end
 

The source file SsePackedFloatingPointLeastSquares.cpp (see Listing 9-8) 
includes a C++ function named SsePfpLeastSquaresCpp that calculates the slope and 
intercept for comparison purposes. The function _tmain defines a couple of test arrays 
named x and y using the extended attribute __declspec(align(16)), which instructs the 
compiler to align each of these arrays on a 16-byte boundary. The remainder of _tmain 
calls both implementations of the least squares algorithm and prints the results.

The assembly language code for function SsePfpLeastSquares_ (see Listing 9-9)  
begins by validating n for size and the arrays x and y for proper alignment. The test 
ebx,0fh instruction performs a bitwise AND of the address of array x and 0x0f; a 
non-zero result indicates that the array is improperly aligned. A similar check is also 
performed for array y. Following validation of the function arguments, a series of 
initializations is performed. A cvtsi2sd xmm3,ecx instruction converts the value of n to 
double-precision floating-point for later use. The value in ECX is then rounded down to 
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the nearest even number using an and ecx,0fffffffeh instruction and EAX is set to  
0 or 1 depending on whether the original value of n is even or odd. These adjustments are 
required in order to ensure proper processing of arrays x and y using packed arithmetic.

Recall from the discussions in Chapter 4 that in order to compute the slope and 
intercept of a least squares regression line, you need to calculate four intermediate sum 
values: sum_x, sum_y, sum_xx, and sum_xy. The summation loop that calculates these 
values in this sample program uses packed double-precision floating-point arithmetic. 
This means that the function can process two elements from arrays x and y during each 
loop iteration, which halves the number of required iterations. The sum values for array 
elements with even-numbered indices are computed using the low-order quadwords of 
XMM4-XMM7, while the high-order quadwords are used to calculate the sum values for 
array elements with odd-numbered indices.

Prior to entering the summation loop, each sum value register is initialized to 0 using 
an xorpd instruction. At the top of the summation loop, a movapd xmm0,xmmword ptr 
[ebx] essentially copies x[i] and x[i+1] into the low-order and high-order quadwords 
of XMM0, respectively. The next instruction, movapd xmm1,xmmword ptr [edx], loads 
y[i] and y[i+1] into the low-order and high-order quadwords of XMM1. A sequence 
of addpd and mulpd instructions updates the packed sum values that are maintained in 
XMM4-XMM7. Array pointer registers EBX and EDX are then incremented by 16 (or the 
size of two double-precision floating-point values) and the count value in ECX is adjusted 
before the next summation loop iteration. Following completion of the summation loop, 
a check is made to determine if the original value of n was odd. If this is true, the last 
element of array x and array y must be included in the packed sum values. Note that the 
scalar instructions addsd and mulsd are used to carry out this operation.

Following computation of the packed sum values, a series of haddpd (Packed 
Double-FP Horizontal Add) instructions compute the final values of sum_x, sum_y, 
sum_xx, and sum_xy. Each haddpd DesOp, SrcOp instruction computes DesOp[63:0] = 
DesOp[127:64] + DesOp[63:0] and DesOp[127:64] = SrcOp[127:64] + SrcOp[63:0]. 
Subsequent to the execution of the haddpd instructions, the low-order quadwords of 
registers XMM4-XMM7 contain the final sum values. The high-order quadwords of these 
registers also contain the final sum values, but this is a consequence of using haddpd 
with the same source and destination operand. The value of denom is computed next and 
tested to make sure it’s greater than or equal to LsEpsilon (values less than LsEpsilon are 
considered too close to zero to be valid). After validation of denom, the slope and intercept 
values are calculated using simple x86-SSE scalar arithmetic. Output 9-4 shows the results 
of SsePackedFloatingPointLeastSquares.

Output 9-4. Sample Program SsePackedFloatingPointLeastSquares

Results from SsePackedFloatingPointLeastSquaresCpp
  rc:                   1
  slope:       0.10324631
  intercept:  -0.10700632
 
Results from SsePackedFloatingPointLeastSquares_
  rc:                   1
  slope:       0.10324631
  intercept:  -0.10700632

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9 ■ X86-SSe programming – paCked Floating-point

260

Packed Floating-Point 4 × 4 Matrices
Software applications such as computer graphics and computer-aided design programs 
often make extensive use of matrices. For example, three-dimensional (3D) computer 
graphics software typically employs matrices to perform common transformations 
such as translation, scaling, and rotation. When using homogeneous coordinates, each 
of these operations can be efficiently represented using a single 4 × 4 matrix. Multiple 
transformations can also be applied by merging a series of distinct transformation 
matrices into a single transformation matrix using matrix multiplication. This combined 
matrix is typically applied to an array of object vertices that defines a 3D model. It is 
important for 3D computer graphics software to carry out operations such as matrix 
multiplication and matrix-vector multiplication as quickly as possible since a 3D model 
may contain thousands or even millions of object vertices.

The product of two matrices is defined as follows. Let A be an m × n matrix where m 
and n denote the number of rows and columns, respectively. Let B be an n × p matrix.  
Let C be the product of A and B, which is an m × p matrix. The value of each element c(i, j) 
in C can be calculated using the following formula:

c a b i m j pi j ik k j
k

n

= = - = -
=

-

å
0

1

0 1 0 1, , ; , , 

Before proceeding to the sample code, a few comments are warranted. According 
to the definition of matrix multiplication, the number of columns in A must equal the 
number of rows in B. For example, if A is a 3 × 4 matrix and B is a 4 × 2 matrix, the product 
AB (a 3 × 2 matrix) can be calculated but BA is undefined. Also note that the value of 
each c(i, j) in C is simply the dot product of row i in matrix A and column j in matrix B. 
The sample assembly language code will exploit this fact to perform matrix-matrix and 
matrix-vector multiplications using SIMD arithmetic. Finally, unlike most mathematical 
texts, the subscripts in the matrix multiplication equation use zero-based indexing. This 
simplifies translating the equation into C++ and assembly language code.

SsePackedFloatingPointMatrix4x4 is the name of the next sample program.  
This sample program demonstrates using the x86-SSE instruction set to perform  
matrix-matrix and matrix-vector multiplication using 4 × 4 matrices and 4 × 1 vectors. 
Listings 9-10 and 9-11 show the C++ and x86 assembly language source for sample 
program SsePackedFloatingPointMatrix4x4.

Listing 9-10. SsePackedFloatingPointMatrix4x4.cpp

#include "stdafx.h"
#include "SsePackedFloatingPointMatrix4x4.h"
 
// The functions Mat4x4Mul and Mat4x4MulVec are defined in
// the file CommonFiles\Mat4x4.cpp
 
void SsePfpMatrix4x4MultiplyCpp(Mat4x4 m_des, Mat4x4 m_src1, Mat4x4 m_src2)
{
    Mat4x4Mul(m_des, m_src1, m_src2);
}
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void SsePfpMatrix4x4TransformVectorsCpp(Vec4x1* v_des, Mat4x4 m_src,
Vec4x1* v_src, int num_vec)
{
    for (int i= 0; i < num_vec; i++)
        Mat4x4MulVec(v_des[i], m_src, v_src[i]);
}
 
void SsePfpMatrix4x4Multiply(void)
{
    __declspec(align(16)) Mat4x4 m_src1;
    __declspec(align(16)) Mat4x4 m_src2;
    __declspec(align(16)) Mat4x4 m_des1;
    __declspec(align(16)) Mat4x4 m_des2;
 
    Mat4x4SetRow(m_src1, 0, 10.5, 11, 12, -13.625);
    Mat4x4SetRow(m_src1, 1, 14, 15, 16, 17.375);
    Mat4x4SetRow(m_src1, 2, 18.25, 19, 20.125, 21);
    Mat4x4SetRow(m_src1, 3, 22, 23.875, 24, 25);
 
    Mat4x4SetRow(m_src2, 0, 7, 1, 4, 8);
    Mat4x4SetRow(m_src2, 1, 14, -5, 2, 9);
    Mat4x4SetRow(m_src2, 2, 10, 9, 3, 6);
    Mat4x4SetRow(m_src2, 3, 2, 11, -14, 13);
 
    SsePfpMatrix4x4MultiplyCpp(m_des1, m_src1, m_src2);
    SsePfpMatrix4x4Multiply_(m_des2, m_src1, m_src2);
 
    printf("\nResults for SsePfpMatrix4x4Multiply()\n");
    Mat4x4Printf(m_src1, "\nMatrix m_src1\n");
    Mat4x4Printf(m_src2, "\nMatrix m_src2\n");
    Mat4x4Printf(m_des1, "\nMatrix m_des1\n");
    Mat4x4Printf(m_des2, "\nMatrix m_des2\n");
}
 
void SsePfpMatrix4x4TransformVectors(void)
{
    const int n = 8;
    __declspec(align(16)) Mat4x4 m_src;
    __declspec(align(16)) Vec4x1 v_src[n];
    __declspec(align(16)) Vec4x1 v_des1[n];
    __declspec(align(16)) Vec4x1 v_des2[n];
 
    Vec4x1Set(v_src[0], 10, 10, 10, 1);
    Vec4x1Set(v_src[1], 10, 11, 10, 1);
    Vec4x1Set(v_src[2], 11, 10, 10, 1);
    Vec4x1Set(v_src[3], 11, 11, 10, 1);
    Vec4x1Set(v_src[4], 10, 10, 12, 1);
    Vec4x1Set(v_src[5], 10, 11, 12, 1);
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    Vec4x1Set(v_src[6], 11, 10, 12, 1);
    Vec4x1Set(v_src[7], 11, 11, 12, 1);
 
    // m_src = scale(2, 3, 4)
    Mat4x4SetRow(m_src, 0, 2, 0, 0, 0);
    Mat4x4SetRow(m_src, 1, 0, 3, 0, 0);
    Mat4x4SetRow(m_src, 2, 0, 0, 7, 0);
    Mat4x4SetRow(m_src, 3, 0, 0, 0, 1);
 
    SsePfpMatrix4x4TransformVectorsCpp(v_des1, m_src, v_src, n);
    SsePfpMatrix4x4TransformVectors_(v_des2, m_src, v_src, n);
 
    printf("\nResults for SsePfpMatrix4x4TransformVectors()\n");
    Mat4x4Printf(m_src, "Matrix m_src\n");
    printf("\n");
 
    for (int i = 0; i < n; i++)
    {
        const char* fmt = "%4s %4d: %12.6f %12.6f %12.6f %12.6f\n";
        printf(fmt, "v_src  ", i, v_src[i][0], v_src[i][1], v_src[i][2],
v_src[i][3]);
        printf(fmt, "v_des1 ", i, v_des1[i][0], v_des1[i][1], v_des1[i][2],
v_des1[i][3]);
        printf(fmt, "v_des2 ", i, v_des2[i][0], v_des2[i][1], v_des2[i][2],
v_des2[i][3]);
        printf("\n");
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    SsePfpMatrix4x4Multiply();
    SsePfpMatrix4x4TransformVectors();
 
    SsePfpMatrix4x4MultiplyTimed();
    SsePfpMatrix4x4TransformVectorsTimed();
    return 0;
} 

Listing 9-11. SsePackedFloatingPointMatrix4x4_.asm

        .model flat,c
        .code
 
; _Mat4x4Transpose macro
;
; Description:  This macro computes the transpose of a 4x4
;               single-precision floating-point matrix.
;
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;   Input Matrix                    Output Matrtix
;   xmm0    a3 a2 a1 a0             xmm4    d0 c0 b0 a0
;   xmm1    b3 b2 b1 b0             xmm5    d1 c1 b1 a1
;   xmm2    c3 c2 c1 c0             xmm6    d2 c2 b2 a2
;   xmm3    d3 d2 d1 d0             xmm7    d3 c3 b3 a3
;
; Note:     The row of a 4x4 matrix is reversed when loaded into an
;           XMM register due to x86 little-endian ordering.
;
; Requires: SSE
 
_Mat4x4Transpose macro
        movaps xmm4,xmm0
        unpcklps xmm4,xmm1                  ;xmm4 = b1 a1 b0 a0
        unpckhps xmm0,xmm1                  ;xmm0 = b3 a3 b2 a2
        movaps xmm5,xmm2
        unpcklps xmm5,xmm3                  ;xmm5 = d1 c1 d0 c0
        unpckhps xmm2,xmm3                  ;xmm2 = d3 c3 d2 c2
 
        movaps xmm1,xmm4
        movlhps xmm4,xmm5                   ;xmm4 = d0 c0 b0 a0
        movhlps xmm5,xmm1                   ;xmm5 = d1 c1 b1 a1
        movaps xmm6,xmm0
        movlhps xmm6,xmm2                   ;xmm6 = d2 c2 b2 a2
        movaps xmm7,xmm2
        movhlps xmm7,xmm0                   ;xmm7 = d3 c3 b2 a3
        endm
 
; extern "C" void SsePfpMatrix4x4Multiply_(Mat4x4 m_des, Mat4x4 m_src1,
Mat4x4 m_src2);
;
; Description:  The following function computes the product of two
;               4x4 single-precision floating-point matrices.
;
; Requires: SSE4.1
 
SsePfpMatrix4x4Multiply_ proc
        push ebp
        mov ebp,esp
        push ebx
 
; Compute transpose of m_src2 (m_src2_T)
        mov ebx,[ebp+16]                    ;ebx = m_src2
        movaps xmm0,[ebx]
        movaps xmm1,[ebx+16]
        movaps xmm2,[ebx+32]
        movaps xmm3,[ebx+48]                ;xmm3:xmm0 = m_src2
        _Mat4x4Transpose                    ;xmm7:xmm4 = m_src2_T
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; Perform initializations for matrix product
        mov edx,[ebp+8]                     ;edx = m_des
        mov ebx,[ebp+12]                    ;ebx = m_src1
        mov ecx,4                           ;ecx = number of rows
        xor eax,eax                         ;eax = offset into arrays
 
; Repeat loop until matrix product is calculated.
        align 16
@@:     movaps xmm0,[ebx+eax]               ;xmm0 = row i of m_src1
 
; Compute dot product of m_src1 row i and m_src2_T row 0
        movaps xmm1,xmm0
        dpps xmm1,xmm4,11110001b            ;xmm1[31:0] = dot product
        insertps xmm3,xmm1,00000000b        ;xmm3[31:0] = xmm1[31:0]
 
; Compute dot product of m_src1 row i and m_src2_T row 1
        movaps xmm2,xmm0
        dpps xmm2,xmm5,11110001b            ;xmm2[31:0] = dot product
        insertps xmm3,xmm2,00010000b        ;xmm3[63:32] = xmm2[31:0]
 
; Compute dot product of m_src1 row i and m_src2_T row 2
        movaps xmm1,xmm0
        dpps xmm1,xmm6,11110001b            ;xmm1[31:0] = dot product
        insertps xmm3,xmm1,00100000b        ;xmm3[95:64] = xmm1[31:0]
 
; Compute dot product of m_src1 row i and m_src2_T row 3
        movaps xmm2,xmm0
        dpps xmm2,xmm7,11110001b            ;xmm2[31:0] = dot product
        insertps xmm3,xmm2,00110000b        ;xmm3[127:96] = xmm2[31:0]
 
; Save m_des.row i and update loop variables
        movaps [edx+eax],xmm3               ;save current row result
        add eax,16                          ;set array offset to next row
        dec ecx
        jnz @B
 
        pop ebx
        pop ebp
        ret
SsePfpMatrix4x4Multiply_ endp
 
; extern void SsePfpMatrix4x4TransformVectors_(Vec4x1* v_des, Mat4x4 m_src,
Vec4x1* v_src, int num_vec);
;
; Description:  The following function applies a transformation matrix
;               to an array 4x1 single-precision floating-point vectors.
;
; Requires:     SSE4.1
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SsePfpMatrix4x4TransformVectors_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Make sure num_vec is valid
        mov ecx,[ebp+20]                    ;ecx = num_vec
        test ecx,ecx
        jle Done                            ;jump if num_vec <= 0
 
; Load m_src into xmm3:xmm0
        mov eax,[ebp+12]                    ;eax = pointer to m_src
        movaps xmm0,[eax]                   ;xmm0 = row 0
        movaps xmm1,[eax+16]                ;xmm1 = row 1
        movaps xmm2,[eax+32]                ;xmm2 = row 2
        movaps xmm3,[eax+48]                ;xmm3 = row 3
 
; Initialize pointers to v_src and v_des
        mov esi,[ebp+16]                    ;esi = pointer to v_src
        mov edi,[ebp+8]                     ;edi = pointer to v_des
        xor eax,eax                         ;eax = array offset
 
; Compute v_des[i] = m_src * v_src[i]
        align 16
@@:     movaps xmm4,[esi+eax]               ;xmm4 = vector v_src[i]
 
; Compute dot product of m_src row 0 and v_src[i]
        movaps xmm5,xmm4
        dpps xmm5,xmm0,11110001b            ;xmm5[31:0] = dot product
        insertps xmm7,xmm5,00000000b        ;xmm7[31:0] = xmm5[31:0]
 
; Compute dot product of m_src row 1 and v_src[i]
        movaps xmm6,xmm4
        dpps xmm6,xmm1,11110001b            ;xmm6[31:0] = dot product
        insertps xmm7,xmm6,00010000b        ;xmm7[63:32] = xmm6[31:0]
 
; Compute dot product of m_src row 2 and v_src[i]
        movaps xmm5,xmm4
        dpps xmm5,xmm2,11110001b            ;xmm5[31:0] = dot product
        insertps xmm7,xmm5,00100000b        ;xmm7[95:64] = xmm5[31:0]
 
; Compute dot product of m_src row 3 and v_src[i]
        movaps xmm6,xmm4
        dpps xmm6,xmm3,11110001b            ;xmm6[31:0] = dot product
        insertps xmm7,xmm6,00110000b        ;xmm7[127:96] = xmm6[31:0]
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; Save v_des[i] and update loop variables
        movaps [edi+eax],xmm7               ;save transformed vector
        add eax,16
        dec ecx
        jnz @B
 
Done:   pop edi
        pop esi
        pop ebp
        ret
SsePfpMatrix4x4TransformVectors_ endp
        end
 

The C++ file SsePackedFloatingPointMatrix4x4.cpp (see Listing 9-10) contains 
a couple of test functions that demonstrate matrix-matrix multiplication and matrix-
vector transformation. The function SsePfpMatrix4x4Multiply initializes a couple of test 
matrices. It then invokes C++ and assembly language versions of a matrix multiplication 
function. The results of these functions are then printed for comparison purposes. Note 
that some of C++ matrix functions are defined in a file named Mat4x4.cpp. This file is 
not shown here but is included as part of the downloadable source code. The function 
SsePfpMatrix4x4TransformVectors uses the same arrangement to demonstrate  
matrix-vector transformations.

The notable parts of sample program SsePackedFloatingPointMatrix4x4 are 
contained in the assembly language file SsePackedFloatingPointMatrix4x4_.asm  
(see Listing 9-11). Near the top of this file is a macro named _Mat4x4Transpose. A macro 
is an assembler text substitution mechanism that enables a programmer to represent 
a sequence of assembly language instructions, data definitions, or other statements 
using a single text string. During assembly of an x86 assembly language source code file, 
the assembler replaces any occurrence of the macro name with the statements that are 
declared between the macro and endm directives. Assembly language macros are typically 
employed to generate sequences of instructions that will be used more than once.  
Macros are also frequently used to avoid the performance overhead of a function call. 
You’ll learn more about the macro processing capabilities of MASM throughout the 
remainder of this book.

The macro _Mat4x4Transpose declares a sequence of assembly language instructions 
that computes the transpose of a 4 × 4 matrix of single-precision floating-point values. 
The transpose of a matrix is defined as follows. If A is an m ×  n matrix, the transpose of 
A (denoted by B) is an n × m matrix, where b(i,j) = a(j,i). The macro _Mat4x4Transpose 
requires the source matrix to be loaded in registers XMM0-XMM3 and saves the 
transposed matrix in registers XMM4-XMM7. The actual transposition of the source matrix 
is performed using a combination of movaps, unpcklps, unpckhps, movlhps, and movhlps 
instructions, as illustrated in Figure 9-2.
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Matrix A

3 8 7 22 7 8 3

11 14 16 10

24 21 27 29

31 34 38 33

=A
10 16 14 11

29 27 21 24

33 38 34 31

xmm0

xmm1

xmm2

xmm3

Matrix A in xmm3:xmm0

movaps xmm4, xmm0 3 8 7 2 xmm4

unpcklps xmm4, xmm1 14 7 11 2 xmm4

movaps xmm5, xmm2

unpcklps xmm5, xmm3

unpckhps xmm0, xmm1

unpckhps xmm2, xmm3

29 27 21 24 xmm5

34 21 31 24 xmm5

10 3 16 8 xmm0

33 29 38 27 xmm2

movaps xmm1, xmm4 14 7 11 2 xmm1

movlhps xmm4, xmm5 31 24 11 2 xmm4

movhlps xmm5, xmm1

movaps xmm6, xmm0

movlhps xmm6, xmm2

movaps xmm7, xmm2

34 21 14 7 xmm5

10 3 16 8 xmm6

38 27 16 8 xmm6

33 29 38 27 xmm7

movhlps xmm7, xmm0 33 29 10 3 xmm7

Transpose of Matrix A

2 1 1 2 4 3 1

7 14 21 34

8 16 27 38

3 10 29 33

=TA

31 24 11 2

34 21 14 7

38 27 16 8

33 29 10 3

xmm4

xmm5

xmm6

xmm7

Transpose of Matrix A in xmm7:xmm3

Figure 9-2. Instruction sequence used by macro _Mat4x4Transpose to transpose a  
4 × 4 matrix of single-precision floating-point values

The function SsePfpMatrix4x4Multiply_ uses the macro _Mat4x4Transpose to 
compute the product of two 4 × 4 matrices. Earlier in this section you learned that each 
c(i,j) of the matrix product C = AB is simply the dot product of row i in A and column j in 
B. This means that you can use the x86-SSE dpps (Dot Product of Packed Single-Precision 
Floating-Point Values) instruction to accelerate the multiplication of two 4 × 4 matrices. 
Recall that C++ uses row-major ordering to organize the elements of a two-dimensional 
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matrix in memory. The use of row-major ordering means that an entire row of a 4 × 4 
single-precision floating-point matrix can be loaded into an XMM register using the 
movaps instruction. Unfortunately, there is no single x86-SSE instruction that can load the 
column of a matrix into an XMM register. The solution to the dilemma is to transpose one 
of the matrices since this facilitates use of the dpps instruction.

Take a closer look at the function SsePfpMatrix4x4Multiply_. Immediately 
following its prolog, the matrix m_src2 is loaded into registers XMM0-XMM3 using a 
series of movaps instructions. The macro _Mat4x4Transpose is then employed to compute 
the transpose of matrix m_src2, which is represented by m_src2_T. (Figure 9-3 contains a 
portion of the MASM listing file that shows the expansion of macro _Mat4x4Transpose.) 
Next, registers EBX and EDX are initialized as pointers to m_src1 and m_des, respectively. 
ECX is then initialized as a loop counter and EAX as a row offset value for both m_src1 
and m_des. At the top of the main processing loop, a movaps xmm0,[ebx+eax] instruction 
loads row 0 of m_src1 into XMM0. Following a movaps xmm1,xmm0 instruction, a dpps 
xmm1,xmm4,11110001b instruction computes the dot product of m_src1 row 0 and 
m_src2_T row 0. The upper four bits of the dpps immediate operand is a conditional mask 
that specifies which element pairs in XMM1 and XMM4 are multiplied. In this example, 
all four product pairs are computed (i.e., xmm1[31:0] * xmm4[31:0], xmm1[63:32] * 
xmm4[63:32], and so on). If a conditional mask bit position is equal to zero, a value of 0.0 
is used for the result instead of the multiplicative product. The lower four bits of the dpps 
immediate operand are a broadcast mask that specifies whether the dot product result 
(bit = 1) or 0.0 is copied to the corresponding element in the destination operand.

Figure 9-3. Expansion of macro _Mat4x4Transpose
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An insertps xmm3,xmm1,00000000b instruction copies the computed dot product 
into the correct elemental position of m_des that is maintained in XMM3. Bits 7:6 of the 
insertps immediate operand specify which source operand element to copy; bits 5:4 
specify the destination operand element. Bits 3:0 are used as a zero mask to conditionally 
set a destination operand element to zero. The next set of movaps, dpps, and insertps 
instructions calculates and saves the dot product of m_src1 row 0 and m_src2_T row 1. 
This dot product computation pattern is repeated using the rows of m_src1 and m_src2_T 
until all 16 required dot products have been calculated and saved.

The assembly language file SsePackedFloatingPointMatrix4x4_.asm also contains 
a function named SsePfpMatrix4x4TransformVectors_. This function applies a 4 × 4 
transformation matrix to each vector in an array of 4 × 1 vectors. It also uses the dpps 
instruction to accelerate the process of multiplying a 4 × 4 matrix by a 4 × 1 vector.  
Output 9-5 shows the results of the SsePackedFloatingPointMatrix4x4 sample program. 
Tables 9-2 and 9-3 contain some timing measurements for comparison purposes. The 
source code for the timing measurements is not shown here but is included as part of the 
downloadable sample code file.

Output 9-5. Sample Program SsePackedFloatingPointMatrix4x4

Results for SsePfpMatrix4x4Multiply()
 
Matrix m_src1
     10.500000      11.000000      12.000000     -13.625000
     14.000000      15.000000      16.000000      17.375000
     18.250000      19.000000      20.125000      21.000000
     22.000000      23.875000      24.000000      25.000000
 

Table 9-2. Mean Execution Times (in Microseconds) for SsePfpMatrix4x4Multiply 
Functions (2,000 Matrix Multiplications)

CPU C++ X86-SSE

Intel Core i7-4770 50 31

Intel Core i7-4600U 64 41

Intel Core i3-2310M 97 68

Table 9-3. Mean Execution Times (in Microseconds) for SsePfpMatrix4x4TransformVectors 
Functions (10,000 Vector Transformations)

CPU C++ X86-SSE

Intel Core i7-4770 43 26

Intel Core i7-4600U 55 31

Intel Core i3-2310M 91 63
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Matrix m_src2
      7.000000       1.000000       4.000000       8.000000
     14.000000      -5.000000       2.000000       9.000000
     10.000000       9.000000       3.000000       6.000000
      2.000000      11.000000     -14.000000      13.000000
 
Matrix m_des1
    320.250000     -86.375000     290.750000      77.875000
    502.750000     274.125000    -109.250000     568.875000
    637.000000     335.375000    -122.625000     710.750000
    778.250000     393.625000    -142.250000     859.875000
 
Matrix m_des2
    320.250000     -86.375000     290.750000      77.875000
    502.750000     274.125000    -109.250000     568.875000
    637.000000     335.375000    -122.625000     710.750000
    778.250000     393.625000    -142.250000     859.875000
 
Results for SsePfpMatrix4x4TransformVectors()
Matrix m_src
      2.000000       0.000000       0.000000       0.000000
      0.000000       3.000000       0.000000       0.000000
      0.000000       0.000000       7.000000       0.000000
      0.000000       0.000000       0.000000       1.000000
 
v_src      0:    10.000000    10.000000    10.000000     1.000000
v_des1     0:    20.000000    30.000000    70.000000     1.000000
v_des2     0:    20.000000    30.000000    70.000000     1.000000
 
v_src      1:    10.000000    11.000000    10.000000     1.000000
v_des1     1:    20.000000    33.000000    70.000000     1.000000
v_des2     1:    20.000000    33.000000    70.000000     1.000000
 
v_src      2:    11.000000    10.000000    10.000000     1.000000
v_des1     2:    22.000000    30.000000    70.000000     1.000000
v_des2     2:    22.000000    30.000000    70.000000     1.000000
 
v_src      3:    11.000000    11.000000    10.000000     1.000000
v_des1     3:    22.000000    33.000000    70.000000     1.000000
v_des2     3:    22.000000    33.000000    70.000000     1.000000
 
v_src      4:    10.000000    10.000000    12.000000     1.000000
v_des1     4:    20.000000    30.000000    84.000000     1.000000
v_des2     4:    20.000000    30.000000    84.000000     1.000000
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v_src      5:    10.000000    11.000000    12.000000     1.000000
v_des1     5:    20.000000    33.000000    84.000000     1.000000
v_des2     5:    20.000000    33.000000    84.000000     1.000000
 
v_src      6:    11.000000    10.000000    12.000000     1.000000
v_des1     6:    22.000000    30.000000    84.000000     1.000000
v_des2     6:    22.000000    30.000000    84.000000     1.000000
 
v_src      7:    11.000000    11.000000    12.000000     1.000000
v_des1     7:    22.000000    33.000000    84.000000     1.000000
v_des2     7:    22.000000    33.000000    84.000000     1.000000
 
Results for SsePfpMatrix4x4MultiplyTimed()
Benchmark times saved to __SsePfpMatrix4x4MultiplyTimed.csv
 
Results for SsePfpMatrix4x4TransformVectorsTimed()
Benchmark times saved to __SsePfpMatrix4x4TransformVectorsTimed.csv 

Note ■  if you run a sample program using the Visual Studio ide, any program-generated 
result files are saved in the folder Chapter##\<ProgramName>\<ProgramName>,  
where ## denotes the chapter number and <ProgramName> represents the name of the 
sample program.

Using the x86-SSE instruction set to perform matrix multiplication produced a 
30-38 percent improvement in performance depending on the target processor. The 
x86-SSE matrix-vector multiplication function also generated a noteworthy performance 
improvement of 31-40 percent.

Summary
This chapter focused on the packed floating-point capabilities of x86-SSE. You learned 
how to perform basic arithmetic operations using 128-bit wide packed floating-point 
operands. You also examined some sample code that demonstrated practical SIMD 
processing techniques using floating-point arrays and 4 × 4 matrices. In the next chapter, 
you’ll learn how to create assembly language functions that exploit the packed integer 
resources of x86-SSE.
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Chapter 10

X86-SSE Programming – 
Packed Integers

In Chapter 6 you learned how to manipulate packed integers using the computational 
resources of MMX. In this chapter, you learn how to process packed integers using the 
computational resources of x86-SSE. The first sample program highlights using the  
x86-SSE instruction set to perform basic packed integer operations with the XMM 
registers. You’ll learn rather quickly that working with the 128-bit wide XMM registers to 
perform packed integer operations is not that much different than using the 64-bit wide 
MMX registers. The last two sample programs explain how to use the x86-SSE instruction 
set to perform common image-processing tasks, including histogram construction and 
grayscale image thresholding.

Like the previous two chapters, the sample code in this chapter uses various levels 
of x86-SSE. The documentation header of each assembly language function lists the 
required x86-SSE extension. You can verify the level of x86-SSE supported by your PC 
using one of the software utilities listed in Appendix C.

Packed Integer Fundamentals
The first x86-SSE packed integer sample program that you study is named 
SsePackedIntegerFundamentals. The purpose of this sample program is to demonstrate 
how to perform common packed integer operations using the XMM registers. The C++ 
and assembly language source code for sample program SsePackedIntegerFundamentals 
is shown in Listings 10-1 and 10-2.

Listing 10-1. SsePackedIntegerFundamentals.cpp

#include "stdafx.h"
#include "XmmVal.h"
 
extern "C" void SsePiAddI16_(const XmmVal* a, const XmmVal* b, XmmVal c[2]);
extern "C" void SsePiSubI32_(const XmmVal* a, const XmmVal* b, XmmVal* c);
extern "C" void SsePiMul32_(const XmmVal* a, const XmmVal* b, XmmVal c[2]);
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void SsePiAddI16(void)
{
    _declspec(align(16)) XmmVal a;
    _declspec(align(16)) XmmVal b;
    _declspec(align(16)) XmmVal c[2];
    char buff[256];
 
    a.i16[0] = 10;          b.i16[0] = 100;
    a.i16[1] = 200;         b.i16[1] = -200;
    a.i16[2] = 30;          b.i16[2] = 32760;
    a.i16[3] = -32766;      b.i16[3] = -400;
    a.i16[4] = 50;          b.i16[4] = 500;
    a.i16[5] = 60;          b.i16[5] = -600;
    a.i16[6] = 32000;       b.i16[6] = 1200;
    a.i16[7] = -32000;      b.i16[7] = -950;
 
    SsePiAddI16_(&a, &b, c);
 
    printf("\nResults for SsePiAddI16_\n");
    printf("a:    %s\n", a.ToString_i16(buff, sizeof(buff)));
    printf("b:    %s\n", b.ToString_i16(buff, sizeof(buff)));
    printf("c[0]: %s\n", c[0].ToString_i16(buff, sizeof(buff)));
    printf("\n");
    printf("a:    %s\n", a.ToString_i16(buff, sizeof(buff)));
    printf("b:    %s\n", b.ToString_i16(buff, sizeof(buff)));
    printf("c[1]: %s\n", c[1].ToString_i16(buff, sizeof(buff)));
}
 
void SsePiSubI32(void)
{
    _declspec(align(16)) XmmVal a;
    _declspec(align(16)) XmmVal b;
    _declspec(align(8)) XmmVal c;       // Misaligned XmmVal
    char buff[256];
 
    a.i32[0] = 800;        b.i32[0] = 250;
    a.i32[1] = 500;        b.i32[1] = -2000;
    a.i32[2] = 1000;       b.i32[2] = -40;
    a.i32[3] = 900;        b.i32[3] = 1200;
 
    SsePiSubI32_(&a, &b, &c);
 
    printf("\nResults for SsePiSubI32_\n");
    printf("a: %s\n", a.ToString_i32(buff, sizeof(buff)));
    printf("b: %s\n", b.ToString_i32(buff, sizeof(buff)));
    printf("c: %s\n", c.ToString_i32(buff, sizeof(buff)));
}
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void SsePiMul32(void)
{
    __declspec(align(16)) XmmVal a;
    __declspec(align(16)) XmmVal b;
    __declspec(align(16)) XmmVal c[2];
    char buff[256];
 
    a.i32[0] = 10;          b.i32[0] = 100;
    a.i32[1] = 20;          b.i32[1] = -200;
    a.i32[2] = -30;         b.i32[2] = 300;
    a.i32[3] = -40;         b.i32[3] = -400;
 
    SsePiMul32_(&a, &b, c);
 
    printf("\nResults for SsePiMul32_\n");
    printf("a:    %s\n", a.ToString_i32(buff, sizeof(buff)));
    printf("b:    %s\n", b.ToString_i32(buff, sizeof(buff)));
    printf("c[0]: %s\n", c[0].ToString_i32(buff, sizeof(buff)));
    printf("\n");
    printf("a:    %s\n", a.ToString_i32(buff, sizeof(buff)));
    printf("b:    %s\n", b.ToString_i32(buff, sizeof(buff)));
    printf("c[1]: %s\n", c[1].ToString_i64(buff, sizeof(buff)));
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    SsePiAddI16();
    SsePiSubI32();
    SsePiMul32();
    return 0;
} 

Listing 10-2. SsePackedIntegerFundamentals_.asm

        .model flat,c
        .code
 
; extern "C" void SsePiAddI16_(const XmmVal* a, const XmmVal* b, XmmVal c[2]);
;
; Description:  The following function demonstrates packed signed word
;               addition using wraparound and saturated modes.
;
; Requires:     SSE2
 
SsePiAddI16_ proc
        push ebp
        mov ebp,esp
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; Initialize
        mov eax,[ebp+8]                     ;eax = pointer to a
        mov ecx,[ebp+12]                    ;ecx = pointer to b
        mov edx,[ebp+16]                    ;edx = pointer to c
 
; Load XmmVals a and b
        movdqa xmm0,[eax]                   ;xmm0 = a
        movdqa xmm1,xmm0
        movdqa xmm2,[ecx]                   ;xmm2 = b
 
; Perform packed word additions
        paddw xmm0,xmm2                     ;packed add - wraparound
        paddsw xmm1,xmm2                    ;packed add - saturated
 
; Save results
        movdqa [edx],xmm0                   ;save c[0]
        movdqa [edx+16],xmm1                ;save c[1]
 
        pop ebp
        ret
SsePiAddI16_ endp
 
; extern "C" void SsePiSubI32_(const XmmVal* a, const XmmVal* b, XmmVal* c);
;
; Description:  The following function demonstrates packed signed
;               doubleword subtraction.
;
; Requires:     SSE2
 
SsePiSubI32_ proc
        push ebp
        mov ebp,esp
 
; Initialize
        mov eax,[ebp+8]                     ;eax = pointer to a
        mov ecx,[ebp+12]                    ;ecx = pointer to b
        mov edx,[ebp+16]                    ;edx = pointer to c
 
; Perform packed doubleword subtraction
        movdqa xmm0,[eax]                   ;xmm0 = a
        psubd xmm0,[ecx]                    ;xmm0 = a - b
        movdqu [edx],xmm0                   ;save result to unaligned mem
 
        pop ebp
        ret
SsePiSubI32_ endp
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; extern "C" void SsePiMul32_(const XmmVal* a, const XmmVal* b, XmmVal c[2]);
;
; Description:  The following function demonstrates packed doubleword
;               multiplication.
;
; Requires:     SSE4.1
 
SsePiMul32_ proc
        push ebp
        mov ebp,esp
 
; Initialize
        mov eax,[ebp+8]                 ;eax = pointer to a
        mov ecx,[ebp+12]                ;ecx = pointer to b
        mov edx,[ebp+16]                ;edx = pointer to c
 
; Load values and perform the multiplication
        movdqa xmm0,[eax]               ;xmm0 = a
        movdqa xmm1,[ecx]               ;xmm1 = b
 
        movdqa xmm2,xmm0
        pmulld xmm0,xmm1                ;signed dword mul - low result
        pmuldq xmm2,xmm1                ;signed dword mul - qword result
 
        movdqa [edx],xmm0               ;c[0] = pmulld result
        movdqa [edx+16],xmm2            ;c[1] = pmuldq result
 
        pop ebp
        ret
SsePiMul32_ endp
        end
 

The C++ file SsePackedIntegerFundamentals.cpp (see Listing 10-1) contains three 
test functions that exemplify packed integer addition, subtraction, and multiplication 
using the x86-SSE instruction set. The first function, named SsePiAddI16, initializes a 
couple of XmmVal instances using 16-bit signed integers. It then invokes an assembly 
language function to perform packed integer addition using both wraparound and 
saturated arithmetic. The second test function, called SsePiSubI32, readies a few XmmVal 
variables in order to illustrate packed integer subtraction using 32-bit signed integers. 
Note that in this function, the XmmVal variable c is deliberately misaligned in order to 
demonstrate use of an unaligned data transfer instruction. SsePiMul32 is the name of the 
final test function, which primes a couple of XmmVal variables for packed 32-bit integer 
multiplication.

The assembly language file SsePackedIntegerFundamentals_.asm (see Listing 10-2)  
contains the corresponding assembly language functions. Following its prolog, the 
function SsePiAddI16_ loads the argument values a, b, and c into registers EAX, ECX, and 
EDX, respectively. A movdqa xmm0,[eax] (Move Aligned Double Quadword) instruction 
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loads a into XMM0. As implied by its name, the movdqa instruction requires any memory 
operand that it references to be properly aligned on a 16-byte boundary. A movdqa 
xmm1,xmm0 is then used to copy the contents of XMM0 into XMM1. This is followed by 
a movdqa xmm2,[ecx] instruction that loads b into XMM2. The instructions paddw and 
paddsw perform packed 16-bit signed integer addition using wraparound and saturated 
arithmetic, respectively. The results are then saved to the caller-specified array using a set 
of movdqa instructions.

The function SsePiSub32_ uses the psubd instruction to perform packed subtraction 
using doubleword signed integers. Note that the result is saved to memory using a 
movdqu (Move Unaligned Double Quadword) instruction. The destination operand of 
this instruction corresponds to the XmmVal that was intentionally misaligned in the C++ 
function SsePiSubI32. Using a movdqa instruction here would cause the processor to 
generate an exception. The final assembly language function, SsePiMul32_, illustrates 
packed doubleword signed integer multiplication. Note that the x86-SSE instruction 
set supports two different forms of packed doubleword signed integer multiplication. 
The pmulld (Multiply Packed Signed Dword Integers and Store Low Result) instruction 
performs signed integer multiplication using 32-bit values and saves the low-order 32 
bits of each product. The pmuldq (Multiply Packed Signed Dword Integers) instruction 
computes des[63:0] = des[31:0] * src[31:0] and des[127:64] = des[95:64] * 
src[95:64] using signed integer multiplication and saves the entire 64-bit (quadword) 
product. Output 10-1 shows the results of the SsePackedIntegerFundamentals sample 
program.

Output 10-1. Sample Program SsePackedIntegerFundamamentals

Results for SsePiAddI16_
a:     10      200       30   -32766 |       50       60    32000   -32000
b:    100     -200    32760     -400 |      500     -600     1200     -950
c[0]: 110        0   -32746    32370 |      550     -540   -32336    32586
 
a:     10      200       30   -32766 |       50       60    32000   -32000
b:    100     -200    32760     -400 |      500     -600     1200     -950
c[1]: 110        0    32767   -32768 |      550     -540    32767   -32768
 
Results for SsePiSubI32_
a:          800          500 |         1000          900
b:          250        -2000 |          -40         1200
c:          550         2500 |         1040         -300
 
Results for SsePiMul32_
a:              10           20 |          -30          -40
b:             100         -200 |          300         -400
c[0]:         1000        -4000 |        -9000        16000
 
a:              10           20 |          -30          -40
b:             100         -200 |          300         -400
c[1]:                      1000 |                     -9000
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Advanced Packed Integer Programming
The packed integer capabilities of x86-SSE are frequently used to accelerate the 
performance of common algorithms in image processing and computer graphics. In this 
section, you learn how to construct an image histogram using the x86-SSE instruction 
set. You also examine a sample program that performs image thresholding using SIMD 
processing techniques.

Packed Integer Histogram
The next sample program that you study is called SsePackedIntegerHistogram, which 
builds a histogram of intensity values for an image containing 8-bit grayscale pixels. 
Figure 10-1 shows a sample grayscale image and its histogram. This program also 
demonstrates how to dynamically allocate a memory buffer that is properly aligned for 
use with the x86-SSE instruction set. Listings 10-3 and 10-4 show the C++ and assembly 
language source code for the SsePackedIntegerHistogram sample program.

Figure 10-1. Sample grayscale image and its histogram

Listing 10-3. SsePackedIntegerHistogram.cpp

#include "stdafx.h"
#include "SsePackedIntegerHistogram.h"
#include <string.h>
#include <malloc.h>
 
extern "C" Uint32 NUM_PIXELS_MAX = 16777216;
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bool SsePiHistogramCpp(Uint32* histo, const Uint8* pixel_buff, Uint32 num_pixels)
{
    // Make sure num_pixels is valid
    if ((num_pixels > NUM_PIXELS_MAX) || (num_pixels % 32 != 0))
        return false;
 
    // Make sure histo is aligned to a 16-byte boundary
    if (((uintptr_t)histo & 0xf) != 0)
        return false;
 
    // Make sure pixel_buff is aligned to a 16-byte boundary
    if (((uintptr_t)pixel_buff & 0xf) != 0)
        return false;
 
    // Build the histogram
    memset(histo, 0, 256 * sizeof(Uint32));
 
    for (Uint32 i = 0; i < num_pixels; i++)
        histo[pixel_buff[i]]++;
 
    return true;
}
 
void SsePiHistogram(void)
{
    const wchar_t* image_fn = L"..\\..\\..\\DataFiles\\TestImage1.bmp";
    const char* csv_fn = "__TestImage1_Histograms.csv";
 
    ImageBuffer ib(image_fn);
    Uint32 num_pixels = ib.GetNumPixels();
    Uint8* pixel_buff = (Uint8*)ib.GetPixelBuffer();
    Uint32* histo1 = (Uint32*)_aligned_malloc(256 * sizeof(Uint32), 16);
    Uint32* histo2 = (Uint32*)_aligned_malloc(256 * sizeof(Uint32), 16);
    bool rc1, rc2;
 
    rc1 = SsePiHistogramCpp(histo1, pixel_buff, num_pixels);
    rc2 = SsePiHistogram_(histo2, pixel_buff, num_pixels);
 
    printf("Results for SsePiHistogram()\n");
 
    if (!rc1 || !rc2)
    {
        printf("  Bad return code: rc1=%d, rc2=%d\n", rc1, rc2);
        return;
    }
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    FILE* fp;
    bool compare_error = false;
 
    if (fopen_s(&fp, csv_fn, "wt") != 0)
        printf("  File open error: %s\n", csv_fn);
    else
    {
        for (Uint32 i = 0; i < 256; i++)
        {
            fprintf(fp, "%u, %u, %u\n", i, histo1[i], histo2[i]);
 
            if (histo1[i] != histo2[i])
            {
                printf("  Histogram compare error at index %u\n", i);
                printf("    counts: [%u, %u]\n", histo1[i], histo2[i]);
                compare_error = true;
            }
        }
 
        if (!compare_error)
            printf("  Histograms are identical\n");
 
        fclose(fp);
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    try
    {
        SsePiHistogram();
        SsePiHistogramTimed();
    }
     
    catch (...)
    {
        printf("Unexpected exception has occurred!\n");
        printf("File: %s (_tmain)\n", __FILE__);
    }
 
    return 0;
}
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Listing 10-4. SsePackedIntegerHistogram_.asm

        .model flat,c
        .code
        extern NUM_PIXELS_MAX:dword
 
; extern bool SsePiHistogram_(Uint32* histo, const Uint8* pixel_buff, 
Uint32 num_pixels);
;
; Description:  The following function builds an image histogram.
;
; Returns:      0 = invalid argument value
;               1 = success
;
; Requires:     SSE4.1
 
SsePiHistogram_ proc
        push ebp
        mov ebp,esp
        and esp,0FFFFFFF0H                  ;align ESP to 16 byte boundary
        sub esp,1024                        ;allocate histo2
        mov edx,esp                         ;edx = histo2
        push ebx
        push esi
        push edi
 
; Make sure num_pixels is valid
        xor eax,eax                         ;set error return code
        mov ecx,[ebp+16]                    ;ecx = num_pixels
        cmp ecx,[NUM_PIXELS_MAX]
        ja Done                             ;jump if num_pixels too big
        test ecx,1fh
        jnz Done                            ;jump if num_pixels % 32 != 0
 
; Make sure histo & pixel_buff are properly aligned
        mov ebx,[ebp+8]                     ;ebx = histo
        test ebx,0fh
        jnz Done                            ;jump if misaligned
        mov esi,[ebp+12]                    ;esi = pixel_buff
        test esi,0fh
        jnz Done                            ;jump if misaligned
 
; Initialize the histogram buffers (set all entries to zero)
        mov edi,ebx                         ;edi = histo
        mov ecx,256
        rep stosd                           ;initialize histo
        mov edi,edx                         ;edi = histo2
        mov ecx,256
        rep stosd                           ;initialize histo2
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; Perform processing loop initializations
        mov edi,edx                         ;edi = histo2
        mov ecx,[ebp+16]                    ;ecx = number of pxiels
        shr ecx,5                           ;ecx = number of pixel blocks
 
; Build the histograms
; Register usage: ebx = histo, edi = histo2, esi = pixel_buff
        align 16                            ;align jump target
@@:     movdqa xmm0,[esi]                   ;load pixel block
        movdqa xmm2,[esi+16]                ;load pixel block
        movdqa xmm1,xmm0
        movdqa xmm3,xmm2
 
; Process pixels 0 - 3
        pextrb eax,xmm0,0                   ;extract & count pixel 0
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,1                   ;extract & count pixel 1
        add dword ptr [edi+edx*4],1
        pextrb eax,xmm0,2                   ;extract & count pixel 2
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,3                   ;extract & count pixel 3
        add dword ptr [edi+edx*4],1
 
; Process pixels 4 - 7
        pextrb eax,xmm0,4                   ;extract & count pixel 4
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,5                   ;extract & count pixel 5
        add dword ptr [edi+edx*4],1
        pextrb eax,xmm0,6                   ;extract & count pixel 6
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,7                   ;extract & count pixel 7
        add dword ptr [edi+edx*4],1
 
; Process pixels 8 - 11
        pextrb eax,xmm0,8                   ;extract & count pixel 8
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,9                   ;extract & count pixel 9
        add dword ptr [edi+edx*4],1
        pextrb eax,xmm0,10                  ;extract & count pixel 10
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,11                  ;extract & count pixel 11
        add dword ptr [edi+edx*4],1
 
; Process pixels 12 - 15
        pextrb eax,xmm0,12                  ;extract & count pixel 12
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,13                  ;extract & count pixel 13
        add dword ptr [edi+edx*4],1
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        pextrb eax,xmm0,14                  ;extract & count pixel 14
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm1,15                  ;extract & count pixel 15
        add dword ptr [edi+edx*4],1
 
; Process pixels 16 - 19
        pextrb eax,xmm2,0                   ;extract & count pixel 16
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,1                   ;extract & count pixel 17
        add dword ptr [edi+edx*4],1
        pextrb eax,xmm2,2                   ;extract & count pixel 18
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,3                   ;extract & count pixel 19
        add dword ptr [edi+edx*4],1
 
; Process pixels 20 - 23
        pextrb eax,xmm2,4                   ;extract & count pixel 20
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,5                   ;extract & count pixel 21
        add dword ptr [edi+edx*4],1
        pextrb eax,xmm2,6                   ;extract & count pixel 22
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,7                   ;extract & count pixel 23
        add dword ptr [edi+edx*4],1
 
; Process pixels 24 - 27
        pextrb eax,xmm2,8                   ;extract & count pixel 24
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,9                   ;extract & count pixel 25
        add dword ptr [edi+edx*4],1
        pextrb eax,xmm2,10                  ;extract & count pixel 26
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,11                  ;extract & count pixel 27
        add dword ptr [edi+edx*4],1
 
; Process pixels 28 - 31
        pextrb eax,xmm2,12                  ;extract & count pixel 28
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,13                  ;extract & count pixel 29
        add dword ptr [edi+edx*4],1
        pextrb eax,xmm2,14                  ;extract & count pixel 30
        add dword ptr [ebx+eax*4],1
        pextrb edx,xmm3,15                  ;extract & count pixel 31
        add dword ptr [edi+edx*4],1
 
        add esi,32                          ;esi = ptr next pixel block
        sub ecx,1                           ;update counter
        jnz @B                              ;repeat loop if not done
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; Add histo2 to histo for final histogram. Note that each loop iteration
; adds 8 histogram entries.
        mov ecx,32                          ;ecx = number of iterations
        xor eax,eax                         ;eax = offset for histo arrays
 
@@:     movdqa xmm0,xmmword ptr [ebx+eax]   ;load histo counts
        movdqa xmm1,xmmword ptr [ebx+eax+16]
 
        paddd xmm0,xmmword ptr [edi+eax]    ;add counts from histo2
        paddd xmm1,xmmword ptr [edi+eax+16]
 
        movdqa xmmword ptr [ebx+eax],xmm0   ;save final histo counts
        movdqa xmmword ptr [ebx+eax+16],xmm1
 
        add eax,32                          ;update array offset
        sub ecx,1                           ;update counter
        jnz @B                              ;repeat loop if not done
        mov eax,1                           ;set success return code
 
Done:   pop edi
        pop esi
        pop ebx
        mov esp,ebp
        pop ebp
        ret
SsePiHistogram_ endp
        end
 

Near the top of the SsePackedIntegerHistogram.cpp file (see Listing 10-3) is a 
function named SsePiHistogramCpp, which constructs an image histogram using C++.  
The function begins by checking num_pixels to ensure that it’s not greater than 
NUM_PIXELS_MAX and evenly divisible by 32 (the divisibility test is performed in order to 
match the logic in the corresponding assembly language histogram function). Next, the 
addresses of histo and pixel_buff are verified for proper alignment. A call to memset 
initializes each pixel count in the histogram buffer to zero. Construction of the histogram 
is then performed using a simple for loop.

The function SsePiHistogram uses a C++ class named ImageBuffer to load the pixels 
of an image file into memory. (The source code for class ImageBuffer is not shown but 
is included as part of the downloadable sample code file.) The variables num_pixels and 
pixel_buff are then initialized using member functions of class ImageBuffer. Next, two 
histogram buffers are dynamically allocated using the Visual C++ run-time function  
_aligned_malloc. This function includes an extra parameter that enables the caller to 
specify an alignment boundary for the allocated memory block. The next two statements 
invoke the C++ and assembly language histogram functions. The remaining code in 
SsePiHistogram compares the two histograms for equality and writes the results to a .CSV file.
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The x86-SSE assembly language version of the histogram function is named 
SsePiHistogram_ and is located in the file SsePackedIntegerHistogram_.asm  
(see Listing 10-4). Unlike its C++ counterpart, SsePiHistogram_ constructs two partial 
histograms synchronously. It then merges these intermediate histograms to form the final 
image histogram. In order to implement this algorithm, SsePiHistogram_ must allocate 
a second histogram buffer. This is performed as part of the function’s prolog. Subsequent 
to the standard push ebp and mov ebp,esp instructions, an and esp,0FFFFFFF0H 
instruction aligns ESP to a 16-byte boundary. This is followed by a sub esp,1024 
instruction, which allocates storage space on the stack for the second histogram buffer. 
The remainder of the prolog saves non-volatile registers EBX, ESI, and EDI on the stack. 
Figure 10-2 illustrates organization of the stack after the push edi instruction.

num _pixels

pixel_buff

histo

Return Address

Old EBP �EBP

High Memory

Low Memory

+4

+8

+12

+16

histo2 alignment
(0, 4, 8, or 12 bytes)

histo2
(1024 bytes)

Old EBX

Old ESI

Old EDI �ESP

�EDX

Figure 10-2. Organization of the stack in function SsePiHistogram_ following the prolog

Following its prolog, the function SsePiHistogram_ performs the same argument 
error checking that the C++ version performed, including verification of num_pixels and 
proper alignment confirmation of histo and pixel_buff. It then initializes the counts 
in both histogram buffers to zero using the rep stosd instruction. Prior to the main 
processing loop, register EBX points to histo, EDI to histo2, and ESI to pixel_buff. 
Register ECX also contains the number of 32-byte pixel blocks in the image.
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At the top of the main processing loop, two movdqa instructions load the next 32 pixels  
into registers XMM0 and XMM2. The packed pixel values are also duplicated in XMM1 
and XMM3 to improve performance. A pextrb eax,xmm0,0 (Extract Byte) instruction 
extracts byte (or pixel) number 0 from XMM0 and copies it to the low-order byte of register 
EAX (the high-order bits of EAX are set to zero). An add dword ptr [ebx+eax*4],1 
instruction adds 1 to the appropriate histogram entry in histo. The pextrb edx,xmm0,1 
instruction that follows extracts byte number 1 from XMM0, and an add dword ptr 
[edi+edx*4],1 instruction updates the appropriate histogram entry in histo2. This chain 
of pextrb and add instructions is repeated until all 32 bytes in the current block pixel 
block have been processed. While it may seem somewhat counterintuitive, the use of two 
intermediate histograms in the main processing loop is actually faster than using a single 
histogram buffer. The reason for this is that a single histogram buffer creates a memory 
bottleneck since only one entry can be updated. Despite the fact that the dual histogram 
approach still extracts individual pixel values from registers XMM0-XMM3, it can better 
exploit the processor’s out-of-order instruction execution mechanisms and memory 
caching facilities. In Chapter 21, you learn more about processor out-of-order instruction 
execution and memory caching.

Following completion of the main processing loop, a series of movdqa and paddd 
instructions sum the pixel counts in the intermediate histograms to create the final 
histogram. Note that the histogram-summing loop adds eight unsigned doubleword 
entries during each iteration, which improves performance. Output 10-2 shows the 
results of the SsePackedIntegerHistogram sample program and Table 10-1 contains 
some timing measurements.

Output 10-2. Sample Program SsePackedIntegerHistogram

Results for SsePiHistogram()
  Histograms are identical
 
Benchmark times saved to file __SsePackedIntegerHistogramTimed.csv 

Table 10-1. Mean Execution Times (in Microseconds) for Histogram Functions in Sample 
Program SsePackedIntegerHistogram Using TestImage1.bmp

CPU SsePiHistogramCpp (C++) SsePiHistogram_ (x86-SSE)

Intel Core i7-4770 296 235

Intel Core i7-4600U 351 277

Intel Core i3-2310M 668 485
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Packed Integer Threshold
The final x86-SSE packed integer sample program that you examine is called 
SsePackedIntegerThreshold. This sample program illustrates how to perform a common 
image-processing technique called thresholding using the x86-SSE instruction set. It also 
shows how to compute the mean intensity value of select pixels in a grayscale image. 
Listings 10-5, 10-6, and 10-7 show the C++ and assembly language source code for the 
SsePackedIntegerThreshold sample program.

Listing 10-5. SsePackedIntegerThreshold.h

#pragma once
#include "ImageBuffer.h"
 
// Image threshold data structure. This structure must agree with the
// structure that's defined in SsePackedIntegerThreshold_.asm.
typedef struct
{
    Uint8* PbSrc;               // Source image pixel buffer
    Uint8* PbMask;              // Mask mask pixel buffer
    Uint32 NumPixels;           // Number of source image pixels
    Uint8 Threshold;            // Image threshold value
    Uint8 Pad[3];               // Available for future use
    Uint32 NumMaskedPixels;     // Number of masked pixels
    Uint32 SumMaskedPixels;     // Sum of masked pixels
    double MeanMaskedPixels;    // Mean of masked pixels
} ITD;
 
// Functions defined in SsePackedIntegerThreshold.cpp
extern bool SsePiThresholdCpp(ITD* itd);
extern bool SsePiCalcMeanCpp(ITD* itd);
 
// Functions defined in SsePackedIntegerThreshold_.asm
extern "C" bool SsePiThreshold_(ITD* itd);
extern "C" bool SsePiCalcMean_(ITD* itd);
 
// Functions defined in SsePackedIntegerThresholdTimed.cpp
extern void SsePiThresholdTimed(void);
 
// Miscellaneous constants
const Uint8 TEST_THRESHOLD = 96; 
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Listing 10-6. SsePackedIntegerThreshold.cpp

#include "stdafx.h"
#include "SsePackedIntegerThreshold.h"
#include <stddef.h>
 
extern "C" Uint32 NUM_PIXELS_MAX = 16777216;
 
bool SsePiThresholdCpp(ITD* itd)
{
    Uint8* pb_src = itd->PbSrc;
    Uint8* pb_mask = itd->PbMask;
    Uint8 threshold = itd->Threshold;
    Uint32 num_pixels = itd->NumPixels;
 
    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels > NUM_PIXELS_MAX))
        return false;
    if ((num_pixels & 0x1f) != 0)
        return false;
 
    // Make sure image buffers are properly aligned
    if (((uintptr_t)pb_src & 0xf) != 0)
        return false;
    if (((uintptr_t)pb_mask & 0xf) != 0)
        return false;
 
    // Threshold the image
    for (Uint32 i = 0; i < num_pixels; i++)
        *pb_mask++ = (*pb_src++ > threshold) ? 0xff : 0x00;
 
    return true;
}
 
bool SsePiCalcMeanCpp(ITD* itd)
{
    Uint8* pb_src = itd->PbSrc;
    Uint8* pb_mask = itd->PbMask;
    Uint32 num_pixels = itd->NumPixels;
 
    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels > NUM_PIXELS_MAX))
        return false;
    if ((num_pixels & 0x1f) != 0)
        return false;
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    // Make sure image buffers are properly aligned
    if (((uintptr_t)pb_src & 0xf) != 0)
        return false;
    if (((uintptr_t)pb_mask & 0xf) != 0)
        return false;
 
    // Calculate mean of masked pixels
    Uint32 sum_masked_pixels = 0;
    Uint32 num_masked_pixels = 0;
 
    for (Uint32 i = 0; i < num_pixels; i++)
    {
        Uint8 mask_val = *pb_mask++;
        num_masked_pixels += mask_val & 1;
        sum_masked_pixels += (*pb_src++ & mask_val);
    }
 
    itd->NumMaskedPixels = num_masked_pixels;
    itd->SumMaskedPixels = sum_masked_pixels;
     
    if (num_masked_pixels > 0)
        itd->MeanMaskedPixels = (double)sum_masked_pixels /
num_masked_pixels;
    else
        itd->MeanMaskedPixels = -1.0;
 
    return true;
}
 
void SsePiThreshold()
{
    wchar_t* fn_src = L"..\\..\\..\\DataFiles\\TestImage2.bmp";
    wchar_t* fn_mask1 = L"__TestImage2_Mask1.bmp";
    wchar_t* fn_mask2 = L"__TestImage2_Mask2.bmp";
    ImageBuffer* im_src = new ImageBuffer(fn_src);
    ImageBuffer* im_mask1 = new ImageBuffer(*im_src, false);
    ImageBuffer* im_mask2 = new ImageBuffer(*im_src, false);
    ITD itd1, itd2;
 
    itd1.PbSrc = (Uint8*)im_src->GetPixelBuffer();
    itd1.PbMask = (Uint8*)im_mask1->GetPixelBuffer();
    itd1.NumPixels = im_src->GetNumPixels();
    itd1.Threshold = TEST_THRESHOLD;
 
    itd2.PbSrc = (Uint8*)im_src->GetPixelBuffer();
    itd2.PbMask = (Uint8*)im_mask2->GetPixelBuffer();
    itd2.NumPixels = im_src->GetNumPixels();
    itd2.Threshold = TEST_THRESHOLD;
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    bool rc1 = SsePiThresholdCpp(&itd1);
    bool rc2 = SsePiThreshold_(&itd2);
 
    if (!rc1 || !rc2)
    {
        printf("Bad Threshold return code: rc1=%d, rc2=%d\n", rc1, rc2);
        return;
    }
 
    im_mask1->SaveToBitmapFile(fn_mask1);
    im_mask2->SaveToBitmapFile(fn_mask2);
 
    // Calculate mean of masked pixels
    rc1 = SsePiCalcMeanCpp(&itd1);
    rc2 = SsePiCalcMean_(&itd2);
 
    if (!rc1 || !rc2)
    {
        printf("Bad CalcMean return code: rc1=%d, rc2=%d\n", rc1, rc2);
        return;
    }
 
    printf("Results for SsePackedIntegerThreshold\n\n");
    printf("                           C++       X86-SSE\n");
    printf("--------------------------------------------\n");
    printf("SumPixelsMasked:  ");
    printf("%12u  %12u\n", itd1.SumMaskedPixels, itd2.SumMaskedPixels);
    printf("NumPixelsMasked:  ");
    printf("%12u  %12u\n", itd1.NumMaskedPixels, itd2.NumMaskedPixels);
    printf("MeanPixelsMasked: ");
    printf("%12.6lf  %12.6lf\n", itd1.MeanMaskedPixels, itd2.MeanMaskedPixels);
 
    delete im_src;
    delete im_mask1;
    delete im_mask2;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    try
    {
        SsePiThreshold();
        SsePiThresholdTimed();
    }
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    catch (...)
    {
        printf("Unexpected exception has occurred!\n");
        printf("File: %s (_tmain)\n", __FILE__);
    }
    return 0;
} 

Listing 10-7. SsePackedIntegerThreshold_.asm

        .model flat,c
         extern NUM_PIXELS_MAX:dword
 
; Image threshold data structure (see SsePackedIntegerThreshold.h)
ITD                 struct
PbSrc               dword ?
PbMask              dword ?
NumPixels           dword ?
Threshold           byte ?
Pad                 byte 3 dup(?)
NumMaskedPixels     dword ?
SumMaskedPixels     dword ?
MeanMaskedPixels    real8 ?
ITD                 ends
 
                .const
                align 16
PixelScale      byte 16 dup(80h)            ;uint8 to int8 scale value
CountPixelsMask byte 16 dup(01h)            ;mask to count pixels
R8_MinusOne     real8 -1.0                  ;invalid mean value
                .code
 
; extern "C" bool SsePiThreshold_(ITD* itd);
;
; Description:  The following function performs image thresholding
;               of an 8 bits-per-pixel grayscale image.
;
; Returns:      0 = invalid size or unaligned image buffer
;               1 = success
;
; Requires:     SSSE3
 
SsePiThreshold_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
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; Load and verify the argument values in ITD structure
        mov edx,[ebp+8]                     ;edx = 'itd'
        xor eax,eax                         ;set error return code
        mov ecx,[edx+ITD.NumPixels]         ;ecx = NumPixels
        test ecx,ecx
        jz Done                             ;jump if num_pixels == 0
        cmp ecx,[NUM_PIXELS_MAX]
        ja Done                             ;jump if num_pixels too big
        test ecx,0fh
        jnz Done                            ;jump if num_pixels % 16 != 0
        shr ecx,4                           ;ecx = number of packed pixels
 
        mov esi,[edx+ITD.PbSrc]             ;esi = PbSrc
        test esi,0fh
        jnz Done                            ;jump if misaligned
        mov edi,[edx+ITD.PbMask]            ;edi = PbMask
        test edi,0fh
        jnz Done                            ;jump if misaligned
 
; Initialize packed threshold
        movzx eax,byte ptr [edx+ITD.Threshold]  ;eax = threshold
        movd xmm1,eax                           ;xmm1[7:0] = threshold
        pxor xmm0,xmm0                          ;mask for pshufb
        pshufb xmm1,xmm0                        ;xmm1 = packed threshold
        movdqa xmm2,xmmword ptr [PixelScale]
        psubb xmm1,xmm2                         ;xmm1 = scaled threshold
 
; Create the mask image
@@:     movdqa xmm0,[esi]                   ;load next packed pixel
        psubb xmm0,xmm2                     ;xmm0 = scaled image pixels
        pcmpgtb xmm0,xmm1                   ;compare against threshold
        movdqa [edi],xmm0                   ;save packed threshold mask
        add esi,16
        add edi,16
        dec ecx
        jnz @B                              ;repeat until done
        mov eax,1                           ;set return code
 
Done:   pop edi
        pop esi
        pop ebp
        ret
SsePiThreshold_ endp
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; extern "C" bool SsePiCalcMean_(ITD* itd);
;
; Description:  The following function calculates the mean value all
;               above-threshold image pixels using the mask created by
;               the function SsePiThreshold_.
;
; Returns:      0 = invalid image size or unaligned image buffer
;               1 = success
;
; Requires:     SSSE3
 
SsePiCalcMean_  proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
        push edi
 
; Load and verify the argument values in ITD structure
        mov eax,[ebp+8]                     ;eax = 'itd'
        mov ecx,[eax+ITD.NumPixels]         ;ecx = NumPixels
        test ecx,ecx
        jz Error                            ;jump if num_pixels == 0
        cmp ecx,[NUM_PIXELS_MAX]
        ja Error                            ;jump if num_pixels too big
        test ecx,0fh
        jnz Error                           ;jump if num_pixels % 16 != 0
        shr ecx,4                           ;ecx = number of packed pixels
 
        mov edi,[eax+ITD.PbMask]            ;edi = PbMask
        test edi,0fh
        jnz Error                           ;jump if PbMask not aligned
        mov esi,[eax+ITD.PbSrc]             ;esi = PbSrc
        test esi,0fh
        jnz Error                           ;jump if PbSrc not aligned
 
; Initialize values for mean calculation
        xor edx,edx                 ;edx = update counter
        pxor xmm7,xmm7              ;xmm7 = packed zero
 
        pxor xmm2,xmm2              ;xmm2 = sum_masked_pixels (8 words)
        pxor xmm3,xmm3              ;xmm3 = sum_masked_pixels (8 words)
        pxor xmm4,xmm4              ;xmm4 = sum_masked_pixels (4 dwords)
 
        pxor xmm6,xmm6              ;xmm6 = num_masked_pixels (8 bytes)
        xor ebx,ebx                 ;ebx = num_masked_pixels (1 dword)
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; Register usage for processing loop
; esi = PbSrc, edi = PbMask, eax = itd
; ebx = num_pixels_masked, ecx = NumPixels / 16, edx = update counter
;
; xmm0 = packed pixel, xmm1 = packed mask
; xmm3:xmm2 = sum_masked_pixels (16 words)
; xmm4 = sum_masked_pixels (4 dwords)
; xmm5 = scratch register
; xmm6 = packed num_masked_pixels
; xmm7 = packed zero
 
@@:     movdqa xmm0,xmmword ptr [esi]       ;load next packed pixel
        movdqa xmm1,xmmword ptr [edi]       ;load next packed mask
 
; Update sum_masked_pixels (word values)
        movdqa xmm5,xmmword ptr [CountPixelsMask]
        pand xmm5,xmm1
        paddb xmm6,xmm5             ;update num_masked_pixels
        pand xmm0,xmm1              ;set non-masked pixels to zero
        movdqa xmm1,xmm0
        punpcklbw xmm0,xmm7
        punpckhbw xmm1,xmm7         ;xmm1:xmm0 = masked pixels (words)
        paddw xmm2,xmm0
        paddw xmm3,xmm1             ;xmm3:xmm2 = sum_masked_pixels
 
; Check and see if it's necessary to update the dword sum_masked_pixels
; in xmm4 and num_masked_pixels in ebx
        inc edx
        cmp edx,255
        jb NoUpdate
        call SsePiCalcMeanUpdateSums
NoUpdate:
        add esi,16
        add edi,16
        dec ecx
        jnz @B                              ;repeat loop until done
 
; Main processing loop is finished. If necessary, perform final update
; of sum_masked_pixels in xmm4 & num_masked_pixels in ebx.
        test edx,edx
        jz @F
        call SsePiCalcMeanUpdateSums
 
; Compute and save final sum_masked_pixels & num_masked_pixels
@@:     phaddd xmm4,xmm7
        phaddd xmm4,xmm7
        movd edx,xmm4                       ;edx = final sum_mask_pixels
        mov [eax+ITD.SumMaskedPixels],edx   ;save final sum_masked_pixels
        mov [eax+ITD.NumMaskedPixels],ebx   ;save final num_masked_pixels
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; Compute mean of masked pixels
        test ebx,ebx                        ;is num_mask_pixels zero?
        jz NoMean                           ;if yes, skip calc of mean
        cvtsi2sd xmm0,edx                   ;xmm0 = sum_masked_pixels
        cvtsi2sd xmm1,ebx                   ;xmm1 = num_masked_pixels
        divsd xmm0,xmm1                     ;xmm0 = mean_masked_pixels
        jmp @F
NoMean: movsd xmm0,[R8_MinusOne]                ;use -1.0 for no mean
@@:     movsd [eax+ITD.MeanMaskedPixels],xmm0   ;save mean
        mov eax,1                               ;set return code
 
Done:   pop edi
        pop esi
        pop ebx
        pop ebp
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp Done
SsePiCalcMean_  endp
 
; void SsePiCalcMeanUpdateSums
;
; Description:  The following function updates sum_masked_pixels in xmm4
;               and num_masked_pixels in ebx. It also resets any
;               necessary intermediate values in order to prevent an
;               overflow condition.
;
; Register contents:
;   xmm3:xmm2 = packed word sum_masked_pixels
;   xmm4 = packed dword sum_masked_pixels
;   xmm6 = packed num_masked_pixels
;   xmm7 = packed zero
;   ebx = num_masked_pixels
;
; Temp registers:
;   xmm0, xmm1, xmm5, edx
 
SsePiCalcMeanUpdateSums proc private
 
; Promote packed word sum_masked_pixels to dword
        movdqa xmm0,xmm2
        movdqa xmm1,xmm3
        punpcklwd xmm0,xmm7
        punpcklwd xmm1,xmm7
        punpckhwd xmm2,xmm7
        punpckhwd xmm3,xmm7
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; Update packed dword sums in sum_masked_pixels
        paddd xmm0,xmm1
        paddd xmm2,xmm3
        paddd xmm4,xmm0
        paddd xmm4,xmm2             ;xmm4 = packed sum_masked_pixels
 
; Sum num_masked_pixel counts (bytes) in xmm6, then add to total in ebx.
        movdqa xmm5,xmm6
        punpcklbw xmm5,xmm7
        punpckhbw xmm6,xmm7         ;xmm6:xmm5 = packed num_masked_pixels
        paddw xmm6,xmm5             ;xmm6 = packed num_masked_pixels
        phaddw xmm6,xmm7
        phaddw xmm6,xmm7
        phaddw xmm6,xmm7            ;xmm6[15:0] = final word sum
        movd edx,xmm6
        add ebx,edx                 ;ebx = num_masked_pixels
 
; Reset intermediate values
        xor edx,edx
        pxor xmm2,xmm2
        pxor xmm3,xmm3
        pxor xmm6,xmm6
        ret
SsePiCalcMeanUpdateSums endp
        end
 

Image thresholding is an image-processing technique that creates a binary image 
from a grayscale one. This binary (or mask) image signifies which pixels in the original 
image are greater than a predetermined (or algorithmically derived) intensity threshold 
value. Figure 10-3 illustrates a thresholding example. Mask images are often employed to 
perform additional calculations using the original grayscale image. For example, a typical 
use of the mask image that’s shown in Figure 10-3 is to compute the mean intensity 
value of all above-threshold pixels in the original grayscale image. The application of a 
mask image simplifies calculating the mean since it facilitates the use of simple Boolean 
expressions to exclude unwanted pixels from the computations. The sample program in 
this section demonstrates these methods.
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The algorithm used by the SsePackedIntegerThreshold sample program consists 
of two phases. Phase 1 constructs that mask image that’s shown in Figure 10-3. Phase 2 
computes the mean intensity value of all pixels whose corresponding mask image pixel 
is white. The file SsePackedIntegerThreshold.h (see Listing 10-5) defines a structure 
named ITD that is used to maintain data required by the algorithm. Note this structure 
contains two pixel count elements: NumPixels and NumMaskedPixels. The former variable 
is the total number of image pixels while the latter value is used to maintain a count of 
grayscale image pixels greater than the structure element Threshold.

The C++ file SsePackedIntegerThreshold.cpp (see Listing 10-6) contains separate 
thresholding and mean calculating functions. The function SsePiThresholdCpp constructs 
the mask image by comparing each pixel in the grayscale image to the threshold value 
that’s specified by itd->Threshold. If a grayscale image pixel is greater than this value, its 
corresponding pixel in the mask image is set to 0xff; otherwise, the mask image pixel is 
set to 0x00. The function SsePiCalcMeanCpp uses this mask image to calculate the mean 
intensity value of all grayscale image pixels greater than the threshold value. Note that the 
for loop of this function computes num_mask_pixels and sum_mask_pixels using simple 
Boolean expressions instead of logical compare statements. The latter approach is usually 
faster and, as you’ll learn shortly, easy to implement using SIMD arithmetic.

Listing 10-7 shows the assembly language versions of the thresholding and mean 
calculating functions. Following its prolog, the function SsePiThreshold_ performs 
validity checks of ITD.NumPixels, ITD.PbSrc, and ITD.PbMask. A movzx eax,byte ptr 
[edx+ITD.Threshold] instruction copies the specified threshold value into register EAX. 
After a movd xmm1,eax instruction, a packed threshold value is created using a pshufb 
(Packed Shuffle Bytes) instruction. The pshufb instruction uses the low-order four bits 
of each byte in the source operand as an index to permute the bytes in the destination 
operand (a zero is copied if the high-order bit is set in a source operand byte). This 
process is illustrated in Figure 10-4. In the current program, the pshufb xmm1,xmm0 
instruction copies the value in XMM1[7:0] to each byte element in XMM1 since XMM0 
contains all zeros. The packed threshold value is then scaled for use by the main 
processing loop.

Original Grayscale Image Mask Image After Thresholding

Figure 10-3. Sample grayscale image and mask image
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The main processing loop of function SsePiThreshold_ uses the pcmpgtb 
(Compare Packed Signed Integers for Greater Than) instruction to create the mask 
image. This instruction performs pairwise compares of the bytes in the destination 
and source operands and sets each destination operand byte to 0xff if it’s greater than 
its corresponding source operand byte; otherwise, a value of 0x00 is used as shown 
in Figure 10-5. It is important to recognize that the pcmpgtb instruction performs its 
compares using signed integer arithmetic. This means that the pixels values in the 
grayscale image, which are unsigned byte values, must be re-scaled in order to be 
compatible with the pcmpgtb instruction. The psubb xmm0,xmm2 instruction remaps the 
grayscale image pixels values in XMM0 from [0, 255] to [-128, 127]. Following execution of 
the pcmpgtb instruction, a movdqa instruction saves the result to the mask image buffer.

10 11 8 6 1512846 11 14 12 5 27514

Illustration of pshufb des, src instruction

src

105 17 122 40 732245447 24 144 49 46 9813109154

54 40 73 144 1050154144 40 17 47 49 109244917

des

des

1 03 213 1215 14 9 811 10 5 47 6

0 0 0 0 0000 0 0 0 0 0000 xmm 0

105 17 122 40 732245447 24 144 49 46 9813109154

98 98 98 98 98989898 98 98 98 98 98989898

xmm 1

xmm 1

1 03 213 1215 14 9 811 10 5 47 6

Using pshufb xmm1, xmm0 to create a packed threshold

Figure 10-4. Illustration of the pshufb instruction
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Like its C++ counterpart, the assembly language function SsePiCalcMean_ 
computes the mean intensity value of all above-threshold pixels in the grayscale image. 
In order to compute the required pixel sum, the main processing loop manipulates two 
intermediate packed pixel sums using both unsigned words and unsigned doublewords. 
This minimizes the number packed byte to word and word to doubleword size 
promotions that must be performed. During each iteration, all above-threshold grayscale 
pixel values in XMM0 are promoted to words and added to the packed word sums in 
XMM3:XMM2. The main processing loop also updates the count of above-threshold 
pixels that’s maintained in XMM6. Figure 10-6 illustrates execution of the code block that 
performs these calculations. Note that the method employed in Figure 10-6 is essentially 
a SIMD implementation of the technique used in the for loop of the C++ function 
SsePiCalcMeanCpp.

12 -10 -9 9 -5383-7126 112 41 -21 15 115-7-9-72

Illustration of pcmpgtb des, src Instruction

src

60 -89 22 45 -37114-55-45 112 14 96 46 98139-72

ffh 00h ffh ffh ffhffh00h00h 00h 00h ffh ffh 00hffhffh00h

des

des

Figure 10-5. Illustration of the pcmpgtb instruction
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xmm0

xmm1

pand xmm5, xmm1

192 0 199 200

108 112 42 41 187454438 192 41 199 220 2336765200

ffh ffh 00h 00h ffh00h00h00h ffh 00h ffh ffh ffh00h00hffh

xmm5

xmm6

01h 01h 01h 01h 01h01h01h01h 01h 01h 01h 01h 01h01h01h01h

10 15 14 7 50832933 110 40 30 19 120254021

Grayscale Image Pixel Values

Mask Image Pixel Values

CountPixelsMask

num _masked_pixels

01h 01h 00h 00h 01h00h00h00h 01h 00h 01h 01h 01h00h00h01h

paddb xmm6, xmm5

11 16 14 7 51832933 111 40 31 20 121254022

pand xmm0, xmm1

108 112 0 0 187000 192 0 199 220 23300200

movdqa xmm1, xmm0

108 112 0 0 187000 192 0 199 220 23300200

punpcklbw xmm0, xmm7

punpckhbw xmm1, xmm7

220 0 0 233

108 112 0 0 0 0 0 187

xmm2

sum_masked_pixels (low words )

xmm3

sum_masked_pixels (high words )

500 150 5000 1250 1200 670 2500 2200

1500 4000 1900 750 800 3250 5100 3690

paddw xmm2, xmm0

paddw xmm3, xmm1

Note: xmm7 contains all zeros.

692 150 5199 1450 1420 670 2500 2433

1608 4112 1900 750 800 3250 5100 3877

xmm5

xmm6

xmm0

xmm1

xmm0

xmm1

xmm2

xmm3

Figure 10-6. Calculation of the pixel sums and pixel counts
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After every 255 iterations, the packed word pixel sums in XMM3:XMM2 are 
promoted to packed doublewords and added to the packed doubleword pixel sums in 
XMM4. The packed byte pixel counts in XMM6 are also summed and added to EBX, 
which contains the variable num_masked_pixels (the 255 iteration limit prevents an 
arithmetic overflow of the packed byte pixel counts in XMM6). These computations 
are performed in a private function named SsePiCalcMeanUpdateSums. Execution of 
the processing loop continues until all image pixels have been evaluated. Following 
completion of the processing loop, the four doubleword pixel intensity sums in XMM4 are 
reduced to the final value sum_masked_pixels using a couple of phaddd instructions.  
The function then uses two cvtsi2sd instructions to convert EDX (sum_masked_pixels) 
and EBX (num_mask_pixels) to double-precision floating-point; it then calculates  
ITD.MeanMaskedPixels using a divsd instruction. Output 10-3 shows the results of the 
SsePackedIntegerThreshold sample program. Timing measurements are shown in 
Table 10-2.

Output 10-3. Sample Program SsePackedIntegerThreshold

Results for SsePackedIntegerThreshold
 
                           C++       X86-SSE
--------------------------------------------
SumPixelsMasked:      23813043      23813043
NumPixelsMasked:        138220        138220
MeanPixelsMasked:   172.283628    172.283628
 
Benchmark times saved to file __SsePackedImageThresholdTimed.csv

Summary
In this chapter, you learned how to perform fundamental arithmetic operations using the 
packed integer capabilities of x86-SSE. You also reviewed a couple of sample programs 
that illustrated accelerated implementations of common image processing algorithms. 
Your x86-SSE programming edification continues in the next chapter, which examines the 
text string processing instructions of x86-SSE.

Table 10-2. Mean Execution Times (in Microseconds) for Algorithms Used in Sample 
Program SsePackedImageThreshold Using TestImage2.bmp

CPU C++ X86-SSE

Intel Core i7-4770 515 49

Intel Core i7-4600U 608 60

Intel Core i3-2310M 1199 108
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Chapter 11

X86-SSE Programming – 
Text Strings 

The sample code from the previous three chapters focused on using the x86-SSE 
instruction set to implement numerically-oriented algorithms. In this chapter, you learn 
about the x86-SSE text string processing instructions. The x86-SSE text string instructions 
are somewhat different than other x86-SSE instructions since their execution depends 
on the value of an immediate control byte. The first section of this chapter explains the 
various control byte options and their operation paradigms. It also discusses several 
programming precautions that you must observe when using SIMD techniques to 
process text strings. In the second section, you examine a couple of sample programs that 
illustrate basic use of the x86-SSE text string instructions.

The x86-SSE text string instructions are available on processors that support SSE4.2, 
which includes the AMD FX and Intel Core processor families. You can use one of 
the utilities mentioned in Appendix C to determine whether the processor in your PC 
supports SSE4.2. In Chapter 16, you learn how to detect processor features and extensions 
such as SSE4.2 at run-time using the cupid instruction.

Text String Fundamentals
Programming languages typically use one of two techniques to manage and process 
text strings. An explicit-length text string is a sequence of consecutive characters whose 
length is pre-computed and maintained along with the actual text string. Programming 
languages such as Pascal use this approach. An implicit-length text string uses a 
terminating end-of-string (EOS) character (usually 0) to signify the end of a text string 
in memory and facilitate string-processing functions such as length calculations and 
concatenations. This method is used by C++, as discussed in Chapter 2 (see the sample 
programs CountChars and ConcatStrings).

Text string processing tends to require a higher level of processor utilization than 
you might expect. The primary reason for this is that many text string handling functions 
process text strings either character-by-character or in small multi-character packets. 
Text string functions also are likely to make extensive use of loop constructs, which 
can result in less-than-optimal use of the processor’s front-end instruction pipelines. 
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The x86-SSE text string processing instructions that you examine in this section can 
be used to accelerate many common string primitives, including length calculations, 
compare operations, and token finds. They also can be used to significantly improve the 
performance of string search and parsing algorithms.

X86-SSE includes four SIMD text string instructions that are capable of processing 
text string fragments up to 128 bits in length. These instructions, which are summarized 
in Table 11-1, can be used to process either explicit or implicit length text strings. Two 
output format options, index and mask, are available and the meaning of these options 
is described shortly. The processor also uses status bits in the EFLAGS register to report 
additional text string instruction results. Each x86-SSE text string instruction requires an 
8-bit immediate control value that enables the programmer to select instruction options, 
including character size (8-bit or 16-bit), compare and aggregation method, and output 
format. Since C++ uses implicit-length strings, the explanations that follow primarily 
focus on the pcmpistri and pcmpistrm instructions. Execution of the explicit-length 
instructions pcmpestri and pcmpestrm is essentially the same, except that the text string 
fragment lengths must be specified using registers EAX and EDX.

Table 11-1. Summary of x86-SSE Text String Instructions

Mnemonic String Type Output Format

Pcmpestri Explicit Index (ECX)

Pcmpestrm Explicit Mask (XMM0)

Pcmpistri Implicit Index (ECX)

Pcmpistrm Implicit Mask (XMM0)

The x86-SSE text string instructions are extremely powerful and flexible. The drawback 
of this power and flexibility is increased instruction complexity, which some programmers 
initially find confusing. I’ll do my best to eliminate some of this confusion by emphasizing a 
few common text string processing operations, which should provide a solid basis for more 
advanced x86-SSE text string instruction use. If you’re interested in learning additional 
details about the x86-SSE text string instructions, you should consult the Intel and AMD 
reference manuals listed in Appendix C for more information.

Figure 11-1 shows an execution flow diagram for the instructions pcmpistri and 
pcmpistrm. The operands strA and strB are both source operands and can hold either 
a text string fragment or individual character values. Operand strA must be an XMM 
register, while operand strB can be an XMM register or a 128-bit value in memory. The 
operand imm specifies instruction control options as illustrated by the ovals in the flow 
diagram. Table 11-2 describes the purpose of each imm control option.
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Compare and Aggregation

strA strB

Data Format 
Select

imm [1:0]

Aggregation 
Select

imm [3:2]

IntRes 1

Polarity
Polarity Select

imm [5:4]

IntRes 2

Output Format

Least Significant 
Index (ECX)

Output 
Format Select

imm [6]

Bit Mask
(XMM 0)

Output Format

Byte /Word Mask 
(XMM 0)

Most Significant 
Index (ECX)

pcmpistr(i/m) strA,strB,imm

Output Format

Least Significant
Index ((ECX))

Most Significant
Index ((ECX))

pcmpistri pcmpistrm

Bit Mask
((XMM 0))

Output Format

Byte /Word Mask
((XMM 0))

pcmpistrmEFLAGS CF,ZF,SF,OF

Figure 11-1. Flow diagram for the pcmpistrX instructions
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In order to better understand the pcmpistrX flow diagram and the meaning of each 
control option, you need to take a look at a few simple examples. Suppose you are given a 
text string fragment and want to create a mask to indicate the positions of the uppercase 
characters within the string. For example, each 1 in the mask 1000110000010010b 
signifies an uppercase character in the corresponding position of the text string 
"Ab1cDE23f4gHi5J6". You could create a C++ function to create such a mask, which 
would require a scanning loop and testing of each character to see if its value lies in 
a range between A and Z, inclusively. Another (perhaps better) option is to use the 
pcmpistrm instruction to construct the mask, as illustrated in Figure 11-2. In this example, 
the desired character range and text string fragment are loaded into registers XMM1 and 
XMM2, respectively. The immediate control value 00000100b specifies that execution of 
pcmpistrm should be performed using the options described in Table 11-3.

Table 11-2. Description of Control Options for pcmpistrX Instructions

Control Option Value Description

Data Format

[1:0]

00

01

Packed unsigned bytes

Packed unsigned words

10 Packed signed bytes

11 Packed signed words

Aggregation

[3:2]

00

01

Equal any (match characters)

Equal range (match characters in a range)

10 Equal each (string compare)

11 Equal ordered (substring search)

Polarity

[5:4]

00

01

Positive (IntRes2[i] = IntRes1[i])

Negative (IntRes2[i] = ~IntRes1[i])

10 Masked positive (IntRes2[i] = IntRes1[i])

11 Masked negative (IntRes2[i] = IntRes1[i] if strB[i] is 
invalid; otherwise = IntRes2[i] = ~IntRes1[i]

Output Format

[6]

0

1

pcmpistri - ECX = index of least significant set bit in IntRes2

pcmpistri - ECX = index of most significant bit set in IntRes2

0 pcmpistrm - IntRes2 saved as a bit mask in low-order bits of 
XMM0 (high-order bits are zeroed)

1 pcmpistrm - IntRes2 saved as a byte/word mask in XMM0
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'A''Z'00h 00h 00h00h 00h 00h 00h 00h 00h 00h 00h00h00h00h

'A''b''1''c''E' 'D''2''3''f''4''g''H''5' 'i''J''6'

31h48h00h 00h 00h00h 00h 00h 00h 00h 00h 00h 00h00h00h00h

pcmpistrm xmm1, xmm2, 00000100b

xmm 1

xmm 2

xmm 0

EFLAGS: CF=1  ZF=0  SF=1  OF=1

Figure 11-2. Using pcmpistrm to create a bit mask of uppercase characters

Table 11-3. Control Functions for pcmpistrm xmm1,xmm2,00000100b

Bit Field Value Control Function

7 0 Reserved; must always be zero

6 0 Do not expand IntRes2 mask to bytes

5 0 Not used since IntRes1 is not negated

4 0 Do not negate IntRes1

3:2 01 Use equal range compare and aggregation

1:0 00 Source data is formatted as packed unsigned bytes

In Figure 11-2, the low-order bytes of XMM1 contain the lower and upper limits 
of the desired character range, while XMM2 contains the text string fragment. Note 
that the text string fragment in XMM2 is arranged using little-endian ordering, which 
automatically happens when a text string fragment is loaded using the movdqa or movdqu 
instruction. Most of the computations performed by pmcpistrm occur in the box that’s 
labeled “Compare and Aggregation” in Figure 11-1. The specific operation that the 
processor performs here varies depending on the selected compare and aggregation 
method and is explained further in a later example. The output of the compare and 
aggregation operation, called IntRes1, contains a bit mask of the uppercase characters 
in XMM2. The control value specifies that the intermediate result IntRes1 should not be 
inverted, which means that IntRes2 is assigned the same value as IntRes1. The control 
value also specifies that the 16-bit mask should not be expanded to bytes. The final mask 
value is saved in the low-order bytes of XMM0 and matches the little-endian ordering of 
the text string fragment in XMM2.

Figure 11-3 shows several additional examples of pcmpistrm instruction execution. 
The first example is similar to the example in Figure 11-2 except that the output format 
bit 6 is set, which means that the mask value is expanded to bytes. Expansion of the mask 
value to bytes is useful for further processing of the string fragment using simple Boolean 
expressions. The second example illustrates use of the pcmpistrm instruction with multiple 
character ranges. In this example, XMM1 contains two range pairs: one for uppercase 
letters and one for lowercase letters. The last example in Figure 11-3 shows a pcmpistrm 
instruction using a text string fragment that includes an embedded EOS character.  
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Note that the final mask value excludes matching range characters following the EOS 
character. Also note that EFLAGS.ZF is set to 1, which indicates the presence of the EOS 
character in the text string fragment. The final pmcpistrm example, shown in Figure 11-4,  
illustrates the matching of individual characters in a text string fragment. This is 
accomplished by selecting “equal any” as the compare and aggregation control option.

'A''Z''a''z'

'A''b''1''c''E' 'D''2''3''f''4''g''H''5' 'i''J''6'

FFhFFh00h FFh FFhFFh 00h FFh 00h 00h FFh FFh 00hFFhFFh00h

pcmpistrm xmm1, xmm2, 01000100b

xmm 1

xmm 2

xmm 0

EFLAGS: CF=1  ZF=0  SF=1  OF=1

'A''Z''a''z'

'A''b''1''c''E' 'D''2''3''f''4''g''\0''5' 'i''J''6'

FFhFFh00h 00h FFh00h 00h FFh 00h 00h FFh FFh 00hFFh00h00h

pcmpistrm xmm1, xmm2, 01000100b

xmm 1

xmm 2

xmm 0

EFLAGS: CF=1  ZF=1  SF=1  OF=1

'A''Z'00h 00h 00h00h 00h 00h 00h 00h 00h 00h 00h00h00h00h

'A''b''1''c''E' 'D''2''3''f''4''g''H''5' 'i''J''6'

FFh00h00h 00h 00hFFh 00h 00h 00h 00h FFh FFh 00h00hFFh00h

pcmpistrm xmm1, xmm2, 01000100b

xmm 1

xmm 2

xmm 0

EFLAGS: CF=1  ZF=0  SF=1  OF=1

00h 00h 00h00h 00h 00h 00h 00h 00h 00h00h00h

00h 00h 00h00h 00h 00h 00h 00h 00h 00h00h00h

Figure 11-3. Execution examples of the pcmpistrm instruction

'A''c'00h 00h 00h00h 00h 00h 00h 00h 00h 'J' '4''i'00h00h

'A''b''1''c''E' 'D''2''3''f''4''g''H''5' 'i''J''6'

FFh00h00h FFh 00h00h FFh 00h 00h 00h 00h 00h 00hFFhFFh00h

pcmpistrm xmm1, xmm2, 01000000b

xmm 1

xmm 2

xmm 0

EFLAGS: CF=1  ZF=0  SF=1  OF=1

Figure 11-4. Using the pcmpistrm instruction to match characters
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The pcmpistri instruction can be used to determine the index of a character or 
characters in a text string fragment. One use of this instruction is to find the index of an 
EOS character in a text string fragment, as illustrated in Figure 11-5. In the top example, 
the text string fragment does not contain an EOS character. In this case, execution of the 
pcmpistri instruction clears EFLAGS.ZF to indicate that the text string fragment does 
not contain an EOS character. It also loads the number of characters tested into register 
ECX, which happens to be an invalid index. In the bottom example, EFLAGS.ZF is set to 
indicate the presence of an EOS character and register ECX contains the corresponding 
index. In both the top and bottom examples, the control option value specifies a compare 
and aggregation method of “equal any” and inversion of the intermediate result IntRes1.

01hffh0 0 00 0 0 0 0 0 0 0000

'A''b''1''c''E' 'D''2''3''f''4''g''H''5' 'i''J''6'

16

pcmpistri xmm1, xmm2, 00010100b

xmm 1

xmm 2

ecxEFLAGS: CF=0  ZF=0  SF=1  OF=0

01hffh0 0 00 0 0 0 0 0 0 0000

'A''b''1''c''E' 'D''2''3''f''4''g''\0''5' 'i''J''6'

11

pcmpistri xmm1, xmm2, 00010100b

xmm 1

xmm 2

ecxEFLAGS: CF=1  ZF=1  SF=1  OF=0

Figure 11-5. Using  pcmpistri to find an EOS character in a string fragment

Figure 11-6 contains a more detailed example of pcmpistri instruction execution. 
Internally, the processor uses the compare and aggregation type to select a compare 
method and uses this method to compare all character pairs in the specified operands. In 
the current example, the selected aggregation type is “equal range” and Table 11-4 shows 
the specific compare operations. Logically, the processor is composing an 8x8 matrix of 
character-pair compare results and uses this matrix to compute IntRes1 (a 16x16 matrix 
would be composed for byte-wide characters). Compare results for character positions 
including and after the EOS terminator are forced to 0. Following construction of the 
compare matrix, the processor computes IntRes1 using the algorithm shown in  
Listing 11-1. This algorithm also varies depending on the selected compare and aggregation 
method. The value IntRes2 is determined by inverting IntRes1 as specified by the 
polarity field of the control value. The index of the EOS character corresponds to the 
index of the lowest 1 bit in IntRes2.
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00h00h01h ffh 00h 00h 00h00h

'H'

'G'

'\0'

'E'

'C'

'D'

'B'

'A'

5

pcmpistri xmm1, xmm2, 00010101b
xmm 1

xmm 2

ecxEFLAGS: CF=1  ZF=1  SF=1  OF=0

1 1

1 1

1 1

1 1

1 1

0 0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Least 
Significant 

Word

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

IntRes 1 IntRes 2

= Computed Result = Forced Result

>= <= >= <= >= <= >= <=

Figure 11-6. Detailed illustration of the pcmpistri instruction

Table 11-4. Compare Operations for the pcmpistri Truth Table

XMM1 Index CmpRes

j is even CmpRes[i, j] = (xmm2[i] >= xmm1[j]) ? 1 : 0;

j is odd CmpRes[i, j] = (xmm2[i] <= xmm1[j]) ? 1 : 0;

Listing 11-1. Computation of IntRes1

for (i = 0; i < 8; i++)
{
    for (j = 0; j < 8; j += 2)
        IntRes[i] |= CmpRes[i, j] & CmpRes[i, j+1];
}
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In order to use the x86-SSE text string instructions in an assembly language function, 
you must observe several programming precautions. Unlike multi-byte integers and 
floating-point values, text strings have no natural alignment boundary in memory.  
This means that text string fragments are usually loaded into an XMM register using the 
movdqu instruction; the movdqa instruction can be used only if the text string fragment 
is properly aligned. The processing of text strings using SIMD techniques requires the 
programmer to ensure that any data beyond the EOS character is not inadvertently 
modified. Care must also be observed when reading or writing a text string fragment in 
memory that’s located toward the end of a page. Since x86-SSE text string reads and writes 
are 128-bits wide, attempting to access a short text string near the end of a page may 
require the processor to access the next page, as illustrated in Figure 11-7. A processor 
exception will occur if this page does not belong to the current process. The sample 
code in the next section illustrates several techniques that can be used to address the 
precautions outlined in this paragraph.

Text String Programming
The discussions of the previous section focused on the key aspects of the x86-SSE text 
string instructions. In this section, you learn how to use the pcmpistri and pcmpistrm 
instructions to perform common text string processing operations. You also learn more 
about the programming strategies that you must employ when processing text strings 
using SIMD techniques.

Text String Calculate Length
The first x86-SSE text string sample program that you examine is called 
SseTextStringCalcLength. This program demonstrates how to calculate the length of a 
null-terminated text string using the pcmpistri instruction. It also shows how to handle 
some of the SIMD text processing caveats that were discussed earlier in this section.  
The C++ and assembly language source code for this program are shown in Listings 11-2 
and 11-3, respectively.

XX'H' 'e' 'l''l' 'o' ' ' 'W' 'o' 'r' 'l' '\0''d'

Page n

X X

40954082 0

Page n + 1

X = Don't Care

EBX

movdqu xmm1,[ebx] ;processor will access page n and page n + 1

Figure 11-7. Text string load near an end-of-page boundary
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Listing 11-2. SseTextStringCalcLength.cpp

#include "stdafx.h"
#include <malloc.h>
#include <string.h>
 
extern "C" int SseTextStringCalcLength_(const char* s);
 
const char * TestStrings[] =
{
        "0123456",                                  // Length = 7
        "0123456789abcde",                          // Length = 15
        "0123456789abcdef",                         // Length = 16
        "0123456789abcdefg",                        // Length = 17
        "0123456789abcdefghijklmnopqrstu",          // Length = 31
        "0123456789abcdefghijklmnopqrstuv",         // Length = 32
        "0123456789abcdefghijklmnopqrstuvw",        // Length = 33
        "0123456789abcdefghijklmnopqrstuvwxyz",     // Length = 36
        "",                                         // Length = 0
};
 
const int OffsetMin = 4096 - 40;
const int OffsetMax = 4096 + 40;
const int NumTestStrings = sizeof(TestStrings) / sizeof(char*);
 
void SseTextStringCalcLength(void)
{
    const int buff_size = 8192;
    const int page_size = 4096;
    char* buff = (char*)_aligned_malloc(buff_size, page_size);
 
    printf("\nResults for SseTextStringCalcLength()\n");
 
    for (int i = 0; i < NumTestStrings; i++)
    {
        bool error = false;
        const char* ts = TestStrings[i];
 
        printf("Test string: \"%s\"\n", ts);
 
        for (int offset = OffsetMin; offset <= OffsetMax; offset++)
        {
            char* s2 = buff + offset;
 
            memset(buff, 0x55, buff_size);
            strcpy_s(s2, buff_size - offset, ts);
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11 ■ X86-SSe programming – teXt StringS 

313

            int len1 = strlen(s2);
            int len2 = SseTextStringCalcLength_(s2);
 
            if ((len1 != len2) && !error)
            {
                error = true;
                printf(" String length compare failed!\n");
                printf(" buff: 0x%p  offset: %5d  s2: 0x%p", buff, offset, s2);
                printf(" len1: %5d  len2: %5d\n",len1, len2);
            }
        }
 
        if (!error)
            printf("No errors detected\n");
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    SseTextStringCalcLength();
    return 0;
} 

Listing 11-3. SseTextStringCalcLength_.asm

        .model flat,c
        .code
 
; extern "C" int SseTextStringCalcLength_(const char* s);
;
; Description:  The following function calculates the length of a
;               text string using the x86-SSE instruction pcmpistri.
;
; Returns:      Length of text string
;
; Requires      SSE4.2
 
SseTextStringCalcLength_ proc
        push ebp
        mov ebp,esp
 
; Initialize registers for string length calculation
        mov eax,[ebp+8]                     ;eax ='s'
        sub eax,16                          ;adjust eax for use in loop
        mov edx,0ff01h
        movd xmm1,edx                       ;xmm1[15:0] = char range
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; Calculate next address and test for near end-of-page condition
@@:     add eax,16              ;eax = next text block
        mov edx,eax
        and edx,0fffh           ;edx = low 12 bits of address
        cmp edx,0ff0h
        ja NearEndOfPage        ;jump if within 16 bytes of page boundary
 
; Test current text block for '\0' byte
        pcmpistri xmm1,[eax],14h        ;compare char range and text
        jnz @B                          ;jump if '\0' byte not found
 
; Found '\0' byte in current block (index in ECX)
; Calculate string length and return
        add eax,ecx                     ;eax = ptr to '\0' byte
        sub eax,[ebp+8]                 ;eax = final string length
        pop ebp
        ret
 
; Search for the '\0' terminator by examining each character
NearEndOfPage:
        mov ecx,4096                    ;ecx = size of page in bytes
        sub ecx,edx                     ;ecx = number of bytes to check
 
@@::    mov dl,[eax]                    ;dl = next text string character
        or dl,dl
        jz FoundNull                    ;jump if '\0' found
        inc eax                         ;eax = ptr to next char
        dec ecx
        jnz @B                          ;jump if more chars to test
 
; Remainder of text string can be searched using 16-byte blocks
; EAX is now aligned on a 16-byte boundary
        sub eax,16                      ;adjust eax for use in loop
@@:     add eax,16                      ;eax = ptr to next text block
        pcmpistri xmm1,[eax],14h        ;compare char range and text
        jnz @B                          ;jump if '\0' byte not found
 
; Found '\0' byte in current block (index in ECX)
        add eax,ecx                     ;eax = ptr to '\0' byte
 
; Calculate final string length and return
FoundNull:
        sub eax,[ebp+8]                 ;eax = final string length
        pop ebp
        ret
SseTextStringCalcLength_ endp
        end
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The C++ portion of sample program SseTextStringCalcLength (see Listing 11-2)  
begins by allocating a page-aligned memory block. This memory block is used to 
initialize different test scenarios in order to verify that the x86-32 assembly language 
function SseTextStringCalcLength_ can correctly process text strings located near the 
end of a page. This includes the case where the EOS terminator is located on the last 
byte of a page. The admittedly brute-force test code also verifies that strings located 
completely within a page or across a page boundary are properly handled. Each string 
length result returned by the function SseTextStringCalcLength_ is compared against 
the length value computed by the standard C++ run-time function strlen. The test code 
displays an error message if a length discrepancy is detected.

The assembly language function SseTextStringCalcLength_ (see Listing 11-3) 
starts by loading the text string pointer s into register EAX. The sub eax,16 instruction 
adjusts the pointer value in EAX for use by the processing loop. The range values required 
by the pcmpistri instruction are then loaded into register XMM2. At the top of the first 
processing loop, an add eax,16 instruction updates register EAX so that it contains 
the address of the next 16-byte text block in memory. Updating EAX at the top of the 
processing loop using a constant value eliminates a jump instruction and prevents a 
loop-carry dependency condition, which can adversely affect performance. (A loop-carry 
dependency occurs when execution of an instruction inside a loop is dependent on the 
result of previous iteration. See Intel 64 and IA-32 Architectures Optimization Reference 
Manual for more information about loop-carry dependencies.) The address value in EAX 
is then tested to determine if the next text string fragment is located near the end of a page. 
A conditional jump instruction is executed to avoid accessing a text block that spans a page 
boundary since at this point you don’t know if the page belongs to the current process.

If the current text block is not located near the end of a page, a pcmpistri instruction 
is used to determine if the EOS character lies in the text string fragment. If the EOS 
character is found, as indicated by EFLAGS.ZF being set to 1, the final string length is 
calculated and returned to the caller. Otherwise, the processing loop is repeated. The 
control option value for the pcmpistri instruction is set for unsigned bytes, “equal range,” 
and IntRes1 inversion.

The section of code following the label NearEndOfPage individually checks each 
character near the end of a page to see if it’s an EOS character. If an EOS character is 
found, the final string length is calculated and returned to the caller. If an EOS character 
is not found on the current page, the text string spans multiple pages and it’s safe to 
resume searching for the EOS character using the pcmpistri instruction. Note that 
end-of-page boundary checks are no longer necessary since the pointer value in EAX 
is now aligned to a 16-byte boundary. Also note that the movdqa instruction can now be 
used since the text string pointer is properly aligned. Output 11-1 shows the results of the 
SseTextStringCalcLength sample program.
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Output 11-1. Sample Program SseTextStringCalcLength

Results for SseTextStringCalcLength()
Test string: "0123456"
  No errors detected
Test string: "0123456789abcde"
  No errors detected
Test string: "0123456789abcdef"
  No errors detected
Test string: "0123456789abcdefg"
  No errors detected
Test string: "0123456789abcdefghijklmnopqrstu"
  No errors detected
Test string: "0123456789abcdefghijklmnopqrstuv"
  No errors detected
Test string: "0123456789abcdefghijklmnopqrstuvw"
  No errors detected
Test string: "0123456789abcdefghijklmnopqrstuvwxyz"
  No errors detected
Test string: ""
  No errors detected

Text String Replace Characters
The second x86-SSE text string sample program that you examine is called 
SseTextStringReplaceChar. This sample program scans a text string and replaces 
all occurrences of a specified character. Listings 11-4 and 11-5 show the code for 
SseTextStringReplaceChar.cpp and SseTextStringReplaceChar_.asm, respectively.

Listing 11-4. SseTextStringReplaceChar.cpp

#include "stdafx.h"
#include <string.h>
#include <malloc.h>
 
extern "C" int SseTextStringReplaceChar_(char* s, char old_char, char new_char);
 
const char* TestStrings[] =
{
    "*Red*Green*Blue*",
    "Cyan*Magenta Yellow*Black Tan",
    "White*Pink Brown Purple*Gray Orange*",
    "Beige Silver Indigo Fuchsia Maroon",
    "***************",
    "*****+*****+*****+*****+*****",
    ""
};
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const char OldChar = '*';
const char NewChar = '#';
const int OffsetMin = 4096 - 40;
const int OffsetMax = 4096 + 40;
const int NumTestStrings = sizeof(TestStrings) / sizeof (char*);
const unsigned int CheckNum = 0x12345678;
 
int SseTextStringReplaceCharCpp(char* s, char old_char, char new_char)
{
    char c;
    int n = 0;
 
    while ((c = *s) != '\0')
    {
        if (c == OldChar)
        {
            *s = NewChar;
            n++;
        }
 
        s++;
 
    }
 
    return n;
}
 
void SseTextStringReplaceChar(void)
{
    const int buff_size = 8192;
    const int page_size = 4096;
    char* buff1 = (char*)_aligned_malloc(buff_size, page_size);
    char* buff2 = (char*)_aligned_malloc(buff_size, page_size);
 
    printf("\nResults for SseTextStringReplaceChars()\n");
    printf("OldChar = '%c'NewChar = '%c'\n", OldChar, NewChar);
 
    for (int i = 0; i < NumTestStrings; i++)
    {
        const char* s = TestStrings[i];
        int s_len = strlen(s);
 
        for (int offset = OffsetMin; offset <= OffsetMax; offset++)
        {
            bool print = (offset == OffsetMin) ? true : false;
            char* s1 = buff1 + offset;
            char* s2 = buff2 + offset;
            int size = buff_size - offset;
            int n1 = -1, n2 = -1;
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11 ■ X86-SSe programming – teXt StringS 

318

            strcpy_s(s1, size, s);
            *(s1 + s_len + 1) = OldChar;
            *((unsigned int*)(s1 + s_len + 2)) = CheckNum;
 
            strcpy_s(s2, size, s);
            *(s2 + s_len + 1) = OldChar;
            *((unsigned int*)(s2 + s_len + 2)) = CheckNum;
 
            if (print)
                printf("\ns1 before replace: \"%s\"\n", s1);
            n1 = SseTextStringReplaceCharCpp(s1, OldChar, NewChar);
            if (print)
                printf("s1 after replace: \"%s\"\n", s1);
 
            if (print)
                printf("\ns2 before replace: \"%s\"\n", s2);
            n2 = SseTextStringReplaceChar_(s2, OldChar, NewChar);
            if (print)
                printf("s2 after replace: \"%s\"\n", s2);
 
            if (strcmp(s1, s1) != 0)
                printf("Error - string compare failed\n");
            if (n1 != n2)
                printf("Error - character count compare failed\n");
 
            if (*(s1 + s_len + 1) != OldChar)
                printf("Error - buff1 OldChar overwrite\n");
            if (*(s2 + s_len + 1) != OldChar)
                printf("Error - buff2 OldChar overwrite\n");
 
            if (*((unsigned int*)(s1 + s_len + 2)) != CheckNum)
                printf("Error - buff1 CheckNum overwrite\n");
            if (*((unsigned int*)(s2 + s_len + 2)) != CheckNum)
                printf("Error - buff2 CheckNum overwrite\n");
        }
    }
 
    _aligned_free(buff1);
    _aligned_free(buff2);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    SseTextStringReplaceChar();
    return 0;
}
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Listing 11-5. SseTextStringReplaceChar_asm

        .model flat,c
        .const
        align 16
PxorNotMask db 16 dup(0ffh)                 ;pxor logical not mask
        .code
 
; extern "C" int SseTextStringReplaceChar_(char* s, char old_char, char new_char);
;
; Description:  The following function replaces all instances of old_char
;               with new_char in the provided text string.
;
; Requires      SSE4.2 and POPCNT feature flag.
 
SseTextStringReplaceChar_ proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
        push edi
 
; Initialize
        mov eax,[ebp+8]                     ;eax = 's'
        sub eax,16                          ;adjust eax for loop below
        xor edi,edi                         ;edi = num replaced chars
 
; Build packed old_char and new_char
        movzx ecx,byte ptr [ebp+12]
        movd xmm1,ecx                       ;xmm1[7:0] = old_char
        movzx ecx,byte ptr [ebp+16]         ;ecx = new char
        movd xmm6,ecx
        pxor xmm5,xmm5
        pshufb xmm6,xmm5                        ;xmm6 = packed new_char
        movdqa xmm7,xmmword ptr [PxorNotMask]   ;xmm7 = pxor not mask
 
; Calculate next string address and test for near end-of-page condition
Loop1:  add eax,16              ;eax = next text block
        mov edx,eax
        and edx,0fffh           ;edx = low 12 bits of address
        cmp edx,0ff0h
        ja NearEndOfPage        ;jump if within 16 bytes of page boundary
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; Compare current text block to find characters
        movdqu xmm2,[eax]               ;load next text block
        pcmpistrm xmm1,xmm2,40h         ;test for old_char match
        setz cl                         ;set if '\0' found
        jc FoundMatch1                  ;jump if matches found
        jz Done                         ;jump if '\0' found
        jmp Loop1                       ;jump if no matches found
 
; Character matches found (xmm0 = match mask)
; Update character match count in EDI
FoundMatch1:
        pmovmskb edx,xmm0               ;edx = match mask
        popcnt edx,edx                  ;count the number of matches
        add edi,edx                     ;edi = total match count
 
; Replace all old_char with new_char
        movdqa xmm3,xmm0                ;xmm3 = match mask
        pxor xmm0,xmm7
        pand xmm0,xmm2                  ;remove old_chars
        pand xmm3,xmm6
        por xmm0,xmm3                   ;insert new_chars
        movdqu [eax],xmm0               ;save updated string
        or cl,cl                        ;does current block contain '\0'?
        jnz Done                        ;jump if yes
        jmp Loop1                       ;continue processing text string
 
; Replace old_char with new_char near end of page
NearEndOfPage:
        mov ecx,4096                    ;size of page in bytes
        sub ecx,edx                     ;ecx = number of bytes to check
        mov dl,[ebp+12]                 ;dl = old_char
        mov dh,[ebp+16]                 ;dh = new_char
 
Loop2:  mov bl,[eax]                    ;load next input string character
        or bl,bl
        jz Done                         ;jump if '\0' found
        cmp dl,bl
        jne @F                          ;jump if no match
        mov [eax],dh                    ;replace old_char with new_char
        inc edi                         ;update num replaced characters
@@:     inc eax                         ;eax = ptr to next char
        dec ecx
        jnz Loop2                       ;repeat until end of page
        sub eax,16                      ;adjust eax to eliminate jump
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; Process remainder of text string; note that movdqa can now be used
Loop3:  add eax,16                      ;eax = next text block
        movdqa xmm2,[eax]               ;load next text block
        pcmpistrm xmm1,xmm2,40h         ;test for old_char match
        setz cl                         ;set if '\0' found
        jc FoundMatch3                  ;jump if matches found
        jz Done                         ;jump if '\0' found
        jmp Loop3                       ;jump if no matches found
 
FoundMatch3:
        pmovmskb edx,xmm0               ;edx = match mask
        popcnt edx,edx                  ;count the number of matches
        add edi,edx                     ;edi = total match count
 
; Replace all old_char with new_char
        movdqa xmm3,xmm0                ;xmm3 = match mask
        pxor xmm0,xmm7
        pand xmm0,xmm2                  ;mask out all old_chars
        pand xmm3,xmm6
        por xmm0,xmm3                   ;insert new_chars
        movdqa [eax],xmm0               ;save updated string
        or cl,cl                        ;does current block contain '\0'?
        jnz Done                        ;jump if yes
        jmp Loop3                       ;continue processing text string
 
Done:   mov eax,edi                     ;eax = num replaced characters
        pop edi
        pop esi
        pop ebx
        pop ebp
        ret
SseTextStringReplaceChar_ endp
        end
 

Near the top of file SseTextStringReplaceChar.cpp (see Listing 11-4) is a function 
named SseTextStringReplaceCharCpp, which implements a C++ version of the replace 
character algorithm. The function SseTextStringReplaceChar initializes a variety of 
test cases in order to confirm operation of both replace character functions. Since the 
assembly language version of the replace character algorithm will be updating the text 
string using SIMD techniques, the character to be replaced and a check number are 
written to the memory buffer immediately after the EOS character. This signature pattern 
is used to determine if any bytes following the EOS character are erroneously modified. 
Similar to the previous sample program, the function SseTextStringReplaceChar also 
copies each test string to multiple locations in the memory buffer in order to verify proper 
handling of end-of-page and page-spanning text strings.
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The assembly language function SseTextStringReplaceChar_ (see Listing 11-5) 
starts by initializing EAX as a pointer to the text string. Register EDI is then set to zero and 
is used to maintain a count of replaced characters. The argument values old_char and 
new_char are loaded into registers XMM1 and XMM6, respectively. Note that old_char 
occupies only the low-order byte of XMM1 (the other bytes of XMM1 are zero), while 
new_char resides in each byte position of XMM6. A pshufb xmm6,xmm5 instruction 
(XMM5 contains all zeros) creates a packed version of new_char (i.e., all byte positions in 
XMM5 equal new_char) and this value will be used during replace operations. XMM7 is 
then loaded with a character inversion mask value.

Near the top of Loop1, the string pointer in EAX is tested to determine if the next text 
string fragment crosses a page boundary. If the current text string fragment is not located 
near the end of a page, it is loaded into XMM2 using a movdqu instruction. A pcmpistrm 
xmm1,xmm2,40h instruction tests the current text string fragment for any occurrences of 
old_char. The control value for this instruction specifies unsigned packed bytes,  
“equal any,” and byte mask. EFLAGS.CF is set if a character match is found while EFLAGS.
ZF is set if the current text string fragment contains an EOS character. It is important 
to recognize that these are not mutually exclusive conditions, which is why a setz cl 
instruction is used to save the status of EFLAGS.ZF for later use. Following execution of 
the pcmpistrm instruction, XMM0 contains a mask of matched characters (0x00 = no 
match, 0xff = match).

The section of code following the label FoundMatch1 updates the matching character 
count and performs a packed character replacement. The instruction pmovmskb edx,xmm0 
(Move Byte Mask) creates a mask using the most significant bits of each byte in XMM0 
and saves this mask to the low-order word of register EDX (the high-order word is  
zero-filled). A popcnt edx,edx (Return the Count of Number of Bits Set to 1) instruction 
counts the number of set bits in EDX, which equals the number of matching characters. 
This count value is then added to the total number of matching characters that’s 
maintained in register EDI. Figure 11-8 illustrates the technique used to replace each 
occurrence of old_char with new_char. Following the packed character replacement 
operation, program control is transferred either back to the top of Loop1 or to the 
function’s epilog if the current text string fragment contains an EOS terminator byte.
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The label NearEndOfPage marks the start of a code block that performs character 
replacements near the end of a page. Text string characters are tested individually for a 
match with old_char and replaced with new_char if a match is found. This block of code 
also checks each character to see if it’s equal to the EOS terminator. If an EOS terminator 
is found, execution of the replacement loop is terminated.

After processing the characters near the end of a page, the function can resume 
SIMD text string character match checking using the pcmpistrm instruction. Since the 
pointer in register EAX is now aligned on a 16-byte boundary, a movdqa instruction is 
used to load the remaining text string fragment into register XMM2. The processing loop 
following label Loop3 uses the same method to replace matched characters, as shown 
in Figure 11-8. Output 11-2 shows the results of the SseTextStringReplaceChar sample 
program.

'* ' 'e' 'u' 'B' 'e''n''* ''l' 'e' 'r' 'G' 'd' '* ''R''e''* ' xmm2

ffh 00h 00h 00h 00h00hffh00h 00h 00h 00h 00h ffh00h00hffh xmm0 
xmm3

ffh ffh ffh ffh ffhffhffhffh ffh ffh ffh ffh ffhffhffhffh xmm7

'#' '#' '#' '#' '#''#''#''#' '#' '#' '#' '#' '#''#''#''#' xmm6

pxor xmm0, xmm7

00h ffh ffh ffh ffhffh00hffh ffh ffh ffh ffh 00hffhffh00h xmm0

pand xmm0, xmm2

00h 'e' 'u' 'B' 'e''n'00h'l' 'e' 'r' 'G' 'd' 00h'R''e'00h xmm0

pand xmm3, xmm6

xmm3'#' 00h 00h 00h 00h00h'#'00h 00h 00h 00h 00h '#'00h00h'#'

por xmm0, xmm3

'#' 'e' 'u' 'B' 'e''n''#''l' 'e' 'r' 'G' 'd' '#''R''e''#' xmm0

Initial XMM register values

Figure 11-8. Illustration of the packed character replacement technique

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11 ■ X86-SSe programming – teXt StringS 

324

Output 11-2. Sample Program SseTextStringReplaceChar

Results for SseTextStringReplaceChars()
OldChar = '*'  NewChar = '#'
 
s1 before replace: "*Red*Green*Blue*"
s1 after replace:  "#Red#Green#Blue#"
 
s2 before replace: "*Red*Green*Blue*"
s2 after replace:  "#Red#Green#Blue#"
 
s1 before replace: "Cyan*Magenta Yellow*Black Tan"
s1 after replace:  "Cyan#Magenta Yellow#Black Tan"
 
s2 before replace: "Cyan*Magenta Yellow*Black Tan"
s2 after replace:  "Cyan#Magenta Yellow#Black Tan"
 
s1 before replace: "White*Pink Brown Purple*Gray Orange*"
s1 after replace:  "White#Pink Brown Purple#Gray Orange#"
 
s2 before replace: "White*Pink Brown Purple*Gray Orange*"
s2 after replace:  "White#Pink Brown Purple#Gray Orange#"
 
s1 before replace: "Beige Silver Indigo Fuchsia Maroon"
s1 after replace:  "Beige Silver Indigo Fuchsia Maroon"
 
s2 before replace: "Beige Silver Indigo Fuchsia Maroon"
s2 after replace:  "Beige Silver Indigo Fuchsia Maroon"
 
s1 before replace: "***************"
s1 after replace:  "###############"
 
s2 before replace: "***************"
s2 after replace:  "###############"
 
s1 before replace: "*****+*****+*****+*****+*****"
s1 after replace:  "#####+#####+#####+#####+#####"
 
s2 before replace: "*****+*****+*****+*****+*****"
s2 after replace:  "#####+#####+#####+#####+#####"
 
s1 before replace: ""
s1 after replace:  ""
 
s2 before replace: ""
s2 after replace:  ""
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Summary
In this chapter, you learned how to perform basic operations using the x86-SSE text 
string processing instructions. You also gained a few insights regarding the programming 
precautions that you must observe when you’re using SIMD techniques to process 
text strings. Earlier in this chapter I mentioned that the x86-SSE text string instructions 
are extremely powerful and flexible, but somewhat confusing to use. Hopefully, I’ve 
eliminated or at least reduced some of the confusion surrounding these instructions.

The previous four chapters surveyed a significant amount of x86-SSE sample 
code. They included numerous sample programs (perhaps too many) and meticulous 
explanations to accentuate the importance of x86-SSE and its computational advantages. 
The title of this book incorporates the word modern and was chosen to encourage the 
use of contemporary processor extensions such as x86-SSE over legacy instructions and 
architectural resources whenever feasible. In the next set of chapters, you expand your 
knowledge of modern assembly language programming by examining the most recent 
SIMD extension to the x86 platform, which is called Advanced Vector Extensions.
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Chapter 12

Advanced Vector  
Extensions (AVX)

In the previous seven chapters, you learned about the SIMD processing capabilities of 
MMX and x86-SSE. MMX introduced elementary integer SIMD arithmetic and related 
operations to the x86 platform. These capabilities were extended by x86-SSE to include 
wider operands, additional registers, and enhanced floating-point arithmetic using scalar 
and packed operands. This chapter examines the x86’s most recent SIMD augmentation, 
which is called Advanced Vector Extensions (x86-AVX).

Like its predecessor extensions, x86-AVX adds new registers, data types, and instructions 
to the x86 platform. It also introduces a modern three-operand assembly language instruction 
syntax that helps streamline assembly language programming and improve performance. 
Concomitant with the introduction of x86-AVX are several distinct feature extensions, 
including half-precision floating-point conversions, fused-multiply-add (FMA) operations, 
and new general-purpose register instructions.

The content in this chapter assumes that you have a basic understanding of x86-SSE 
and its instruction set. Similar to the approach that was used in Chapter 7 with x86-SSE,  
the discussions in this chapter focus on using x86-AVX in an x86-32 execution 
environment. In Chapters 19 and 20, you learn how to develop x86-64 programs that use 
the computational resources of x86-AVX.

X86-AVX Overview
The first x86-AVX extension, called AVX, was introduced in 2011 with the Sandy Bridge 
microarchitecture. AVX extends the packed single-precision and double-precision 
floating-point capabilities of x86-SSE from 128 bits to 256 bits. It also supports a new 
three-operand instruction syntax using non-destructive source operands that simplifies 
assembly language programming considerably. Programmers can use this new 
instruction syntax with packed 128-bit integer, packed 128-bit floating-point, and packed 
256-bit floating-point operands. The new instruction syntax can also be used to perform 
scalar single-precision and double-precision floating-point arithmetic. In 2012 Intel 
introduced an updated version of the Sandy Bridge microarchitecture called Ivy Bridge, 
which added instructions that perform half-precision floating-point conversions. You 
learn more about half-precision floating-point later in this chapter.
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In 2013 Intel launched a new microarchitecture called Haswell. Processors based on 
this microarchitecture include AVX2, which extends the packed integer capabilities of AVX 
from 128 bits to 256 bits. It also includes enhanced data broadcast, blend, and permute 
instructions, and introduces a new vector-index addressing mode that facilitates memory 
loads (or gathers) of data elements from non-contiguous locations. All Haswell-based 
processors incorporate several AVX2-associated technologies, including FMA, enhanced 
bit manipulation, and flagless rotate and shift instructions.

In July of 2013, Intel announced AVX-512, which will extend the SIMD capabilities 
of AVX and AVX2 from 256 bits to 512 bits in future processors. Table 12-1 summarizes 
current and planned x86-AVX technologies. This table uses the acronyms SPFP and 
DPFP to signify single-precision floating-point and double-precision floating-point, 
respectively.

Table 12-1. Summary of x86-AVX Technologies

Release Supported Types Key Features and Enhancements

AVX Packed 128-bit integer

Packed 128-bit SPFP

Packed 128-bit DPFP

Packed 256-bit SPFP

Packed 256-bit DPFP

Scalar SPFP, DPFP

SIMD operations using supported data types 
and three-operand instruction syntax

Conditional packed data loads and stores

Packed floating-point broadcast and permute

New floating-point compare predicates

Half-precision floating-point conversions

AVX2 Packed 256-bit integer SIMD operations using packed 256-bit integers

Data gather instructions

Enhanced broadcast and permute instructions

FMA instructions

Enhanced bit manipulation instructions

Flagless rotate and shift instructions

AVX-512 Packed 512-bit integer

Packed 512-bit SPFP

Packed 512-bit DPFP

SIMD operations using packed 512-bit operands

Conditional packed data-element operations

Instruction-level rounding overrides

Data scatter instructions

The Sandy Bridge microarchitecture is used in second-generation Intel Core  
(i3, i5, and i7 series) processors. Third- and fourth-generation Intel Core processors are 
based on the Ivy Bridge and Haswell microarchitectures, respectively. The server and 
workstation oriented Xeon E3, E3 v2, and E3 v3 processor families are also based on the 
Sandy Bridge, Ivy Bridge, and Haswell microarchitectures, respectively. The Intel product 
information website that’s listed in Appendix C contains additional information regarding 
processor families and their corresponding microarchitectures.
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X86-AVX Execution Environment
The following section examines the x86-AVX execution environment, which includes its 
register set and supported data types. It also explains the new three-operand assembly 
language instruction syntax that’s used by x86-AVX. The subject matter of this section 
assumes that you are familiar with the x86-SSE material presented in Chapters 7 through 11.

X86-AVX Register Set
X86-AVX adds eight new 256-bit wide registers named YMM0-YMM7 to the x86 platform. 
These directly-addressable registers can be used to manipulate a variety of data types, 
including packed integer, packed floating-point, and scalar floating-point values. The 
low-order 128 bits of each YMM register are aliased with the corresponding XMM register, 
as illustrated in Figure 12-1. X86-AVX instructions can use either the XMM or YMM registers 
as operands. If an x86-AVX instruction uses an XMM register as a destination operand, 
the processor zeroes the upper 128 bits of the matching YMM register during execution. 
On processors that support x86-AVX, the high-order 128 bits of a YMM register are never 
modified during execution of an x86-SSE instruction. The default handling of a YMM register’s 
upper 128 bits during instruction execution is discussed further later in this chapter.

0255

XMM 0

127128

XMM 2

XMM 3

XMM 4

XMM 5

XMM 6

XMM 7

XMM 1

YMM 0

YMM 1 

YMM 2

YMM 3

YMM 4

YMM 5

YMM 6

YMM 7

Figure 12-1. X86-AVX register set in x86-32 mode

X86-AVX Data Types
AVX supports SIMD operations using 256-bit and 128-bit wide packed single-precision 
or packed double-precision floating-point operands. A 256-bit wide YMM register or 
memory location can hold eight single-precision or four double-precision values, as shown 
in Figure 12-2. When used with a 128-bit wide XMM register or memory location, an AVX 
instruction can process four single-precision or two double-precision values. Like SSE and 
SSE2, AVX manipulates the low-order doubleword or quadword of an XMM register when 
performing scalar single-precision or double-precision floating-point arithmetic, respectively.
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AVX also accommodates use of the XMM registers to perform SIMD operations 
using a variety of packed integer operands, including bytes, words, doublewords, and 
quadwords. AVX2 extends the packed integer processing capabilities of AVX to the YMM 
registers and 256-bit wide memory locations. Figure 12-2 also shows these data types.

X86-AVX Instruction Syntax
Perhaps the most noteworthy aspect of x86-AVX is its use of a contemporary assembly 
language instruction syntax. Most x86-AVX instructions use a three-operand format 
that consists of two source operands and one destination operand. The general syntax 
that’s employed for these instructions is InstrMnemonic DesOp, SrcOp1, SrcOp2, where 
InstrMnemonic signifies the x86-AVX instruction mnemonic, and DesOp, SrcOp1, and 
SrcOp2 denote the destination and source operands, respectively. The remaining x86-AVX 
instructions require either one or three source operands. Nearly all x86-AVX instruction 
source operands are non-destructive (i.e., the operand is not modified during instruction 
execution), except in cases where a destination operand register is the same as one of the 
source operand registers.

224 0

Register or Memory Byte Position

128255

Bit Position

Packed
Bytes

Packed
Words

Packed
Doublewords

Packed
Quadwords

N+28 N+24 N+20 N+16 N+12 N+8 N+4 N

192 160 96 64 32

Scalar
SPFP

Scalar
DPFP

Packed
SPFP

Packed
DPFP

XMM Register or 128-Bit Memory

YMM Register or 256-Bit Memory

Figure 12-2. X86-AVX data types
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Table 12-2 contains a few examples that illustrate the general syntax of an x86-AVX 
instruction. Note that all of the instruction mnemonics begin with the letter v. Later in 
this chapter, you learn that many x86-AVX instructions are straightforward extensions 
of a corresponding x86-SSE instruction. This extension becomes readily apparent if you 
remove the v prefix from the instruction mnemonics shown in Table 12-2.

Table 12-2. X86-AVX Instruction Syntax Examples

Instruction Operation

vaddpd ymm0,ymm1,ymm2

(Packed double-precision  
floating-point addition)

ymm0[63:0] = ymm1[63:0] + ymm2[63:0]

ymm0[127:64] = ymm1[127:64] + ymm2[127:64]

ymm0[191:128] = ymm1[191:128] + 
ymm2[191:128]

ymm0[255:192] = ymm1[255:192] + 
ymm2[255:192]

vmulps xmm0,xmm1,xmm2

(Packed single-precision  
floating-point multiplication)

xmm0[31:0] = xmm1[31:0] * xmm2[31:0]

xmm0[63:31] = xmm1[63:31] * xmm2[63:31]

xmm0[95:64] = xmm1[95:64] * xmm2[95:64]

xmm0[127:96] = xmm1[127:96] * xmm2[127:96]

ymm0[255:128] = 0

vunpcklps xmm0,xmm1,xmm2

(Unpack low single-precision 
floating-point values)

xmm0[31:0] = xmm1[31:0]

xmm0[63:31] = xmm2[31:0]

xmm0[95:64] = xmm1[63:32]

xmm0[127:96] = xmm2[63:32]

ymm0[255:128] = 0

vpxor ymm0,ymm1,ymm2

(Logical exclusive-or)

ymm0[255:0] = ymm1[255:0] ^ ymm2[255:0]

vmovdqa ymm0,ymm1

(Move aligned double quadwords)

ymm0[255:0] = ymm1[255:0]

vblendpd ymm0,ymm1,ymm2,06h

(Blend packed double-precision 
floating-point values)

ymm0[63:0] = ymm1[63:0]

ymm0[127:64] = ymm2[127:64]

ymm0[191:128] = ymm2[191:128]

ymm0[255:192] = ymm1[255:192]

X86-AVX’s ability to support a three-operand instruction syntax is due to a new 
instruction-encoding prefix. The vector extension (VEX) prefix enables x86-AVX 
instructions to be encoded using a more efficient format than the prefixes used for x86-SSE 
instructions. It also provides a migration path for future x86-AVX instruction enhancements. 
Most of the new general-purpose register instructions also use the VEX prefix.
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X86-AVX Feature Extensions
Concomitant with the introduction of AVX and AVX2 are several new feature extensions 
to the x86 platform. The feature extensions include half-precision floating-point 
conversions, FMA computations, and general-purpose register instruction enhancements. 
The remainder of this section briefly outlines these extensions along with some caveats 
regarding their use that programmers need to be aware of.

Processors based on the Ivy Bridge and Haswell microarchitectures incorporate 
instructions that carry out half-precision floating-point conversions. Compared to a 
standard single-precision floating-point value, a half-precision value is a reduced-precision 
floating-point number that contains three fields: an exponent (5 bits), a significand  
(11 bits), and a sign bit. Each half-precision floating-point value is 16 bits wide; the 
leading digit of the significand is implied. Compatible processors include instructions 
that can convert packed half-precision floating-point values to packed single-precision 
floating-point and vice versa. However, it is not possible to perform common arithmetic 
calculations such as addition, subtraction, multiplication, and division using half-precision 
float-point values. Half-precision floating-point values are primarily intended to reduce 
space requirements, either in memory or on a data storage device. The drawbacks of 
using half-precision floating-point values are reduced precision and limited range.

Haswell-based processors also include instructions that perform FMA operations. 
A FMA instruction combines multiplication and addition (or subtraction) into a single 
operation. More specifically, a fused-multiply-add (or fused-multiply-subtract) calculation 
performs a floating-point multiplication followed by a floating-point addition (or subtraction) 
using a single rounding operation. As an example, consider the expression a = (b * c) + 
d. Using standard floating-point arithmetic, the processor initially performs a multiplication 
that includes a rounding operation. This is followed by a floating-point addition and another 
rounding operation. If the expression is evaluated using FMA arithmetic, the processor 
does not round the intermediate product b * c. Rounding is carried out only once using 
the final product-sum (b * c) + d. The FMA instructions can be used improve the 
performance and accuracy of multiply-accumulate computations such as dot products and 
matrix multiplications. Many signal-processing algorithms also make extensive use of FMA 
operations. The FMA instruction set supports operations using both scalar and packed  
single-precision and double-precision floating-point values.

The final feature extension adds new general-purpose register instructions. 
These instructions, which are available on Haswell processors, support enhanced bit 
manipulations, flagless register rotate and shift operations, and flagless unsigned integer 
multiplication. The flagless rotate, shift, and multiplication instructions do not affect 
any of the status flags in the EFLAGS register. This can improve the performance of 
many integer-oriented calculations and algorithms. Most of the new general-purpose 
instructions registers also use the new three-operand assembly-language syntax.

The extensions described in the previous paragraphs are considered distinct processor 
features. What this means from a programming perspective is that a software developer 
cannot assume the corresponding instruction sets are available based on whether or not the 
processor supports AVX or AVX2. For example, a future processor that targets mobile devices 
might include support for AVX2 but not FMA in order to achieve a specific thermal design 
point. The presence of a particular feature extension should always be explicitly tested for 
using the cpuid instruction. In Chapter 16, you examine some sample code that illustrates 
how to use this instruction in order to detect specific processor feature extensions.
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X86-AVX Instruction Set Overview
The x86-AVX instruction set can be broadly partitioned into three groups. The first group 
includes the x86-SSE instructions that have been promoted to exploit the new three-operand 
syntax using either 128-bit or 256-bit wide operands. The next group consists of new 
instructions that were introduced with AVX or AVX2. The final group includes x86-AVX 
feature extension instructions, including half-precision floating point conversions, FMA, and 
new general-purpose register instructions.

Before proceeding to the overview, there are some syntactical and execution 
commonalities regarding the x86-AVX instruction set that warrant a few comments. As 
mentioned earlier in this chapter, all x86-AVX instructions employ an assembly language 
syntax that consists of an instruction mnemonic, a destination operand, and up to three 
source operands. If an instruction performs a data transfer operation, the destination 
operand can specify a location in memory; otherwise, it must be an XMM or YMM 
register. Only one of the source operands can specify a location in memory; the remaining 
source operands must be an XMM register, a YMM register, or an immediate operand.

X86-AVX relaxes the alignment requirements of instruction operands in memory. 
Except for data transfer instructions that explicitly reference a 16-byte or 32-byte aligned 
operand in memory, proper alignment of an x86-AVX instruction operand in memory is 
not required. Despite this alignment relaxation, it is strongly recommended that all  
16-byte and 32-byte operands in memory be properly aligned for best possible performance. 
X86-SSE instructions that execute on processors that support x86-AVX must still use 
properly aligned memory operands.

Promoted x86-SSE Instructions
Most x86-SSE instructions that manipulate 128-bit wide operands have a corresponding 
x86-AVX instruction. This includes packed single-precision floating-point, double-precision 
floating-point, and integer values. For example, the x86-SSE instruction mulps xmm0,xmm1 
multiplies the packed single-precision floating-point values in registers XMM0 and 
XMM1 and saves the packed product result to register XMM0. The parallel x86-AVX 
instruction is vmulps xmm0,xmm0,xmm1. Another example is the x86-SSE add packed 
byte integers instruction paddb xmm0,xmm1 and its corresponding x86-AVX instruction 
is vpaddb xmm0,xmm0,xmm1. Note that in both of these examples, register XMM0 is used 
destructively. Non-destructive examples of the x86-AVX instructions include vmulps 
xmm0,xmm1,xmm2 and vpaddb xmm0,xmm1,xmm2, whose execution does not modify the 
values in XMM1 and XMM2.

Nearly all 128-bit wide x86-SSE instructions have an x86-AVX form that can be used 
with 256-bit wide operands. For example, the vsubpd ymm7,ymm0,ymm1 instruction performs 
a packed floating-point subtraction using four pairs of double-precision values. The vdivps 
ymm7,ymm0,ymm1 instruction performs packed single-precision floating-point division using 
eight value pairs, and vpsubb ymm7,ymm0,ymm1 subtracts 32 pairs of integer byte values.

Within a processor, each 256-bit AVX register is partitioned into an upper and lower 
128-bit lane. Most x86-AVX instructions carry out their operations using same-lane 
source and destination operand elements. This independent lane execution tends to be 
inconspicuous when using x86-AVX instructions that perform arithmetic calculations. 
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However, when using instructions that re-order the data elements of a packed quantity 
(such as vshufps and vpunpcklwd), the effect of separate execution lanes is more evident, 
as illustrated in Figure 12-3. In these examples, the floating-point shuffle and word 
unpack operations are carried out independently in both the upper (bits 255:128) and 
lower (bits 127:0) double quadwords.

vshufps ymm0,ymm1,ymm2,01110010b

ymm 1

ymm 2

10300400 200 100 40 30 20

10111213141516175051525354555657

50700800 600 500 80 70 60

30800600 100 300 60 80 10 ymm 0

01230123

0000000000000000

vpunpcklwd ymm0,ymm1,ymm2

ymm 1

ymm 2

ymm 0100110120140500510520530

Figure 12-3. Examples of x86-AVX instruction execution using independent lanes

The X86-AVX instruction set also supports three-operand forms of the x86-SSE scalar 
floating-point instructions. The vaddss xmm0,xmm1,xmm2 instruction, for example, adds 
the scalar single-precision floating-point values in XMM1 and XMM2 and saves the sum 
to XMM0. The instruction vmulsd xmm0,xmm1,xmm2 multiplies the scalar double-precision 
values in XMM1 and XMM2; the resultant product is then saved to register XMM0.  
A comprehensive list of all x86-SSE to x86-AVX promoted instructions is included in the 
Intel and AMD reference manuals, which can be downloaded from the websites listed in 
Appendix C.

The high degree of instructional symmetry between x86-SSE and x86-AVX and the 
aliasing of the XMM and YMM register sets introduces a few programming issues that 
software developers need to keep in mind. The first issue relates to the processor’s handling 
of a YMM register’s high-order 128 bits when the corresponding XMM register is used as a 
destination operand. When executing on a processor that supports x86-AVX technology, 
an x86-SSE instruction that uses an XMM register as a destination operand will never 
access the upper 128 bits of the corresponding YMM register. However, the equivalent  

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12 ■ advanCed veCtor extensions (avx) 

335

x86-AVX instruction will zero the upper 128 bits of the respective YMM register. Consider, 
for example, the following instances of the (v)cvtps2pd (Convert Packed Single-Precision 
to Packed Double-Precision Floating Point Values) instruction:

cvtps2pd xmm0,xmm1
vcvtps2pd xmm0,xmm1
vcvtps2pd ymm0,ymm1

The x86-SSE cvtps2pd instruction converts the two packed single-precision  
floating-point values in the low-order quadword of XMM1 to double-precision  
floating-point and saves the result in register XMM0. The high-order 128 bits of register 
YMM0 are not modified. The first vcvtps2pd instruction performs the same packed 
single-precision to packed double-precision conversion operation; it also zeros the  
high-order 128 bits of YMM0. The second vcvtps2pd instruction converts the four  
packed single-precision floating-point values in the low-order 128 bits of YMM1 to 
packed double-precision floating-point values and saves the result to YMM0.

All x86-AVX scalar floating-point instructions set the upper 128 bit of a YMM  
register to zero. These instructions also copy unused bits of the first source operand to  
the destination operand, as shown in Table 12-3, using the x86-AVX vaddss and vaddsd 
(Add Scalar Single/Double Precision Floating-Point Values) instructions. Table 12-3  
also illustrates operation of the vsqrtss and vsqrtsd (Compute Scalar Square Root of 
Single/Double Precision Floating-Point Value) instructions. Note that these instructions 
require two source operands even though they perform a unary operation using only the 
second source operand.

Table 12-3. Examples of x86-AVX Scalar Floating-Point Instructions

Instruction Operation

vaddss xmm0,xmm1,xmm2

(Add scalar single-precision floating-point 
value)

xmm0[31:0] = xmm1[31:0] + xmm2[31:0]

xmm0[127:32] = xmm1[127:32]

ymm0[255:128] = 0

vaddsd xmm0,xmm1,xmm2

(Add scalar single-precision floating-point 
value)

xmm0[63:0] = xmm1[63:0] + xmm2[63:0]

xmm0[127:64] = xmm1[127:64]

ymm0[255:128] = 0

vsqrtss xmm0,xmm1,xmm2

(Square root of single-precision  
floating-point value)

xmm0[31:0] = sqrt(xmm2[31:0])

xmm0[127:32] = xmm1[127:32]

ymm0[255:128] = 0

vsqrtsd xmm0,xmm1,xmm2

(Square root of double-precision  
floating-point value)

xmm0[63:0] = sqrt(xmm2[63:0])

xmm0[127:64] = xmm1[127:64]

ymm0[255:128] = 0
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The last issue that programmers need to be aware of involves the intermixing of  
x86-AVX and x86-SSE instructions. Programs are allowed to intermix x86-AVX and  
x86-SSE instructions but any intermixing should be kept to a minimum in order avoid 
internal processor state transition penalties that can affect performance. These penalties 
can occur if the processor is required to preserve the upper 128 bits of each YMM register 
during a transition from executing x86-AVX to executing x86-SSE instructions. State 
transition penalties can be completely avoided by using the vzeroupper (Zero Upper Bits 
of YMM Registers) instruction, which zeroes the upper 128 bits of all YMM registers. This 
instruction should be used prior to any transition from 256-bit x86-AVX code (i.e., any 
x86-AVX instruction that uses a YMM register) to x86-SSE code.

One common use of the vzeroupper instruction is by a public function that uses 
256-bit x86-AVX instructions. These types of functions should include a vzeroupper 
instruction prior to the execution of any ret instruction since this prevents processor 
state transition penalties from occurring in any high-level language code that uses  
x86-SSE instructions. The vzeroupper instruction should also be employed before calling 
any library functions that might contain x86-SSE code. The sample code in Chapters 14 
through 16 contains examples that demonstrate proper use of the vzeroupper instruction. 
Functions can also use the vzeroall (Zero All YMM Registers) instruction in order to 
avoid x86-AVX /x86-SSE state transition penalties.

New Instructions
The following section briefly reviews the new x86-AVX instructions. These instructions 
have been partitioned into the following subgroups:

Broadcast•	

Blend•	

Permute•	

Extract and Insert•	

Masked Move•	

Variable Bit Shift•	

Gather•	

The instruction table summaries list the x86-AVX release (or version) that’s required 
in order to use the instruction. If a table entry lists both AVX and AVX2, it means that 
additional forms of the instruction were added in AVX2.

Broadcast
The broadcast group contains instructions that copy (or broadcast) a single data value to 
multiple elements of a packed destination operand. Broadcast instructions are available 
for all packed data types, including single-precision floating-point, double-precision 
floating-point, and integers. Table 12-4 summarizes the broadcast instructions.
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Table 12-4. X86-AVX Broadcast Instructions

Mnemonic Description Version

vbroadcastss Copies a SPFP value to all elements of the destination 
operand.

AVX

AVX2

vbroadcastsd Copies a DPFP value to all elements of the destination 
operand.

AVX

AVX2

vbroadcastf128 Copies a packed 128-bit floating-point value from 
memory to the lower and upper double quadwords of 
the destination operand.

AVX

vbroadcasti128 Copies a packed 128-bit integer value from memory 
to the lower and upper double quadwords of the 
destination operand.

AVX2

vpbroadcastb
vpbroadcastw
vpbroadcastd
vpbroadcastq

Copies an 8-bit, 16-bit, 32-bit, or 64-bit integer value to 
all elements of the destination operand.

AVX2

Blend
The blend group contains instructions that conditionally merge the elements of two 
packed data types. These instructions are shown in Table 12-5.

Table 12-5. X86-AVX Blend Instructions

Mnemonic Description Version

vpblendd Conditionally copies doubleword values from the first 
two source operands to the destination operand using 
the control mask that’s specified by an immediate value.

AVX2

Permute
The permute group includes instructions that reorder or replicate the elements of a 
packed data type. Multiple packed data types are supported, including doublewords, 
single-precision floating-point, and double-precision floating point. Table 12-6 outlines 
these instructions.
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Extract and Insert
The extract and insert group contains instructions that copy 128-bit packed integer 
values between a YMM register and an XMM register or memory location. Table 12-7 
summarizes the instructions in the extract and insert group.

Table 12-6. X86-AVX Permute Instructions

Mnemonic Description Version

vpermd Permutes the doubleword elements of the second source 
operand using the indices specified by the first source 
operand. This instruction can be used to reorder or replicate 
the doubleword values in the second source operand.

AVX2

vpermpd Permutes the DPFP elements of the first source operand 
using the indices specified by an immediate operand. This 
instruction can be used to reorder or replicate the DPFP 
values in the source operand.

AVX2

vpermps Permutes the SPFP elements of the second source operand 
using the indices specified by the first source operand. This 
instruction can be used to reorder or replicate SPFP values in 
the second source operand.

AVX2

vpermq Permutes the quadword elements of the first source operand 
using the indices specified by an immediate operand. This 
instruction can be used to reorder or replicate the quadword 
values in the source operand.

AVX2

vperm2i128 Permutes the packed 128-bit integer values of the first two 
source operands using the indices specified by an immediate 
mask. This instruction can be used to reorder, replicate, or 
interleave the values in the first two source operands.

AVX2

vpermilpd Permutes the DPFP values in the first source operand using 
the control value specified by the second source operand. 
Each 128-bit lane is permuted independently.

AVX

vpermilps Permutes the SPFP values in the first source operand using the 
control value specified by the second source operand. Each 
128-bit lane is permuted independently.

AVX

vperm2f128 Permutes the packed 128-bit floating-point values of the 
first two source operands using the indices specified by an 
immediate mask. This instruction can be used to reorder, 
replicate, or interleave the values in the first two source 
operands.

AVX
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Masked Move
The masked move group includes instructions that perform conditional moves of the 
elements in a packed data value. A control mask determines whether or not a specific 
element is copied from the source operand to the destination operand. If the element is 
not copied, zero is saved to the corresponding destination operand element. Table 12-8 
lists the masked move instructions.

Table 12-7. X86-AVX Extract and Insert Instructions

Mnemonic Description Version

vextracti128 Extracts the low-order or high-order packed 128-bit 
integer value from the source operand and copies it to the 
destination operand. The value to extract is specified by an 
immediate operand.

AVX2

vinserti128 Inserts a 128-bit packed integer value from the second 
source operand into the destination operand. The 
location in the destination operand (lower or upper 
128-bits) is specified by an immediate operand. The 
remaining destination operand element is filled using the 
corresponding element of the first source operand.

AVX2

Table 12-8. X86-AVX Masked Move Instructions

Mnemonic Description Version

vmaskmovps Conditionally copies the SPFP elements of the second source 
operand to the corresponding elements in the destination 
operand according to a control mask that’s specified by the 
first source operand.

AVX

vmaskmovpd Conditionally copies the DPFP elements of the second source 
operand to the corresponding elements in the destination 
operand according to a control mask that’s specified by the 
first source operand.

AVX

vpmaskmovd Conditionally copies the doubleword elements of the 
second source operand to the corresponding elements in 
the destination operand according to a control mask that’s 
specified by the first source operand.

AVX2

vpmaskmovq Conditionally copies the quadword elements of the second 
source operand to the corresponding elements in the 
destination operand according to a control mask that’s 
specified by the first source operand.

AVX2
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Variable Bit Shift
The variable bit shift group contains instructions that perform arithmetic or logical shifts 
on the elements of a packed doubleword or quadword data value using different bit 
counts. These instructions are summarized in Table 12-9.

Gather
The gather group contains instructions that conditionally copy data elements from a 
memory-based array into an XMM or YMM register. These instructions use a special 
memory addressing mode called vector scale-index-base (VSIB). VSIB memory 
addressing employs the following components to specify an operand:

•	 Base—A general-purpose register that points to the start of an 
array in memory.

•	 Scale—The array element size scale factor (1, 2, 4, or 8).

•	 Index—A vector register (XMM or YMM) that contains the signed 
doubleword or signed quadword array indices.

•	 Displacement—An optional fixed offset from the start of the array.

Depending on the instruction, the vector register must contain two, four, or eight 
signed-integer indices. The indices are used to select elements from the array. Figure 12-4  
illustrates execution of the instruction vgatherdps xmm0,[esi+xmm1*4],xmm2. In this 
example, register ESI points to the start of an array containing single-precision  
floating-point values. Register XMM1 holds four signed doubleword array indices and 
register XMM2 contains a conditional copy control mask.

Table 12-9. X86-AVX Variable Bit Shift Instructions

Mnemonic Description Version

vpsllvd

vpsllvq

Shifts each doubleword/quadword data element of the first 
source operand to the left while shifting in 0s. The bit shift 
count is specified by the corresponding data element of the 
second source operand.

AVX2

vpsravd Shifts each doubleword data element of the first source 
operand to the right while shifting in the element’s sign bit. 
The bit shift count is specified by the corresponding data 
element of the second source operand.

AVX2

vpsrlvd

vpsrlvq

Shifts each doubleword/quadword data element of the first 
source operand to the right while shifting in 0s. The bit shift 
count is specified by the corresponding data element of the 
second source operand.

AVX2
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xmm 016.0335.0 -144.0200.0

xmm 127 35

xmm 20x800000000x80000000 0x000000000x80000000

32.0 23.0 47.0 101.0 67.0 39.0 18.0 -75.0

ESI

xmm 047.0-75.0 -144.039.0

xmm 127 35

xmm 20x000000000x00000000 0x000000000x00000000

...

0 1 2 3 4 5 6 7

XMM Registers Before Execution of
vgatherdps xmm0 , [esi+xmm1*4] , xmm2

XMM Registers After Execution of
vgatherdps xmm0 ,[ esi+xmm1*4] , xmm2

Data Array in Memory

Figure 12-4. Illustration of the vgatherps instruction

The destination operand and second source operand (the copy control mask) of 
a gather group instruction must be an XMM or YMM register. The first source operand 
specifies the VSIB components (i.e., array base register, scale factor, array indices, and 
optional displacement). Note that the gather instructions do not check for an invalid 
array index; the use of an invalid array index will yield an incorrect result. Table 12-10  
summarizes the gather group instructions. In this table, each gather instruction 
mnemonic uses the prefix vgatherd or vgatherq to specify doubleword or quadword 
array indices, respectively.
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Table 12-10. X86-AVX Gather Instructions

Mnemonic Description Version

vgatherdpd

vgatherqpd

Conditionally copies two or four double-precision  
floating-point values from a memory-based array using  
VSIB addressing.

AVX2

vgatherdps

vgatherqps

Conditionally copies four or eight single-precision  
floating-point values from a memory-based array using  
VSIB addressing.

AVX2

vgatherdd

vgatherqd

Conditionally copies four or eight doubleword values  
from a memory-based array using VSIB addressing.

AVX2

vgatherdq

vgatherqq

Conditionally copies two or four quadword values  
from a memory-based array using VSIB addressing.

AVX2

Feature Extension Instructions
The following section describes the x86-AVX concomitant feature extension instructions, 
including half-precision floating-point conversions, FMA, general-purpose register 
enhancements. In order to use any of the instructions in these groups, they must be 
supported by the processor as indicated by the corresponding cpuid instruction feature 
flag. The half-precision and FMA instruction groups also require a processor that 
supports AVX or AVX2, respectively, along with an operating system that performs YMM 
register state saves during thread and process context switches.

Half-Precision Floating-Point
The half-precision floating-point group contains instructions that perform packed 
half-precision floating-point to single-precision floating-point conversions and vice 
versa. Processor support for these instructions is indicated via the cpuid F16C feature 
flag. Table 12-11 contains a synopsis of the half-precision floating-point conversion 
instructions.
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FMA
The FMA (fused-multiply-add) group contains instructions that perform fused-multiply-add 
or fused-multiply-subtract operations using packed floating-point or scalar floating-point 
operands. The FMA instructions carry out their computations using one of the following 
generic expressions:

a = (b * c) + d
a = (b * c) – d
a = -(b * c) + d
a = -(b * c) - d

In each of these expressions, the processor applies only one rounding operation to 
calculate the final result, which can improve the speed and accuracy of the calculation.

All FMA instruction mnemonics employ a three-digit operand-ordering scheme 
that specifies the source operands to use for multiplication and addition (or subtraction). 
The first digit specifies the source operand to use as the multiplicand; the second digit 
specifies the source operand to use as the multiplier; and the third digit specifies the 
source operand that is added to (or subtracted from) the product. For example, consider 
the following instruction: vfmadd132sd xmm0,xmm1,xmm2 (Fused Multiply-Add of Scalar 
Double-Precision Floating-Point Values). In this example, registers XMM0, XMM1, 
and XMM2 are source operands 1, 2, and 3, respectively. The vfmadd132sd instruction 
computes (xmm0[63:0] * xmm2[63:0]) + xmm1[63:0], rounds the product-sum 
according to the rounding mode specified by MXCSR.RC, and saves the final result to 
xmm0[63:0].

The FMA instruction set supports operations using packed and scalar single-precision 
and double-precision floating-point data values. Packed FMA operations can be 
performed using either the XMM or YMM registers. The XMM (YMM) registers support 
packed FMA calculations using two (four) double-precision or four (eight) single-precision 

Table 12-11. X86-AVX Half-Precision Floating-Point Instructions

Mnemonic Description Version

vcvtph2ps Converts four or eight half-precision floating-point values in 
the source operand to single-precision floating-point values 
and saves the results to the destination operand. The number 
of performed conversions depends on the size of the size of 
the destination operand, which must be an XMM or YMM 
register.

AVX

vcvtps2ph Converts four or eight single-precision floating-point values 
in the source operand to half-precision floating-point values 
and saves the results to the destination operand. The number 
of performed conversions depends on the size of the first 
source operand, which must be an XMM or YMM register. 
This instruction also requires an immediate operand, which 
specifies the rounding mode.

AVX
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floating-point values. Scalar FMA calculations must be performed using the XMM register 
set. For all FMA instructions, the first and second source operands must be a register.  
The third source operand can be a register or a memory location. If an FMA instruction uses 
an XMM register as a destination operand, the high-order 128 bits of the corresponding 
YMM register are set to zero. FMA instructions carry out their sole rounding operation using 
the mode that’s specified by MXCSR.RC, as explained in the previous paragraph.

The remainder of this section reviews the FMA instruction set, which has been 
partitioned into six subgroups in order to facilitate comprehension. In the subgroup 
description tables, the following two-letter suffixes are used by the instruction 
mnemonics: pd (packed double-precision floating-point), ps (packed single-precision 
floating-point), sd (scalar double-precision floating-point), and ss (scalar single-precision 
floating-point). The symbols src1, src2, and src3 denote the three source operands, and 
des signifies the destination operand, which is the same as src1.

VFMADD Subgroup

The VFMADD subgroup contains instructions that perform fused-multiply-add operations 
using either packed floating-point or scalar floating-point data types. These instructions 
are summarized in Table 12-12.

Table 12-12. FMA VFMADD Subgroup Instructions

Mnemonics Operation

vfmadd132(pd|ps|sd|ss) des = src1 * src3 + src2

vfmadd213(pd|ps|sd|ss) des = src2 * src1 + src3

vfmadd231(pd|ps|sd|ss) des = src2 * src3 + src1

Table 12-13. FMA VFMSUB Subgroup Instructions

Mnemonics Operation

vfmsub132(pd|ps|sd|ss) des = src1 * src3 - src2

vfmsub213(pd|ps|sd|ss) des = src2 * src1 - src3

vfmsub231(pd|ps|sd|ss) des = src2 * src3 - src1

VFMSUB Subgroup

The VFMSUB subgroup contains instructions that perform fused-multiply-subtract 
operations using either packed floating-point or scalar floating-point data types.  
Table 12-13 lists these instructions and their operations.
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VFMADDSUB Subgroup

The VFMADDSUB subgroup includes instructions that perform fused-multiply 
operations on packed data types using addition for the odd elements and subtraction for 
the even elements. Table 12-14 outlines these instructions.

Table 12-14. FMA VFMADDSUB Subgroup Instructions

Mnemonics Operation

vfmaddsub132(pd|ps) des = src1 * src3 + src2 (odd elements)

des = src1 * src3 - src2 (even elements)

vfmaddsub213(pd|ps) des = src2 * src1 + src3 (odd elements)

des = src2 * src1 - src3 (even elements)

vfmaddsub231(pd|ps) des = src2 * src3 + src1 (odd elements)

des = src2 * src3 - src1 (even elements)

Table 12-15. FMA VFMSUBADD Subgroup Instructions

Mnemonics Operation

vfmsubadd132(pd|ps) des = src1 * src3 - src2 (odd elements)

des = src1 * src3 + src2 (even elements)

vfmsubadd213(pd|ps) des = src2 * src1 - src3 (odd elements)

des = src2 * src1 + src3 (even elements)

vfmsubadd231(pd|ps) des = src2 * src3 - src1 (odd elements)

des = src2 * src3 + src1 (even elements)

VFMSUBADD Subgroup

The VFMSUBADD subgroup contains instructions that perform fused-multiply 
operations on packed data types using subtraction for the odd elements and addition for 
the even elements. Table 12-15 summarizes these instructions.
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VFNMSUB Subgroup

The VFNMSUB subgroup contains instructions that perform fused negative multiply-
subtract operations. Table 12-17 describes the operation of these instructions.

General-Purpose Register
The general-purpose register group includes new instructions that support enhanced 
bit manipulations, flagless rotate and shift operations, and flagless unsigned integer 
multiplication. These instructions are summarized in Table 12-18. Processor support 
for these instructions is indicated via the CPUID feature flags, which are also shown in 
Table 12-18.

Table 12-16. FMA VFNMADD Subgroup Instructions

Mnemonics Operation

vfnmadd132(pd|ps|sd|ss) des = -(src1 * src3) + src2

vfnmadd213(pd|ps|sd|ss) des = -(src2 * src1) + src3

vfnmadd231(pd|ps|sd|ss) des = -(src2 * src3) + src1

Table 12-17. FMA VFNMSUB Subgroup Instructions

Mnemonics Operation

vfnmsub132(pd|ps|sd|ss) des = -(src1 * src3) - src2

vfnmsub213(pd|ps|sd|ss) des = -(src2 * src1) - src3

vfnmsub231(pd|ps|sd|ss) des = -(src2 * src3) - src1

VFNMADD Subgroup

The VFNMADD subgroup contains instructions that perform fused negative multiply-add 
operations. Table 12-16 lists these instructions.
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Table 12-18. General-Purpose Register Instructions

Mnemonic Description Feature Flag

andn Performs a bitwise logical AND of the inverted first source 
operand with the second source operand and saves the 
result to the destination operand. The first source operand 
and destination operand must be a general-purpose register. 
The second source operand can be a memory location or a 
general-purpose register.

BMI1

bextr Extracts a bit field from the first source operand using an 
index and length that is specified by the second source 
operand. The result is written to the destination operand. 
The second source operand and destination operand must 
be general-purpose registers. The first source operand can 
be a memory location or a general-purpose register.

BMI1

blsi Extracts the lowest 1 bit from the source operand and sets 
the corresponding bit in the destination operand. All other 
destination operand bits are set to zero. The source operand 
must be a memory location or general-purpose register. The 
destination operand must be a general-purpose register.

BMI1

blsmsk Determines the bit position of the lowest set bit in the source 
operand; sets this bit and all lower bits to 1 in the destination 
operand. Non-mask bits in the destination operand are set 
to zero. The source operand can be a memory location or a 
general-purpose register. The destination operand must be a 
general-purpose register.

BMI1

blsr Copies the source operand to the destination operand; 
resets the destination operand bit corresponding to the 
lowest 1 bit in the source operand. The source operand can 
be a memory location or a general-purpose register. The 
destination operand must be a general-purpose register.

BMI1

bzhi Copies the first source operand to the destination operand; 
clears the high-order bits of the destination operand using the 
index value that is specified by the second source operand. 
The destination operand and second source operand must be 
general-purpose registers. The first source operand can be a 
memory location or a general-purpose register.

BMI2

(continued)
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Mnemonic Description Feature Flag

lzcnt Counts the number of leading zero bits in the source 
operand and saves this value to the destination operand. 
If the value of the source operand is zero, the destination 
operand is set to the operand size. This instruction is used 
as an alternative to the bsr instruction, which leaves the 
destination operand undefined if the value of the source 
operand is zero.

LZCNT

mulx Performs an unsigned multiplication between register 
EDX and the source operand. The high and low parts of 
the product are saved to the first and second destination 
operands, respectively. None of the status bits in EFLAGS are 
updated. The source operand can be a memory location or 
a general-purpose register. The first and second destination 
operands must be general-purpose registers.

BMI2

pdep Transfers and scatters the low-order bits of the first source 
operand to the destination operand using a bit mask that 
is specified by the second source operand. Destination 
operand bits not included in the bit mask are set to zero. 
The destination operand and first source operand must be 
general-purpose registers. The second source operand can 
be a memory location or a general-purpose register.

BMI2

pext Transfers bits from the first source operand to the low-order 
bit positions of the destination operand using a bit mask that 
is specified by the second source operand. The destination 
operand and first source operand must be general-purpose 
registers. The second source operand can be a memory 
location or a general-purpose register.

BMI2

rdrand Loads a hardware-generated random number into the 
specified destination operand, which must be a  
general-purpose register.

RDRAND

roxr Rotates the bits of the source operand using a count value 
that is specified by an immediate operand; the result is 
saved to the destination operand. This instruction does not 
update the status bits in EFLAGS. The source operand can 
be a memory location or a general-purpose register. The 
destination operand must be a general-purpose register.

BMI2

(continued)

Table 12-18. (continued)
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Summary
In this chapter, you learned about key aspects of x86-AVX, including its execution 
environment, supported data types, and assembly language instruction syntax. You  
also explored several x86-AVX associated feature extensions, including half-precision 
floating-point conversions, FMA operations, and enhancements to the general-purpose 
register instruction set. Despite your newly-acquired knowledge, you’ve only reached 
a sojourn in your x86-AVX pedagogical odyssey. The journey continues in Chapters 13 
through 16, which present a series of sample programs that elucidate the subject material 
presented in this chapter.

Mnemonic Description Feature Flag

sarx

shlx

shrx

Shifts (right-arithmetic, left-logical, or right-logical) the 
first source operand using a count value that is specified 
by the second source operand. The result is saved to the 
destination operand. None of the status bits in EFLAGS are 
updated. The first source operand can be a memory location 
or a general-purpose register. The second source operand 
and destination operand must be general-purpose registers.

BMI2

tzcnt Counts the number of trailing zero bits in the source 
operand and saves this value to the destination operand. 
If the value of the source operand is zero, the destination 
operand is set to the operand size. This instruction is used 
as an alternative to the bsf instruction, which leaves the 
destination operand undefined if the value of the source 
operand is zero.

BMI1

Table 12-18. (continued)
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Chapter 13

X86-AVX Programming - 
Scalar Floating-Point

In the previous chapter, you learned about the computational resources of x86-AVX, 
including its execution environment, supported data types, and instruction set. This 
chapter introduces x86-AVX programming and focuses on its scalar floating-point 
capabilities. It includes a couple of sample programs that illustrate how to perform basic 
scalar floating-point arithmetic. This chapter also contains a set of sample programs 
that demonstrate advanced scalar floating-point programming using x86-AVX. All of the 
sample programs in this chapter require a processor that supports AVX. Appendix C lists 
a couple of freely available utilities that you can use to determine the version of x86-AVX 
that’s supported by your PC’s processor and its operating system.

Programming Fundamentals
In this section, you learn how to perform essential scalar floating-point operations 
using the x86-AVX instruction set. The first sample program demonstrates basic scalar 
floating-point arithmetic, including addition, subtraction, multiplication, and division. 
The second sample program elucidates scalar floating-point compare operations. Both 
sample programs also delve into the ancillary actions that are carried out by most  
x86-AVX instructions compared to their x86-SSE counterparts.

Scalar Floating-Point Arithmetic
The first sample program that you examine in this section is called 
AvxScalarFloatingPointArithmetic. This program demonstrates how to perform 
basic scalar double-precision floating-point arithmetic operations using the x86-AVX 
instruction set. Listings 13-1 and 13-2 contain the C++ and assembly language source 
code, respectively, for sample program AvxScalarFloatingPointArithmetic.
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Listing 13-1. AvxScalarFloatingPointArithmetic.cpp

#include "stdafx.h"
 
extern "C" void AvxSfpArithmetic_(double a, double b, double results[8]);
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 8;
    const char* inames[n] =
    {
        "vaddsd", "vsubsd", "vmulsd", "vdivsd",
        "vminsd", "vmaxsd", "vsqrtsd a", "fabs b"
    };
 
    double a = 17.75;
    double b = -39.1875;
    double c[n];
 
    AvxSfpArithmetic_(a, b, c);
 
    printf("\nResults for AvxScalarFloatingPointArithmetic\n");
    printf("a:              %.6lf\n", a);
    printf("b:              %.6lf\n", b);
    for (int i = 0; i < n; i++)
        printf("%-14s  %-12.6lf\n", inames[i], c[i]);
 
    return 0;
}

Listing 13-2. AvxScalarFloatingPointArithmetic_.asm

        .model flat,c
        .const
AbsMask qword 7fffffffffffffffh, 7fffffffffffffffh
        .code
 
; extern "C" void AvxSfpArithmetic_(double a, double b, double results[8]);
;
; Description:  The following function demonstrates how to use basic
;               scalar DPFP arithmetic instructions.
;
; Requires:     AVX
 
AvxSfpArithmetic_ proc
        push ebp
        mov ebp,esp
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; Load argument values
        mov eax,[ebp+24]                    ;eax = ptr to results array
        vmovsd xmm0,real8 ptr [ebp+8]       ;xmm0 = a
        vmovsd xmm1,real8 ptr [ebp+16]      ;xmm1 = b
 
; Perform basic arithmetic using AVX scalar DPFP instructions
        vaddsd xmm2,xmm0,xmm1               ;xmm2 = a + b
        vsubsd xmm3,xmm0,xmm1               ;xmm3 = a - b
        vmulsd xmm4,xmm0,xmm1               ;xmm4 = a * b
        vdivsd xmm5,xmm0,xmm1               ;xmm5 = a / b
        vmovsd real8 ptr [eax+0],xmm2       ;save a + b
        vmovsd real8 ptr [eax+8],xmm3       ;save a - b
        vmovsd real8 ptr [eax+16],xmm4      ;save a * b
        vmovsd real8 ptr [eax+24],xmm5      ;save a / b
 
; Compute min(a, b), max(a, b), sqrt(a) and fabs(b)
        vminsd xmm2,xmm0,xmm1               ;xmm2 = min(a, b)
        vmaxsd xmm3,xmm0,xmm1               ;xmm3 = max(a, b)
        vsqrtsd xmm4,xmm0,xmm0              ;xmm4 = sqrt(a)
        vandpd xmm5,xmm1,xmmword ptr [AbsMask]  ;xmm5 = fabs(b)
        vmovsd real8 ptr [eax+32],xmm2      ;save min(a, b)
        vmovsd real8 ptr [eax+40],xmm3      ;save max(a, b)
        vmovsd real8 ptr [eax+48],xmm4      ;save sqrt(a)
        vmovsd real8 ptr [eax+56],xmm5      ;save trunc(sqrt(a))
 
        pop ebp
        ret
AvxSfpArithmetic_ endp
        end
 

The C++ code in the AvxScalarFloatingPointArithmetic.cpp file (see Listing 13-1) 
should be clear-cut. Near the top of the file is a declaration for the assembly language 
function AvxSpfArithmetic_, which requires two double-precision floating-point 
parameter values and a pointer to a results array. The function _tmain contains code 
that performs basic programming tasks, including initialization of the test variables a  
and b. It then invokes the function AvxSpfArithmetic_ and displays the results.

The assembly language function AvxSfpArithmetic_ uses the x86-AVX instruction 
set to perform several common double-precision floating-point arithmetic operations. 
Following the function prolog, a vmovsd xmm0,real8 ptr [ebp+8] instruction loads 
argument value a into the low-order quadword of register XMM0. Execution of the x86-AVX 
instruction vmovsd is nearly identical to the corresponding x86-SSE instruction movsd 
with one key exception: it sets the high-order 192 bits of YMM0 (ymm0[255:64]) to zero. 
The next instruction, vmovsd xmm1,real8 ptr [ebp+16], performs a similar operation 
and loads argument value b into register XMM1.

Subsequent to the loading of argument values a and b into registers XMM0 and 
XMM1, the vaddsd xmm2,xmm0,xmm1 instruction adds the scalar double-precision 
floating-point values in XMM0 and XMM1, and saves the result to the low-order 
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quadword of XMM2. Unlike its x86-SSE counterpart instruction, vaddsd executes two 
ancillary operations. It copies the upper quadword of register XMM0 to the upper 
quadword of XMM2 (xmm2[127:64] = xmm0[127:64]) and sets the high-order 128 bits of 
YMM2 (ymm2[255:128]) to zero.

The next three instructions—vsubsd, vmulsd, and vdivsd—carry out scalar double-
precision floating-point subtraction, multiplication, and division, respectively. These 
instructions also perform the previously described secondary operations on their 
corresponding destination operands. Following execution of the four basic arithmetic 
instructions, the outcomes are saved to the results array using a series of vmovsd 
instructions. Note that when the vmovsd instruction is used with a memory destination 
operand, only the low-order quadword of the source operand is coped to memory. No 
additional quadword data transfers or bit zeroing operations are performed.

The next code block illustrates use of the vminsd, vmaxsd, and vsqrtsd instructions. 
It also demonstrates use of the vandpd instruction to compute the absolute value of a 
scalar double-precision floating-point value. The vminsd xmm2,xmm0,xmm1 and vmaxsd 
xmm3,xmm0,xmm1 instructions compute min(a,b) and max(a,b), respectively. Note that 
the x86-AVX vsqrtsd instruction requires two source operands, but only computes the 
square root of its second source operand. These three instructions also copy the upper 
quadword of their first source operand the upper quadword of the destination operand 
and zero out the high-order 128 bits of the destination operand’s corresponding YMM 
register.

The vandpd xmm5,xmm1,xmmword ptr [AbsMask] performs a logical bitwise AND of 
two packed double-precision floating point values and saves the result to the destination 
operand (there is no vandsd instruction). The second source operand of this instruction 
is defined in the .const section. It contains a bit pattern that clears the sign bit of both 
double-precision floating-point values in a 128-bit wide packed operand. The vandpd 
instruction that’s used here also sets the bits ymm5[255:128] to zero.

You may have already noticed that the AvxSpfArithmetic_ function lacks any register-
to-register data transfer instructions. This is an intended consequence of the three-operand 
syntax that’s employed by x86-AVX. A similarly-coded x86-SSE function would have 
required several additional register-to-register or memory-to-register movsd instructions. 
Output 13-1 shows the results for sample program AvxScalarFloatingPointArithmetic.

Output 13-1. Sample Program AvxScalarFloatingPointArithmetic

Results for AvxScalarFloatingPointArithmetic
a:              17.750000
b:              -39.187500
vaddsd          -21.437500
vsubsd          56.937500
vmulsd          -695.578125
vdivsd          -0.452951
vminsd          -39.187500
vmaxsd          17.750000
vsqrtsd a       4.213075
fabs b          39.187500
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Scalar Floating-Point Compares
The x86-AVX instruction set supports several different instructions for performing 
scalar floating-point compares. The vcomisd and vcomiss instructions set status bits in 
the EFLAGS register to indicate the results of a compare operation. In Chapter 8, you 
reviewed a sample program that used the x86-SSE equivalent instructions comisd and 
comiss to perform scalar floating-point compares. In this section, you examine a sample 
program named AvxScalarFloatingPointCompare, which illustrates how to compare two 
scalar double-precision floating-point values using the x86-AVX vcmpsd (Compare Scalar 
Double-Precision Floating-Point Values) instruction. The C++ and assembly language 
source code for the sample program AvxScalarFloatingPointCompare are shown in 
Listings 13-3 and 13-4, respectively.

Listing 13-3. AvxScalarFloatingPointCompare.cpp

#include "stdafx.h"
#include <limits>
 
using namespace std;
 
extern "C" void AvxSfpCompare_(double a, double b, bool results[8]);
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 4;
    const int m = 8;
 
    const char* inames[8] =
    {
        "vcmpeqsd", "vcmpneqsd", "vcmpltsd", "vcmplesd",
        "vcmpgtsd", "vcmpgesd", "vcmpordsd", "vcmpunordsd"
    };
 
    double a[n] = { 20.0, 50.0, 75.0, 42.0 };
    double b[n] = { 30.0, 40.0, 75.0, 0.0 };
    bool results[n][m];
 
    b[3] = numeric_limits<double>::quiet_NaN();
 
    printf("Results for AvxScalarFloatingPointCompare\n");
 
    for (int i = 0; i < n; i++)
    {
        AvxSfpCompare_(a[i], b[i], results[i]);
 
        printf("\na: %8lf b: %8lf\n", a[i], b[i]);
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        for (int j = 0; j < m; j++)
            printf("%12s = %d\n", inames[j], results[i][j]);
    }
 
    return 0;
}

Listing 13-4. AvxScalarFloatingPointCompare_.asm

        .model flat,c
        .code
 
; extern "C" void AvxSfpCompare_(double a, double b, bool results[8]);
;
; Description:  The following function demonstrates use of the
;               x86-AVX compare instruction vcmpsd.
;
; Requires:     AVX
 
AvxSfpCompare_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        vmovsd xmm0,real8 ptr [ebp+8]       ;xmm0 = a
        vmovsd xmm1,real8 ptr [ebp+16]      ;xmm1 = b;
        mov eax,[ebp+24]                    ;eax = ptr to results array
 
; Perform compare for equality
        vcmpeqsd xmm2,xmm0,xmm1             ;perform compare operation
        vmovmskpd ecx,xmm2                  ;move result to bit 0 of ecx
        test ecx,1                          ;test bit result
        setnz byte ptr [eax+0]              ;save result as C++ bool
 
; Perform compare for inequality. Note that vcmpneqsd returns true
; if used with QNaN or SNaN operand values.
        vcmpneqsd xmm2,xmm0,xmm1
        vmovmskpd ecx,xmm2
        test ecx,1
        setnz byte ptr [eax+1]
 
; Perform compare for less than
        vcmpltsd xmm2,xmm0,xmm1
        vmovmskpd ecx,xmm2
        test ecx,1
        setnz byte ptr [eax+2]
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; Perform compare for less than or equal
        vcmplesd xmm2,xmm0,xmm1
        vmovmskpd ecx,xmm2
        test ecx,1
        setnz byte ptr [eax+3]
 
; Perform compare for greater than
        vcmpgtsd xmm2,xmm0,xmm1
        vmovmskpd ecx,xmm2
        test ecx,1
        setnz byte ptr [eax+4]
 
; Perform compare for greater than or equal
        vcmpgesd xmm2,xmm0,xmm1
        vmovmskpd ecx,xmm2
        test ecx,1
        setnz byte ptr [eax+5]
 
; Perform compare for ordered
        vcmpordsd xmm2,xmm0,xmm1
        vmovmskpd ecx,xmm2
        test ecx,1
        setnz byte ptr [eax+6]
 
; Perform compare for unordered
        vcmpunordsd xmm2,xmm0,xmm1
        vmovmskpd ecx,xmm2
        test ecx,1
        setnz byte ptr [eax+7]
 
        pop ebp
        ret
AvxSfpCompare_ endp
        end
 

The _tmain function in AvxScalarFloatingPointCompare.cpp (see Listing 13-3) 
contains some elementary C++ statements that exercise the assembly language function 
AvxSfpCompare_ using different test values. Note that the last entry of the double-precision 
floating-point array b is assigned a value of QNaN. (QNaN values are discussed in Chapter 3.)  
This assignment is performed in order to demonstrate an unordered floating-point 
compare operation. For each pair of test values, the function _tmain displays the results of 
eight distinct double-precision floating-point compare operations.

Before examining the assembly language source code, you need to learn a few 
details about the vcmpsd instruction. The comments that follow also apply to the vcmpss 
(Compare Scalar Single-Precision Floating-Point Values) instruction. These instructions 
support two different assembly language syntax formats. The first format requires four 
operands: a destination operand, two source operands, and an immediate operand that 
specifies a compare predicate. Most x86 assemblers including MASM also support a 
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three-operand pseudo-instruction format that incorporates the compare predicate within 
the instruction mnemonic.

The vcmpsd and vcmpss instructions support 32 different compare predicates. 
Table 13-1 lists the most commonly-used compare predicates and their corresponding 
operations. Information regarding the other compare predicates may be found in the 
Intel and AMD instruction reference manuals listed in Appendix C. Execution of a  
vcmpsd (vcmpss) instruction yields a quadword (doubleword) mask result that is saved to 
the destination operand. The only possible values for the mask result are all 1s  
(true compare) or all 0s (false compare). Figure 13-1 illustrates execution of the 
vcmpsd and vcmpss instructions. In Chapter 14, you learn about the vcmppd and vcmpps 
instructions, which are the packed version equivalents of vcmpsd and vcmpss.

Table 13-1. Common vcmpsd and vcmpss Compare Predicates

PredOp Predicate Description Pseudo-Instructions

0 EQ Src1 == Src2 vcmpeqs(s|d)

1 LT Src1 < Src2 vcmplts(s|d)

2 LE Src1 <= Src2 vcmples(s|d)

3 UNORD Src1 && Src2 are unordered vcmpunords(s|d)

4 NEQ Src1 != Src2 vcmpneqs(s|d)

13 GE Src1 >= Src2 vcmpges(s|d)

14 GT Src1 > Src2 vcmpgts(s|d)

7 ORD Src1 && Src2 are ordered vcmpords(s|d)

12.125 3.625 17.0625 44.125

8.75 2.375 -72.5 15.875

8.75 2.375 -72.5 0x00000000

vcmpss xmm0,xmm1,xmm2,0 (or vcmpeqss xmm0,xmm1,xmm2)

xmm2

xmm1

xmm0

52.37564.375

23.0625-8.0

0xFFFFFFFFFFFFFFFF-8.0

xmm2

xmm1

xmm0

vcmpsd xmm0,xmm1,xmm2,1 (or vcmpltsd xmm0,xmm1,xmm2)

Note:In both of the above examples, ymm0[255:128] is set to all 0s.

Figure 13-1. Execution of the vcmpsd and vcmpss instructions
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Following its prolog, the function AvxSfpCompare_ (see Listing 13-4) loads 
argument values a and b into registers XMM0 and XMM1, respectively, using two 
vmovsd instructions. It then initializes a pointer to the array results. The vcmpeqsd 
xmm2,xmm0,xmm1 instruction compares a and b for equality; it then saves the resultant 
mask value to the low-order quadword of XMM2. This instruction also performs the same 
ancillary operations that you learned about in the previous section. More specifically, all 
vcmpsd (vcmpss) instructions copy the upper 64 (96) bits of the first source operand to 
corresponding positions in the destination operand. They also zero the high-order  
128 bits of the destination operand’s corresponding YMM register.

The next instruction, vmovmskpd ecx,xmm2, copies the sign bits of each double-precision  
floating-point value in the source operand to the low-order bits of the destination operand 
(the unused high-order bits of the destination operand are set to zero). In the current 
example, the low-order quadword of XMM2 contains the result of the vcmpeqsd compare 
operation, which is either all 0s or all 1s. The high-order quadword of XMM2 is a  
“don’t care” value. Use of the vmovmskpd instruction sets bit zero of register ECX according 
to the result of the compare. The test ecx,1 and setnz byte ptr [eax+0] instructions 
save the compare result to the results array.

The remaining compare operations are performed using the same sequence of 
instructions, except for the specific compare instruction. Note that unlike the x86-SSE 
cmpsd and cmpss instructions, the vcmpsd and vcmpss instructions explicitly support 
the compare predicates GT and GE. Also note that the vcmpneqsd instruction returns a 
value of true if a QNaN or SNaN operand is used. You may be asking yourself, given a 
choice between the vcmpsd/vcmpss and vcomisd/vcomiss instructions, which variation 
should be used? The latter two instructions are simpler to use, but only support a 
small set of compare operations. Besides supporting an extensive set of compare 
predicates, the former set of instructions is useful if you need a bit mask to perform 
subsequent Boolean operations. Output 13-2 shows the results for sample program 
AvxScalarFloatingPointCompare.

Output 13-2. Sample Program AvxScalarFloatingPointCompare

Results for AvxScalarFloatingPointCompare
 
a: 20.000000 b: 30.000000
    vcmpeqsd = 0
    vcmpneqsd = 1
    vcmpltsd = 1
    vcmplesd = 1
    vcmpgtsd = 0
    vcmpgesd = 0
    vcmpordsd = 1
    vcmpunordsd = 0
 
a: 50.000000 b: 40.000000
    vcmpeqsd = 0
    vcmpneqsd = 1
    vcmpltsd = 0
    vcmplesd = 0
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    vcmpgtsd = 1
    vcmpgesd = 1
    vcmpordsd = 1
    vcmpunordsd = 0
 
a: 75.000000 b: 75.000000
    vcmpeqsd = 1
    vcmpneqsd = 0
    vcmpltsd = 0
    vcmplesd = 1
    vcmpgtsd = 0
    vcmpgesd = 1
    vcmpordsd = 1
    vcmpunordsd = 0
 
a: 42.000000 b: 1.#QNAN0
    vcmpeqsd = 0
    vcmpneqsd = 1
    vcmpltsd = 0
    vcmplesd = 0
    vcmpgtsd = 0
    vcmpgesd = 0
    vcmpordsd = 0
    vcmpunordsd = 1

Advanced Programming
In this section, you learn how to use the x86-AVX instruction set to perform advanced scalar 
floating-point computations. The first sample program illustrates how to calculate the 
roots of a quadratic equation. The second sample program uses the scalar floating-point 
capabilities of x86-AVX to carry out spherical coordinate conversions. This sample program 
also demonstrates using standard C++ library functions from an assembly language 
function that uses x86-AVX instructions. Both sample programs also emphasize the 
computational advantages and simplified programming of using x86-AVX versus x86-SSE.

Roots of a Quadratic Equation
The next sample program, named AvxScalarFloatingPointQuadEqu, demonstrates 
using the x86-AVX instruction set to compute the roots of a quadratic equation. It also 
provides additional examples of how to use the x86-AVX scalar floating-point arithmetic 
instructions. Listings 13-5 and 13-6 contain the C++ and x86-AVX assembly language 
code for AvxScalarFloatingPointQuadEqu.
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Listing 13-5. AvxScalarFloatingPointQuadEqu.cpp

#include "stdafx.h"
#include <math.h>
 
extern "C" void AvxSfpQuadEqu_(const double coef[3], double roots[2], 
double epsilon, int* dis);
 
void AvxSfpQuadEquCpp(const double coef[3], double roots[2], double 
epsilon, int* dis)
{
    double a = coef[0];
    double b = coef[1];
    double c = coef[2];
    double delta = b * b - 4.0 * a * c;
    double temp = 2.0 * a;
 
    if (fabs(a) < epsilon)
    {
        *dis = 9999;
        return;
    }
 
    if (fabs(delta) < epsilon)
    {
        roots[0] = -b / temp;
        roots[1] = -b / temp;
        *dis = 0;
    }
    else if (delta > 0)
    {
        roots[0] = (-b + sqrt(delta)) / temp;
        roots[1] = (-b - sqrt(delta)) / temp;
        *dis = 1;
    }
    else
    {
        // roots[0] contains real part, roots[1] contains imaginary part
        // complete answer is (r0, +r1), (r0, -r1)
        roots[0] = -b / temp;
        roots[1] = sqrt(-delta) / temp;
        *dis = -1;
    }
}
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int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 4;
    const double coef[n * 3] =
    {
        2.0, 8.0, -15.0,         // real roots (b * b > 4 * a * c)
        1.0, 6.0, 9.0,           // identical roots (b * b = 4 * a * c)
        3.0, 2.0, 4.0,           // complex roots (b * b < 4 * a * c)
        1.0e-13, 7.0, -5.0,      // invalid value for a
    };
 
    const double epsilon = 1.0e-12;
 
    printf("Results for AvxScalarFloatingPointQuadEqu\n");
 
    for (int i = 0; i < n * 3; i += 3)
    {
        double roots1[2], roots2[2];
        const double* coef2 = &coef[i];
        int dis1, dis2;
 
        AvxSfpQuadEquCpp(coef2, roots1, epsilon, &dis1);
        AvxSfpQuadEqu_(coef2, roots2, epsilon, &dis2);
 
        printf("\na: %lf, b: %lf c: %lf\n", coef2[0], coef2[1], coef2[2]);
 
        if (dis1 != dis2)
        {
            printf("Discriminant compare error\b");
            printf("dis1/dis2: %d/%d\n", dis1, dis2);
        }
 
        switch (dis1)
        {
            case 1:
                printf("Distinct real roots\n");
                printf("C++ roots: %lf %lf\n", roots1[0], roots1[1]);
                printf("AVX roots: %lf %lf\n", roots2[0], roots2[1]);
                break;
 
            case 0:
                printf("Identical roots\n");
                printf("C++ root: %lf\n", roots1[0]);
                printf("AVX root: %lf\n", roots2[0]);
                break;
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            case -1:
                printf("Complex roots\n");
                printf("C++ roots: (%lf %lf) ", roots1[0], roots1[1]);
                printf("(%lf %lf)\n", roots1[0], -roots1[1]);
                printf("AVX roots: (%lf %lf) ", roots2[0], roots2[1]);
                printf("(%lf %lf)\n", roots2[0], -roots2[1]);
                break;
 
            case 9999:
                printf("Coefficient 'a' is invalid\n");
                break;
 
            default:
                printf("Invalid discriminant value: %d\n", dis1);
                return 1;
        }
    }
 
    return 0;
}

Listing 13-6. AvxScalarFloatingPointQuadEqu_.asm

        .model flat,c
        .const
FpNegateMask    qword 8000000000000000h,0   ;mask to negate DPFP value
FpAbsMask       qword 7FFFFFFFFFFFFFFFh,-1  ;mask to compute fabs()
r8_0p0          real8 0.0
r8_2p0          real8 2.0
r8_4p0          real8 4.0
        .code
 
; extern "C" void AvxSfpQuadEqu_(const double coef[3], double roots[2],
double epsilon, int* dis);
;
; Description:  The following function calculates the roots of a
;               quadratic equation using the quadratic formula.
;
; Requires:     AVX
 
AvxSfpQuadEqu_ proc
        push ebp
        mov ebp,esp
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; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to coeff array
        mov ecx,[ebp+12]                    ;ecx = ptr to roots array
        mov edx,[ebp+24]                    ;edx = ptr to dis
        vmovsd xmm0,real8 ptr [eax]         ;xmm0 = a
        vmovsd xmm1,real8 ptr [eax+8]       ;xmm1 = b
        vmovsd xmm2,real8 ptr [eax+16]      ;xmm2 = c
        vmovsd xmm7,real8 ptr [ebp+16]      ;xmm7 = epsilon
 
; Make sure coefficient a is valid
        vandpd xmm6,xmm0,[FpAbsMask]        ;xmm2 = fabs(a)
        vcomisd xmm6,xmm7
        jb Error                            ;jump if fabs(a) < epsilon
 
; Compute intermediate values
        vmulsd xmm3,xmm1,xmm1               ;xmm3 = b * b
        vmulsd xmm4,xmm0,[r8_4p0]           ;xmm4 = 4 * a
        vmulsd xmm4,xmm4,xmm2               ;xmm4 = 4 * a * c
        vsubsd xmm3,xmm3,xmm4               ;xmm3 = b * b - 4 * a * c
        vmulsd xmm0,xmm0,[r8_2p0]           ;xmm0 = 2 * a
        vxorpd xmm1,xmm1,[FpNegateMask]     ;xmm1 = -b
 
; Test delta to determine root type
        vandpd xmm2,xmm3,[FpAbsMask]        ;xmm2 = fabs(delta)
        vcomisd xmm2,xmm7
        jb IdenticalRoots                   ;jump if fabs(delta) < epsilon
        vcomisd xmm3,[r8_0p0]
        jb ComplexRoots                     ;jump if delta < 0.0
 
; Distinct real roots
; r1 = (-b + sqrt(delta)) / 2 * a, r2 = (-b - sqrt(delta)) / 2 * a
        vsqrtsd xmm3,xmm3,xmm3              ;xmm3 = sqrt(delta)
        vaddsd xmm4,xmm1,xmm3               ;xmm4 = -b + sqrt(delta)
        vsubsd xmm5,xmm1,xmm3               ;xmm5 = -b - sqrt(delta)
        vdivsd xmm4,xmm4,xmm0               ;xmm4 = final r1
        vdivsd xmm5,xmm5,xmm0               ;xmm5 = final r2
        vmovsd real8 ptr [ecx],xmm4         ;save r1
        vmovsd real8 ptr [ecx+8],xmm5       ;save r2
        mov dword ptr [edx],1               ;*dis = 1
        jmp done
 
; Identical roots
; r1 = r2 = -b / 2 * a
IdenticalRoots:
        vdivsd xmm4,xmm1,xmm0               ;xmm4 = -b / 2 * a
        vmovsd real8 ptr [ecx],xmm4         ;save r1
        vmovsd real8 ptr [ecx+8],xmm4       ;save r2
        mov dword ptr [edx],0               ;*dis = 0
        jmp done
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; Complex roots
;  real = -b / 2 * a, imag = sqrt(-delta) / 2 * a
;  final roots: r1 = (real, imag), r2 = (real, -imag)
ComplexRoots:
        vdivsd xmm4,xmm1,xmm0               ;xmm4 = -b / 2 * a
        vxorpd xmm3,xmm3,[FpNegateMask]     ;xmm3 = -delta
        vsqrtsd xmm3,xmm3,xmm3              ;xmm3 = sqrt(-delta)
        vdivsd xmm5,xmm3,xmm0               ;xmm5 = sqrt(-delta) / 2 * a
        vmovsd real8 ptr [ecx],xmm4         ;save real part
        vmovsd real8 ptr [ecx+8],xmm5       ;save imaginary part
        mov dword ptr [edx],-1              ;*dis = -1
 
Done:   pop ebp
        ret
 
Error:  mov dword ptr [edx],9999              ;*dis = 9999 (error code)
        pop ebp
        ret
AvxSfpQuadEqu_ endp
        end
 

A quadratic equation is a polynomial of the form ax2 + bx + c = 0. In this equation, x is 
an unknown variable; a, b, and c are constant coefficients; and coefficient a must not be 
equal to zero. A quadratic equation always has two solutions for the variable x, which are 
called roots. The roots of a quadratic equation can be calculated using the well-known 
quadratic formula:

x
b b ac

a
=
- ± -2 4

2

A solution to the quadratic formula can take one of three forms, depending 
on the values of a, b, and c. Table 13-2 outlines these forms. The sample program 
AvxScalarFloatingPointQuadEqu uses the quadratic formula and the discriminant 
expressions shown in Table 13-2 to calculate the roots of a quadratic equation.

Table 13-2. Solution Forms for a Quadratic Equation

Discriminant Root Type Description

b2 − 4ac > 0 Distinct real root1 and root2 are different

b2 − 4ac = 0 Identical real root1 and root2 are the same

b2 − 4ac < 0 Complex root1 and root2 are different
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Caution ■  the algorithm employed in this section to calculate the roots of a quadratic 
equation is intended to illustrate use of the x86-aVX instruction set. You should consult the 
references listed in appendix C for additional information regarding the drawbacks of using 
the quadratic formula to compute the roots of a quadratic equation.

The C++ code for sample program AvxScalarFloatingPointQuadEqu (see Listing 13-5) 
contains a function named AvxSfpQuadEquCpp that computes the roots of a quadratic 
equation. This function mimics the method that is used by the assembly language 
function AvxSfpQuadEqu_ and provides a means to confirm its results. The _tmain 
function includes statements that perform test case initialization, result comparisons, 
and output display.

Toward top of the x86-AVX assembly language function AvxSfpQuadEqu_  
(see Listing 13-6), three vmovsd instructions load the coefficients a, b, and c into registers 
XMM0, XMM1, and XMM2, respectively. Another vmovsd instruction loads the argument 
value epsilon into register XMM7. Before attempting to calculate the roots, the function 
AvxSfpQuadEqu_ must verify that the coefficient a is not equal to zero. When working 
with floating-point numbers, it is generally not good programming practice to carry 
out equality compares using constant values since the limitations of floating-point 
arithmetic can cause such compares to fail catastrophically. Instead, the function tests 
the value of coefficient a to determine if it’s near zero. This is accomplished using the 
vandpd xmm6,xmm0,[FpAbsMask] and vcomisd xmm6,xmm7 instructions, which evaluate 
whether or not fabs(a) < epsilon is true. If the relational expression is true, the value of 
coefficient a is considered invalid and the function terminates.

Following the validation of coefficient a, the function AvxSfpQuadEqu_ calculates 
several intermediate values, including the discriminant value delta = b * b - 4 * a * c. 
If relational expression fabs(delta) < epsilon is true, delta is deemed equal zero and 
a conditional jump is used to handle the case of identical real roots. If delta < 0 is true, 
another conditional jump is employed to process the complex root case. The  
fall-through condition occurs if delta > 0 is true, which means that there are two distinct 
real roots.

Table 13-3 summarizes the equations used by function AvsSfpQuadEqu_ to calculate 
the required roots. These calculations are carried out using the previously computed 
intermediate values and the x86-AVX scalar double-precision floating-point arithmetic 
instructions vsqrtsd, vaddsd, vsubsd, and vdivsd. The function also sets dis as follows:  
+1 (distinct real roots), 0 (identical roots), -1 (complex roots), or 9999 (coefficient a is invalid). 
This informs the caller of the root type and facilitates further processing of the results.
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You may have noticed again that the function AvxSfpQuadEqu_ does not perform any 
register-to-register data transfers using the vmovsd instruction. This is direct consequence 
of x86-AVX’s three-operand syntax. Output 13-3 shows the results for sample program 
AvxScalarFloatingPointQuadEqu.

Output 13-3. Sample Program AvxScalarFloatingQuadEqu

Results for AvxScalarFloatingPointQuadEqu
 
a: 2.000000, b: 8.000000 c: -15.000000
Distinct real roots
  C++ roots: 1.391165 -5.391165
  AVX roots: 1.391165 -5.391165
 
a: 1.000000, b: 6.000000 c: 9.000000
Identical roots
  C++ root: -3.000000
  AVX root: -3.000000
 
a: 3.000000, b: 2.000000 c: 4.000000
Complex roots
  C++ roots: (-0.333333 1.105542) (-0.333333 -1.105542)
  AVX roots: (-0.333333 1.105542) (-0.333333 -1.105542)
 
a: 0.000000, b: 7.000000 c: -5.000000
Coefficient 'a' is invalid

Table 13-3. Root Computation Equations

Case Root Computation Equations

Distinct real roots r1 = (-b + sqrt(delta)) / 2 * a

r2 = (-b - sqrt(delta)) / 2 * a

Identical real roots r1 = -b / 2 * a

r2 = -b / 2 * a

Complex roots real = -b / 2 * a; imag = sqrt(-delta) / 2 * a

r1 = (real, imag)

r2 = (real, -imag)
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Spherical Coordinates
The final x86-AVX scalar floating-point sample program of this section is called 
AvxScalarFloatingPointSpherical. This program contains a couple of assembly 
language functions that convert a three-dimensional coordinate from rectangular to 
spherical units and vice versa. It also illustrates how to invoke a standard library function 
from a function that makes use of the x86-AVX instruction set. Listings 13-7 and 13-8 
contain the C++ and assembly language source code, respectively, for sample program 
AvxScalarFloatingPointSpherical.

Listing 13-7. AvxScalarFloatingPointSpherical.cpp

#include "stdafx.h"
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
 
extern "C" bool RectToSpherical_(const double r_coord[3], double
s_coord[3]);
extern "C" bool SphericalToRect_(const double s_coord[3], double
r_coord[3]);
 
extern "C" double DegToRad = M_PI / 180.0;
extern "C" double RadToDeg = 180.0 / M_PI;
 
void PrintCoord(const char* s, const double c[3])
{
      printf("%s %14.8lf %14.8lf %14.8lf\n", s, c[0], c[1], c[2]);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 7;
 
    const double r_coords[n * 3] =
    {
//      x coord     y coord         z coord
        2.0,        3.0,            6.0,
        -2.0,       -2.0,           2.0 * M_SQRT2,
        0.0,        M_SQRT2 / 2.0,  -M_SQRT2 / 2.0,
        M_SQRT2,    1.0,            -1.0,
        0.0,        0.0,            M_SQRT2,
        -1.0,       0.0,            0.0,
        0.0,        0.0,            0.0,
    };
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    printf("Results for AvxScalarFloatingPointSpherical\n\n");
 
    for (int i = 0; i < n; i++)
    {
        double r_coord1[3], s_coord1[3], r_coord2[3];
 
        r_coord1[0] = r_coords[i * 3];
        r_coord1[1] = r_coords[i * 3 + 1];
        r_coord1[2] = r_coords[i * 3 + 2];
 
        RectToSpherical_(r_coord1, s_coord1);
        SphericalToRect_(s_coord1, r_coord2);
 
        PrintCoord("r_coord1 (x,y,z): ", r_coord1);
        PrintCoord("s_coord1 (r,t,p): ", s_coord1);
        PrintCoord("r_coord2 (x,y,z): ", r_coord2);
        printf("\n");
    }
 
    return 0;
}

Listing 13-8. AvxScalarFloatingPointSpherical_.asm

                .model flat,c
                .const
Epsilon         real8 1.0e-15
r8_0p0          real8 0.0
r8_90p0         real8 90.0
 
                .code
                extern DegToRad:real8, RadToDeg:real8
                extern sin:proc, cos:proc, acos:proc, atan2:proc
 
; extern "C" bool RectToSpherical_(const double r_coord[3], double
s_coord[3]);
;
; Description:  The following function performs rectangular to
;               spherical coordinate conversion.
;
; Requires: AVX
 
RectToSpherical_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
        sub esp,16                          ;space for acos & atan2 args
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; Load argument values
        mov esi,[ebp+8]                     ;esi = ptr to r_coord
        mov edi,[ebp+12]                    ;edi = ptr to s_coord
        vmovsd xmm0,real8 ptr [esi]         ;xmm0 = x coord
        vmovsd xmm1,real8 ptr [esi+8]       ;xmm1 = y coord
        vmovsd xmm2,real8 ptr [esi+16]      ;xmm2 = z coord
 
; Compute r = sqrt(x * x + y * y + z * z)
        vmulsd xmm3,xmm0,xmm0               ;xmm3 = x * x
        vmulsd xmm4,xmm1,xmm1               ;xmm4 = y * y
        vmulsd xmm5,xmm2,xmm2               ;xmm5 = z * z
        vaddsd xmm6,xmm3,xmm4
        vaddsd xmm6,xmm6,xmm5
        vsqrtsd xmm7,xmm7,xmm6              ;xmm7 = r
 
; Compute phi = acos(z / r)
        vcomisd xmm7,real8 ptr [Epsilon]
        jae LB1                             ;jump if r >= epsilon
        vmovsd xmm4,real8 ptr [r8_0p0]      ;round r to 0.0
        vmovsd real8 ptr [edi],xmm4         ;save r
        vmovsd xmm4,real8 ptr [r8_90p0]     ;phi = 90.0 degrees
        vmovsd real8 ptr [edi+16],xmm4      ;save phi
        jmp LB2
 
LB1:    vmovsd real8 ptr [edi],xmm7         ;save r
        vdivsd xmm4,xmm2,xmm7               ;xmm4 = z / r
        vmovsd real8 ptr [esp],xmm4         ;save on stack
        call acos
        fmul real8 ptr [RadToDeg]           ;convert phi to degrees
        fstp real8 ptr [edi+16]             ;save phi
 
; Compute theta = atan2(y, x)
LB2:    vmovsd xmm0,real8 ptr [esi]         ;xmm0 = x
        vmovsd xmm1,real8 ptr [esi+8]       ;xmm1 = y
        vmovsd real8 ptr [esp+8],xmm0
        vmovsd real8 ptr [esp],xmm1
        call atan2
        fmul real8 ptr [RadToDeg]           ;convert theta to degrees
        fstp real8 ptr [edi+8]              ;save theta
 
        add esp,16
        pop edi
        pop esi
        pop ebp
        ret
RectToSpherical_ endp
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; extern "C" bool SphericalToRect(const double s_coord[3], double
r_coord[3]);
;
; Description:  The following function performs spherical to
;               rectangular coordinate conversion.
;
; Requires: AVX
;
; Local stack variables
;   ebp-8     sin(theta)
;   ebp-16    cos(theta)
;   ebp-24    sin(phi)
;   ebp-32    cos(phi)
 
SphericalToRect_ proc
        push ebp
        mov ebp,esp
        sub esp,32                          ;local variable space
        push esi
        push edi
        sub esp,8                           ;space for sin & cos argument
 
; Load argument values
        mov esi,[ebp+8]                     ;esi = ptr to s_coord
        mov edi,[ebp+12]                    ;edi = ptr to r_coord
 
; Compute sin(theta) and cos(theta)
        vmovsd xmm0,real8 ptr [esi+8]           ;xmm0 = theta
        vmulsd xmm1,xmm0,real8 ptr [DegToRad]   ;xmm1 = theta in radians
        vmovsd real8 ptr [ebp-16],xmm1          ;save theta for later use
        vmovsd real8 ptr [esp],xmm1
        call sin
        fstp real8 ptr [ebp-8]              ;save sin(theta)
        vmovsd xmm1,real8 ptr [ebp-16]      ;xmm1 = theta in radians
        vmovsd real8 ptr [esp],xmm1
        call cos
        fstp real8 ptr [ebp-16]             ;save cos(theta)
 
; Compute sin(phi) and cos(phi)
        vmovsd xmm0,real8 ptr [esi+16]          ;xmm0 = phi
        vmulsd xmm1,xmm0,real8 ptr [DegToRad]   ;xmm1 = phi in radians
        vmovsd real8 ptr [ebp-32],xmm1          ;save phi for later use
        vmovsd real8 ptr [esp],xmm1
        call sin
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        fstp real8 ptr [ebp-24]             ;save sin(phi)
        vmovsd xmm1,real8 ptr [ebp-32]      ;xmm1 = phi in radians
        vmovsd real8 ptr [esp],xmm1
        call cos
        fstp real8 ptr [ebp-32]             ;save cos(phi)
 
; Compute x = r * sin(phi) * cos(theta)
        vmovsd xmm0,real8 ptr [esi]         ;xmm0 = r
        vmulsd xmm1,xmm0,real8 ptr [ebp-24] ;xmm1 = r * sin(phi)
        vmulsd xmm2,xmm1,real8 ptr [ebp-16] ;xmm2 = r*sin(phi)*cos(theta)
        vmovsd real8 ptr [edi],xmm2         ;save x
 
; Compute y = r * sin(phi) * sin(theta)
        vmulsd xmm2,xmm1,real8 ptr [ebp-8]  ;xmm2 = r*sin(phi)*sin(theta)
        vmovsd real8 ptr [edi+8],xmm2       ;save y
 
; Compute z = r * cos(phi)
        vmulsd xmm1,xmm0,real8 ptr [ebp-32] ;xmm1 = r * cos(phi)
        vmovsd real8 ptr [edi+16],xmm1      ;save z
 
        add esp,8
        pop edi
        pop esi
        mov esp,ebp
        pop ebp
        ret
SphericalToRect_ endp
        end
 

Before examining the source code, let’s quickly review the basics of a three-dimensional 
coordinate system. A point in three-dimensional space can be uniquely specified using an 
ordered tuple (x, y, and z). The values for x, y, and z represent signed distances from an origin 
point, which is located at the intersection of two perpendicular planes. The ordered tuple  
(x, y, and z) is called a rectangular or Cartesian coordinate. A point in three-dimensional 
space also can be uniquely specified using a radius vector r, angle q, and angle j, as 
illustrated in Figure 13-2. An ordered tuple (r, q, and j) is called a spherical coordinate.
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A point in three-dimensional space can be converted from rectangular to spherical 
coordinates and vice versa using the following formulas:

r x y z r

y x

z r

= + + ³

= ( ) - £ £

= ( ) £ £

-

-

2 2 2

1

1

0

0
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tan ,
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x r y r z r= = =sin cos , sin sin , cosf q f q f

The inverse tangent function that’s used to compute q corresponds to the C++ library 
function atan2, which uses the signs of x and y to determine the correct quadrant.

Toward the top of the AvxScalarFloatingPointSpherical.cpp file (see Listing 13-7) 
are the declaration statements for the coordinate conversion functions. Both functions 
use three-element double-precision floating-point arrays to represent a rectangular or 
spherical coordinate. Elements 0, 1, and 2 of an r_coord array correspond to the x, y, and 
z values of a rectangular coordinate. Similarly, the spherical coordinate components r, 
theta, and phi are stored in elements 0, 1, and 2 of an s_coord array. The _tmain function 
contains a simple for loop that exercises the assembly language coordinate conversion 
functions using different test cases and prints the results.

Y

X

Z

r

Figure 13-2. Specification of a point using rectangular and spherical coordinates
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The AvxScalarFloatingPointSpherical_.asm file (see Listing 13-8) contains the 
assembly language code for the RectToSpherical_ and SphericalToRect_ functions. 
Following the prolog in function RectToSpherical_, a sub esp,16 instruction allocates 
space on the stack for two double-precision floating-point numbers. This space is used 
to store the argument values when calling the C++ library functions acos and atan2. The 
rectangular coordinate values x, y, and z are then loaded into registers XMM0, XMM1, 
and XMM2, respectively, using a series of vmovsd instructions. Next, the value of r is 
calculated according to the previously-defined formula and saved to the appropriate 
location in s_coord.

Before calculating phi, the function RectToSpherical_ must determine if r is less 
than Epsilon. If true, r is rounded to zero and phi is set to 90 degrees. Otherwise, the 
function RectToSpherical_ calculates z / r and saves the quotient on the stack. It then 
calls the C++ library function acos to compute the inverse cosine of z / r. Note that 
according to the Visual C++ calling convention for 32-bit programs, called functions are 
not required to preserve the contents of the XMM registers. This means that the contents 
of the XMM registers are unknown following execution of acos.

The function acos stores its return value on the x87 FPU register stack. This value is 
converted from radians to degrees and saved in the array s_coord. Computation of theta 
occurs next. The argument values required by the C++ library function atan2, x and y, are 
copied onto the stack prior to the call atan2 instruction. Upon return from atan2, the 
top of the x87 FPU stack contains theta in radians. This value is converted to degrees and 
saved to the s_coord array.

The SphericalToRect_ function is a little more complicated than RectToSpherical_ 
since it needs to compute several intermediate values in order to perform a  
spherical-to-rectangular coordinate conversion. The prolog for SphericalToRect_ 
allocates 32 bytes of stack space for intermediate values, including sin(theta), 
cos(theta), sin(phi), and cos(phi). A sub esp,8 instruction allocates space on the 
stack for a double-precision floating-point argument value. This space is used to pass an 
argument value to the library functions sin and cos.

Following the obligatory prolog and register initializations, the function 
SphericalToRect_ computes sin(theta) and cos(theta). Figure 13-3 shows the 
contents of the stack prior to the call sin and call cos instructions. Note that theta 
must be re-copied onto the stack prior to the call cos instruction since the library 
function sin may have altered the original value on the stack. Computation of sin(phi) 
and cos(phi) occurs next using the same approach. Subsequent to the calculation of 
the requisite angle sines and cosines, the rectangular coordinate components x, y, and z 
are computed and saved to the r_coord array. Output 13-4 shows the results for sample 
program AvxScalarFloatingPointSpherical.
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Output 13-4. Sample Program AvxScalarFloatingPointSpherical

Results for AvxScalarFloatingPointSpherical
 
r_coord1 (x,y,z):      2.00000000     3.00000000     6.00000000
s_coord1 (r,t,p):      7.00000000    56.30993247    31.00271913
r_coord2 (x,y,z):      2.00000000     3.00000000     6.00000000
 
r_coord1 (x,y,z):     -2.00000000    -2.00000000     2.82842712
s_coord1 (r,t,p):      4.00000000  -135.00000000    45.00000000
r_coord2 (x,y,z):     -2.00000000    -2.00000000     2.82842712
 
r_coord1 (x,y,z):      0.00000000     0.70710678    -0.70710678
s_coord1 (r,t,p):      1.00000000    90.00000000   135.00000000
r_coord2 (x,y,z):      0.00000000     0.70710678    -0.70710678
 

Old EBP

sin (theta) high dword

sin (theta) low dword

cos (theta) high dword

cos (theta) low dword

EBP

High Memory

Low Memory

+4

+8

+12

sin (phi) high dword

sin (phi) low dword

cos (phi) high dword

-20

-24

Return Address

s_coord

r_coord

cos (phi) low dword

theta high dword

theta low dword

-16

-4

-8

-12

ESP

Old ESI

Old EDI

-28

-32

Local 
Variables

Figure 13-3. Stack contents prior to the call sin and call cos instructions
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r_coord1 (x,y,z):      1.41421356     1.00000000    -1.00000000
s_coord1 (r,t,p):      2.00000000    35.26438968   120.00000000
r_coord2 (x,y,z):      1.41421356     1.00000000    -1.00000000
 
r_coord1 (x,y,z):      0.00000000     0.00000000     1.41421356
s_coord1 (r,t,p):      1.41421356     0.00000000     0.00000000
r_coord2 (x,y,z):      0.00000000     0.00000000     1.41421356
 
r_coord1 (x,y,z):     -1.00000000     0.00000000     0.00000000
s_coord1 (r,t,p):      1.00000000   180.00000000    90.00000000
r_coord2 (x,y,z):     -1.00000000     0.00000000     0.00000000
 
r_coord1 (x,y,z):      0.00000000     0.00000000     0.00000000
s_coord1 (r,t,p):      0.00000000     0.00000000    90.00000000
r_coord2 (x,y,z):      0.00000000     0.00000000     0.00000000

Summary
In this chapter, you learned how to perform scalar floating-point calculations using the 
x86-AVX instruction set. You also became familiar with some of the differences between 
the execution environments of x86-SSE and x86-AVX. As exemplified by the sample 
programs of this chapter, x86-AVX offers programmers a number of notable benefits 
including simplified assembly language coding and reduced register-to-register data 
transfers. In the next chapter, you learn about the packed floating-point capabilities of the 
x86-AVX instruction set.
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Chapter 14

X86-AVX Programming -  
Packed Floating-Point

In Chapter 9, you became familiar with the packed floating-point resources of x86-SSE. 
In this chapter, the packed floating-point capabilities of x86-AVX are explored. The 
sample programs illustrate how to perform basic packed floating-point arithmetic using 
256-bit wide operands. They also exemplify use of the x86-AVX instruction set to carry 
out arithmetic operations using floating-point arrays and matrices. All of the sample 
programs in this chapter require a processor and operating system that supports AVX.  
As a reminder, Appendix C contains a list of several freely-available tools that you can  
use to ascertain whether your PC supports AVX.

Programming Fundamentals
In this section, you examine two sample programs that elucidate fundamental packed 
floating-point operations using the x86-AVX instruction set. The first sample program 
demonstrates how to perform single-precision and double-precision floating-point 
arithmetic using 256-bit wide packed operands. The second sample program explains 
packed floating-point compare operations. These programs also illustrate several 
important x86-AVX programming ancillaries, including operand alignment and proper 
use of the vzeroupper instruction.

Some of the sample programs in this and subsequent chapters make use of a  
C++ union named YmmVal, shown in Listing 14-1, to facilitate data exchange between  
C++ and assembly language functions. The items declared in this union correspond to 
packed data types of a 256-bit wide operand. The union YmmVal also contains several text 
string formatting function declarations. The file YmmVal.cpp (source code not shown) 
contains the definitions for the ToString_ formatting functions and is included in the 
sample code subfolder CommonFiles.
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Listing 14-1. YmmVal.h

#pragma once
#include "MiscDefs.h"
 
union YmmVal
{
    Int8 i8[32];
    Int16 i16[16];
    Int32 i32[8];
    Int64 i64[4];
    Uint8 u8[32];
    Uint16 u16[16];
    Uint32 u32[8];
    Uint64 u64[4];
    float r32[8];
    double r64[4];
 
    char* ToString_i8(char* s, size_t len, bool upper_half);
    char* ToString_i16(char* s, size_t len, bool upper_half);
    char* ToString_i32(char* s, size_t len, bool upper_half);
    char* ToString_i64(char* s, size_t len, bool upper_half);
 
    char* ToString_u8(char* s, size_t len, bool upper_half);
    char* ToString_u16(char* s, size_t len, bool upper_half);
    char* ToString_u32(char* s, size_t len, bool upper_half);
    char* ToString_u64(char* s, size_t len, bool upper_half);
 
    char* ToString_x8(char* s, size_t len, bool upper_half);
    char* ToString_x16(char* s, size_t len, bool upper_half);
    char* ToString_x32(char* s, size_t len, bool upper_half);
    char* ToString_x64(char* s, size_t len, bool upper_half);
 
    char* ToString_r32(char* s, size_t len, bool upper_half);
    char* ToString_r64(char* s, size_t len, bool upper_half);
};

Packed Floating-Point Arithmetic
The first sample program of this section, called AvxPackedFloatingPointArithmetic, 
demonstrates how to perform common arithmetic operations using packed 256-bit wide 
floating-point operands. It also illustrates proper use of the vzeroupper instruction, which 
must be used in order to avoid potential performance penalties whenever a function uses 
the YMM registers. Listings 14-2 and 14-3 show the C++ and assembly language source 
code for AvxPackedFloatingPointArithmetic.
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Listing 14-2. AvxPackedFloatingPointArithmetic.cpp

#include "stdafx.h"
#include "YmmVal.h"
 
extern "C" void AvxPfpArithmeticFloat_(const YmmVal* a, const YmmVal* b, 
YmmVal c[6]);
extern "C" void AvxPfpArithmeticDouble_(const YmmVal* a, const YmmVal* b, 
YmmVal c[5]);
 
void AvxPfpArithmeticFloat(void)
{
    __declspec(align(32)) YmmVal a;
    __declspec(align(32)) YmmVal b;
    __declspec(align(32)) YmmVal c[6];
 
    a.r32[0] = 2.0f;      b.r32[0] = 12.5f;
    a.r32[1] = 3.5f;      b.r32[1] = 52.125f;
    a.r32[2] = -10.75f;   b.r32[2] = 17.5f;
    a.r32[3] = 15.0f;     b.r32[3] = 13.982f;
    a.r32[4] = -12.125f;  b.r32[4] = -4.75f;
    a.r32[5] = 3.875f;    b.r32[5] = 3.0625f;
    a.r32[6] = 2.0f;      b.r32[6] = 7.875f;
    a.r32[7] = -6.35f;    b.r32[7] = -48.1875f;
 
    AvxPfpArithmeticFloat_(&a, &b, c);
 
    printf("Results for AvxPfpArithmeticFloat()\n\n");
 
    printf(" i        a        b      Add      Sub      Mul      Div 
      Abs      Neg\n");
    printf("-----------------------------------------------------------\n");
 
    for (int i = 0; i < 8; i++)
    {
        const char* fs = "%8.3f ";
 
        printf("%2d ", i);
        printf(fs, a.r32[i]);
        printf(fs, b.r32[i]);
        printf(fs, c[0].r32[i]);
        printf(fs, c[1].r32[i]);
        printf(fs, c[2].r32[i]);
        printf(fs, c[3].r32[i]);
        printf(fs, c[4].r32[i]);
        printf(fs, c[5].r32[i]);
        printf("\n");
    }
}
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void AvxPfpArithmeticDouble(void)
{
    __declspec(align(32)) YmmVal a;
    __declspec(align(32)) YmmVal b;
    __declspec(align(32)) YmmVal c[5];
 
    a.r64[0] = 12.0;     b.r64[0] = 0.875;
    a.r64[1] = 13.5;     b.r64[1] = -125.25;
    a.r64[2] = 18.75;    b.r64[2] = 72.5;
    a.r64[3] = 5.0;      b.r64[3] = -98.375;
 
    AvxPfpArithmeticDouble_(&a, &b, c);
 
    printf("\n\nResults for AvxPfpArithmeticDouble()\n\n");
 
    printf(" i     a       b     Min     Max    Sqrt a    HorAdd HorSub\n");
    printf("----------------------------------------------------------\n");
 
    for (int i = 0; i < 4; i++)
    {
        const char* fs = "%9.3lf ";
 
        printf("%2d ", i);
        printf(fs, a.r64[i]);
        printf(fs, b.r64[i]);
        printf(fs, c[0].r64[i]);
        printf(fs, c[1].r64[i]);
        printf(fs, c[2].r64[i]);
        printf(fs, c[3].r64[i]);
        printf(fs, c[4].r64[i]);
        printf("\n");
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxPfpArithmeticFloat();
    AvxPfpArithmeticDouble();
    return 0;
}
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Listing 14-3. AvxPackedFloatingPointArithmetic_.asm

        .model flat,c
        .const
        align 16
 
; Mask value for packed SPFP absolute value
AbsMask dword 7fffffffh,7fffffffh,7fffffffh,7fffffffh
        dword 7fffffffh,7fffffffh,7fffffffh,7fffffffh
 
; Mask value for packed SPFP negation
NegMask dword 80000000h,80000000h,80000000h,80000000h
        dword 80000000h,80000000h,80000000h,80000000h
        .code
 
; extern "C" void AvxPfpArithmeticFloat_(const YmmVal* a, const YmmVal* b, 
YmmVal c[6]);
;
; Description:  The following function illustrates how to use common
;               packed SPFP arithmetic instructions using the YMM
;               registers.
;
; Requires:     AVX
 
AvxPfpArithmeticFloat_ proc
        push ebp
        mov ebp,esp
 
; Load argument values.  Note that the vmovaps instruction
; requires proper aligment of operands in memory.
        mov eax,[ebp+8]                     ;eax = ptr to a
        mov ecx,[ebp+12]                    ;ecx = ptr to b
        mov edx,[ebp+16]                    ;edx = ptr to c
        vmovaps ymm0,ymmword ptr [eax]      ;ymm0 = a
        vmovaps ymm1,ymmword ptr [ecx]      ;ymm1 = b
 
; Perform packed SPFP addition, subtraction, multiplication,
; and division
        vaddps ymm2,ymm0,ymm1               ;a + b
        vmovaps ymmword ptr [edx],ymm2
 
        vsubps ymm3,ymm0,ymm1               ;a - b
        vmovaps ymmword ptr [edx+32],ymm3
 
        vmulps ymm4,ymm0,ymm1               ;a * b
        vmovaps ymmword ptr [edx+64],ymm4
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        vdivps ymm5,ymm0,ymm1               ;a / b
        vmovaps ymmword ptr [edx+96],ymm5
 
; Compute packed SPFP absolute value
        vmovups ymm6,ymmword ptr [AbsMask]          ;ymm6 = AbsMask
        vandps ymm7,ymm0,ymm6                       ;ymm7 = packed fabs
        vmovaps ymmword ptr [edx+128],ymm7
 
; Compute packed SPFP negation
        vxorps ymm7,ymm0,ymmword ptr [NegMask]      ;ymm7 = packed neg.
        vmovaps ymmword ptr [edx+160],ymm7
 
; Zero upper 128-bit of all YMM registers to avoid potential x86-AVX
; to x86-SSE transition penalties.
        vzeroupper
 
        pop ebp
        ret
AvxPfpArithmeticFloat_ endp
 
; extern "C" void AvxPfpArithmeticDouble_(const YmmVal* a, const YmmVal* b, 
YmmVal c[5]);
;
; Description:  The following function illustrates how to use common
;               packed DPFP arithmetic instructions using the YMM
;               registers.
;
; Requires:     AVX
 
 
AvxPfpArithmeticDouble_ proc
        push ebp
        mov ebp,esp
 
; Load argument values.  Note that the vmovapd instruction
; requires proper aligment of operands in memory.
        mov eax,[ebp+8]                     ;eax = ptr to a
        mov ecx,[ebp+12]                    ;ecx = ptr to b
        mov edx,[ebp+16]                    ;edx = ptr to c
        vmovapd ymm0,ymmword ptr [eax]      ;ymm0 = a
        vmovapd ymm1,ymmword ptr [ecx]      ;ymm1 = b
 
; Compute packed min, max and square root
        vminpd ymm2,ymm0,ymm1
        vmaxpd ymm3,ymm0,ymm1
        vsqrtpd ymm4,ymm0
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; Perform horizontal addition and subtraction
        vhaddpd ymm5,ymm0,ymm1
        vhsubpd ymm6,ymm0,ymm1
 
; Save the results
        vmovapd ymmword ptr [edx],ymm2
        vmovapd ymmword ptr [edx+32],ymm3
        vmovapd ymmword ptr [edx+64],ymm4
        vmovapd ymmword ptr [edx+96],ymm5
        vmovapd ymmword ptr [edx+128],ymm6
 
; Zero upper 128-bit of all YMM registers to avoid potential x86-AVX
; to x86-SSE transition penalties.
        vzeroupper
 
        pop ebp
        ret
AvxPfpArithmeticDouble_ endp
        end
 

The C++ code for AvxPackedFloatingPointArithmetic (see Listing 14-2) contains  
a function named AvxPfpArithmeticFloat. This function begins by initializing a  
couple of YmmVal variables with single-precision floating-point test values. Note that  
each YmmVal instance is aligned to a 32-byte boundary using the Visual C++ extended  
attribute __declspec(align(32)). The AvxPfpArithmeticFloat function invokes an  
x86-AVX assembly language function named AvxPfpArithmeticFloat_ that demonstrates 
common packed single-precision floating-point arithmetic operations. The results 
of these arithmetic operations are displayed in matrix form using a series of printf 
statements. The C++ code also includes a function named AvxPfpArithmeticDouble, 
which illustrates arithmetic operations using packed double-precision floating-point 
values. The logical organization of this function is the similar to its packed single-
precision floating-point counterpart.

Listing 14-3 shows the x86-AVX assembly language code for the sample program 
AvxPackedFloatingPointArithmetic. Toward the top of the listing is a .const section 
that defines a 32-byte wide packed mask value named AbsMask, which is used to compute 
packed single-precision floating-point absolute values. A second packed mask called 
NegMask is defined to carry out packed single-precision floating-point negation. Note that 
when used in a .const section, the size argument of an align directive cannot exceed 16. 
This means that the packed values AbsMask and NegMask may not be properly aligned. 
Because of x86-AVX’s relaxed alignment requirements for memory operands (discussed 
in Chapter 12), these values can be referenced by most x86-AVX instructions without 
causing a processor exception to occur. Another option is to use the MASM segment 
directive to define a constant section that permits data values to be aligned on a 32-byte 
boundary. You learn how to do this in Chapter 15.

Following the prolog and argument register initializations, a vmovaps ymm0,ymmword 
ptr [eax] instruction loads packed value a into register YMM0. The vmovaps instruction 
requires its memory-based source operand to be properly aligned. Next, a vmovaps 
ymm1,ymmword ptr [ecx] instruction loads packed value b into register YMM1. This is 
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followed by a vaddps ymm2,ymm0,ymm1 instruction, which sums the packed single-precision 
floating-point values in YMM0 and YMM1 and saves the result to YMM2. The function then 
performs packed single-precision floating-point subtraction, multiplication, and division 
using the vsubps, vmulps, and vdivps instructions, respectively.

The next two instructions—vmovups ymm6,ymmword ptr [AbsMask] and vandps 
ymm7,ymm0,ymm6—compute the packed absolute value of a. Note that the vmovaps 
instruction cannot be used to load AbsMask into a YMM register since it’s improperly 
aligned. The vxorps ymm7,ymm0,ymmword ptr [NegMask] instruction negates the 
elements of a. It also exemplifies x86-AVX’s relaxed memory alignment requirements 
since NegMask is not explicitly aligned to a 32-byte boundary. The final instruction 
before the epilog is vzeroupper, which is necessary to avoid potential performance 
penalties that can occur when an x86 processor transitions from executing x86-AVX to 
x86-SSE instructions. Chapter 12 discusses potential x86-AVX to x86-SSE state transition 
performance penalties in greater detail.

The AvxPfpArithmeticDouble_ function (see Listing 14-3) illustrates use of several 
additional packed floating-point arithmetic operations using double-precision instead of 
single-precision values. The vminpd, vmaxpd, and vsqrtpd instructions compute packed 
double-precision minimums, maximums, and square roots, respectively. Horizontal 
(adjacent element) addition and subtraction are carried out using the vhaddpd and 
vhsubpd instructions (see Figure 7-8). The results of these operations are saved to the 
caller’s array using a series of vmovapd instructions. The last instruction in function 
AvxPfpArithmeticDouble_ prior to its epilog is vzeroupper. To reiterate, this instruction 
should be included (before any ret instructions) whenever a function employs YMM 
register operands in order to avoid processor state transition delays. Chapter 12 contains 
more information about the proper use of the vzeroupper instruction. Output 14-1 shows 
the results of the sample program AvxPackedFloatingPointArithmetic.

Output 14-1. Sample Program AvxPackedFloatingPointArithmetic

Results for AvxPfpArithmeticFloat()
 
 i        a        b      Add      Sub      Mul      Div      Abs      Neg
--------------------------------------------------------------------------
 0    2.000   12.500   14.500  -10.500   25.000    0.160    2.000   -2.000
 1    3.500   52.125   55.625  -48.625  182.438    0.067    3.500   -3.500
 2  -10.750   17.500    6.750  -28.250 -188.125   -0.614   10.750   10.750
 3   15.000   13.982   28.982    1.018  209.730    1.073   15.000  -15.000
 4  -12.125   -4.750  -16.875   -7.375   57.594    2.553   12.125   12.125
 5    3.875    3.063    6.938    0.813   11.867    1.265    3.875   -3.875
 6    2.000    7.875    9.875   -5.875   15.750    0.254    2.000   -2.000
 7   -6.350  -48.188  -54.537   41.838  305.991    0.132    6.350    6.350
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Results for AvxPfpArithmeticDouble()
 
 i        a          b       Min       Max    Sqrt a    HorAdd    HorSub
--------------------------------------------------------------------------
 0    12.000     0.875     0.875    12.000     3.464    25.500    -1.500
 1    13.500  -125.250  -125.250    13.500     3.674  -124.375   126.125
 2    18.750    72.500    18.750    72.500     4.330    23.750    13.750
 3     5.000   -98.375   -98.375     5.000     2.236   -25.875   170.875

Packed Floating-Point Compares
In Chapter 13, you learned how to use the vcmpsd instruction to compare two scalar 
double-precision floating-point numbers. In this section, you learn how to use the vcmppd 
instruction to compare two packed double-precision floating-point values. This instruction 
performs pairwise compares of the elements in two source operands; it then sets the 
corresponding destination operand elements to indicate the results (all 1s for true or all 
0s for false). The C++ and assembly language source code listings for sample program 
AvxPackedFloatingPointCompare are shown in Listings 14-4 and 14-5, respectively.

Listing 14-4. AvxPackedFloatingPointCompare.cpp

#include "stdafx.h"
#include "YmmVal.h"
#include <limits>
using namespace std;
 
extern "C" void AvxPfpCompare_(const YmmVal* a, const YmmVal* b, YmmVal c[8]);
 
int _tmain(int argc, _TCHAR* argv[])
{
    char buff[256];
    __declspec(align(32)) YmmVal a;
    __declspec(align(32)) YmmVal b;
    __declspec(align(32)) YmmVal c[8];
 
    const char* instr_names[8] =
    {
        "vcmpeqpd", "vcmpneqpd", "vcmpltpd", "vcmplepd",
        "vcmpgtpd", "vcmpgepd", "vcmpordpd", "vcmpunordpd"
    };
 
    a.r64[0] = 42.125;
    a.r64[1] = -36.875;
    a.r64[2] = 22.95;
    a.r64[3] = 3.75;
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    b.r64[0] = -0.0625;
    b.r64[1] = -67.375;
    b.r64[2] = 22.95;
    b.r64[3] = numeric_limits<double>::quiet_NaN();
 
    AvxPfpCompare_(&a, &b, c);
 
    printf("Results for AvxPackedFloatingPointCompare\n");
    printf("a: %s\n", a.ToString_r64(buff, sizeof(buff), false));
    printf("a: %s\n", a.ToString_r64(buff, sizeof(buff), true));
    printf("\n");
    printf("b: %s\n", b.ToString_r64(buff, sizeof(buff), false));
    printf("b: %s\n", b.ToString_r64(buff, sizeof(buff), true));
 
    for (int i = 0; i < 8; i++)
    {
        printf("\n%s results\n", instr_names[i]);
        printf("  %s\n", c[i].ToString_x64(buff, sizeof(buff), false));
        printf("  %s\n", c[i].ToString_x64(buff, sizeof(buff), true));
    }
 
    return 0;
}

Listing 14-5. AvxPackedFloatingPointCompare_.asm

        .model flat,c
        .code
 
; extern "C" void AvxPfpCompare_(const YmmVal* a, const YmmVal* b, YmmVal c[8]);
;
; Description:  The following function demonstrates use of the
;               x86-AVX compare instruction vcmppd.
;
; Requires:     AVX
 
AvxPfpCompare_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to a
        mov ecx,[ebp+12]                    ;ecx = ptr to b
        mov edx,[ebp+16]                    ;edx = ptr to c
        vmovapd ymm0,ymmword ptr [eax]      ;ymm0 = a
        vmovapd ymm1,ymmword ptr [ecx]      ;ymm1 = b
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; Compare for equality
        vcmpeqpd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx],ymm2
 
; Compare for inequality
        vcmpneqpd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx+32],ymm2
 
; Compare for less than
        vcmpltpd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx+64],ymm2
 
; Compare for less than or equal
        vcmplepd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx+96],ymm2
 
; Compare for greater than
        vcmpgtpd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx+128],ymm2
 
; Compare for greater than or equal
        vcmpgepd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx+160],ymm2
 
; Compare for ordered
        vcmpordpd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx+192],ymm2
 
; Compare for unordered
        vcmpunordpd ymm2,ymm0,ymm1
        vmovapd ymmword ptr [edx+224],ymm2
 
; Zero upper 128-bit of all YMM registers to avoid potential x86-AVX
; to x86-SSE transition penalties.
        vzeroupper
        pop ebp
        ret
AvxPfpCompare_ endp
        end
 

The _tmain function in AvxPackedFloatingPointCompare.cpp (see Listing 14-4) uses 
the C++ union YmmVal to initialize two packed double-precision floating-point values for 
test purposes. Note that the last element of b is assigned a value of QNaN in order to highlight 
an unordered floating-point compare. The remaining lines of _tmain invoke the assembly 
language function _AvxPfpCompare and print the results. The printf statements display the 
unaltered mask result of each packed double-precision floating-point compare operation.
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Listing 14-5 contains the assembly language function AvxPfpCompare_. This 
function uses the vmovapd instruction to load the packed double-precision floating-point 
argument values a and b into registers YMM0 and YMM, respectively. The function 
then exercises the most commonly-used forms of the vcmppd instruction and saves each 
packed mask result to the specified array. Note that just before the function epilog, a 
vzeroupper instruction is used to avert the aforementioned x86-AVX to x86-SSE state 
transition performance penalties.

Like its scalar counterpart, the vcmppd instruction supports two formats: a four-
operand format that uses an immediate value to specify the compare predicate and 
a three-operand variant that encompasses the compare predicate string within 
the instruction mnemonic. The vcmppd instruction also supports the same 32 
compare predicates as the vcmpsd instruction. In functions that manipulate packed 
single-precision floating-point quantities, the vcmpps instruction can be used to 
perform compare operations. Output 14-2 shows the results of the sample program 
AvxPackedFloatingPointCompare.

Output 14-2. Sample Program AvxPackedFloatingPointCompare

Results for AvxPackedFloatingPointCompare
a:          42.125000000000  |         -36.875000000000
a:          22.950000000000  |           3.750000000000
 
b:          -0.062500000000  |         -67.375000000000
b:          22.950000000000  |           1.#QNAN0000000
 
vcmpeqpd results
  0000000000000000 | 0000000000000000
  FFFFFFFFFFFFFFFF | 0000000000000000
 
vcmpneqpd results
  FFFFFFFFFFFFFFFF | FFFFFFFFFFFFFFFF
  0000000000000000 | FFFFFFFFFFFFFFFF
 
vcmpltpd results
  0000000000000000 | 0000000000000000
  0000000000000000 | 0000000000000000
 
vcmplepd results
  0000000000000000 | 0000000000000000
  FFFFFFFFFFFFFFFF | 0000000000000000
 
vcmpgtpd results
  FFFFFFFFFFFFFFFF | FFFFFFFFFFFFFFFF
  0000000000000000 | 0000000000000000
 
vcmpgepd results
  FFFFFFFFFFFFFFFF | FFFFFFFFFFFFFFFF
  FFFFFFFFFFFFFFFF | 0000000000000000
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vcmpordpd results
  FFFFFFFFFFFFFFFF | FFFFFFFFFFFFFFFF
  FFFFFFFFFFFFFFFF | 0000000000000000
 
vcmpunordpd results
  0000000000000000 | 0000000000000000
  0000000000000000 | FFFFFFFFFFFFFFFF

Advanced Programming
In this section, you examine a couple of sample programs that illustrate advanced x86-AVX 
programming techniques using packed double-precision floating-point operands. The 
first sample program shows how to calculate a correlation coefficient using the x86-AVX 
instruction set. The second sample program computes the column means of a matrix 
containing double-precision floating-point values. The techniques that these programs use 
can also be applied to similar programs that process single-precision or double-precision 
floating-point arrays and matrices.

Correlation Coefficient
The next sample program is called AvxPackedFloatingPointCorrCoef, which explains 
how to use the packed floating-point capabilities of x86-AVX to calculate a statistical 
correlation coefficient. This program also demonstrates how to perform several common 
operations using packed floating-point data types, including extractions and packed 
horizontal additions. Listings 14-6 and 14-7 contain the C++ and assembly language 
source code for AvxPackedFloatingPointCorrCoef.

Listing 14-6. AvxPackedFloatingPointCorrCoef.cpp

#include "stdafx.h"
#include <math.h>
#include <stdlib.h>
 
extern "C" __declspec(align(32)) double CcEpsilon = 1.0e-12;
extern "C" bool AvxPfpCorrCoef_(const double* x, const double* y, int n,
double sums[5], double* rho);
 
bool AvxPfpCorrCoefCpp(const double* x, const double* y, int n, double
sums[5], double* rho)
{
    double sum_x = 0, sum_y = 0;
    double sum_xx = 0, sum_yy = 0, sum_xy = 0;
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    // Make sure x and y are properly aligned to a 32-byte boundary
    if (((uintptr_t)x & 0x1f) != 0)
        return false;
    if (((uintptr_t)y & 0x1f) != 0)
        return false;
 
    // Make sure n is valid
    if ((n < 4) || ((n & 3) != 0))
        return false;
 
    // Calculate and save sum variables
    for (int i = 0; i < n; i++)
    {
        sum_x += x[i];
        sum_y += y[i];
        sum_xx += x[i] * x[i];
        sum_yy += y[i] * y[i];
        sum_xy += x[i] * y[i];
    }
 
    sums[0] = sum_x;
    sums[1] = sum_y;
    sums[2] = sum_xx;
    sums[3] = sum_yy;
    sums[4] = sum_xy;
 
    // Calculate rho
    double rho_num = n * sum_xy - sum_x * sum_y;
    double rho_den = sqrt(n * sum_xx - sum_x * sum_x) * sqrt(n * sum_yy -
sum_y * sum_y);
 
    if (rho_den >= CcEpsilon)
    {
        *rho = rho_num / rho_den;
        return true;
    }
    else
    {
        *rho = 0;
        return false;
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 100;
    __declspec(align(32)) double x[n];
    __declspec(align(32)) double y[n];
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    double sums1[5], sums2[5];
    double rho1, rho2;
 
    srand(17);
    for (int i = 0; i < n; i++)
    {
        x[i] = rand();
        y[i] = x[i] + ((rand() % 6000) - 3000);
    }
 
    bool rc1 = AvxPfpCorrCoefCpp(x, y, n, sums1, &rho1);
    bool rc2 = AvxPfpCorrCoef_(x, y, n, sums2, &rho2);
 
    printf("Results for AvxPackedFloatingPointCorrCoef\n\n");
 
    if (!rc1 || !rc2)
    {
        printf("Invalid return code (rc1: %d, rc2: %d)\n", rc1, rc2);
        return 1;
    }
 
    printf("rho1: %.8lf  rho2: %.8lf\n", rho1, rho2);
    printf("\n");
    printf("sum_x:  %12.0lf %12.0lf\n", sums1[0], sums2[0]);
    printf("sum_y:  %12.0lf %12.0lf\n", sums1[1], sums2[1]);
    printf("sum_xx: %12.0lf %12.0lf\n", sums1[2], sums2[2]);
    printf("sum_yy: %12.0lf %12.0lf\n", sums1[3], sums2[3]);
    printf("sum_xy: %12.0lf %12.0lf\n", sums1[4], sums2[4]);
    return 0;
}

Listing 14-7. AvxPackedFloatingPointCorrCoef_.asm

        .model flat,c
        .code
        extern CcEpsilon:real8
 
; extern "C" bool AvxPfpCorrCoef_(const double* x, const double* y, int n, 
double sums[5], double* rho);
;
; Description:  The following function computes the correlation
;               coeficient for the specified x and y arrays.
;
; Requires:     AVX
 
AvxPfpCorrCoef_ proc
        push ebp
        mov ebp,esp
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; Load and validate argument values
        mov eax,[ebp+8]                     ;eax = ptr to x
        test eax,1fh
        jnz BadArg                          ;jump if x is not aligned
        mov edx,[ebp+12]                    ;edx = ptr to y
        test edx,1fh
        jnz BadArg                          ;jump if y is not aligned
 
        mov ecx,[ebp+16]                    ;ecx = n
        cmp ecx,4
        jl BadArg                           ;jump if n < 4
        test ecx,3                          ;is n evenly divisible by 4?
        jnz BadArg                          ;jump if no
        shr ecx,2                           ;ecx = num iterations
 
; Initialize sum variables to zero
        vxorpd ymm3,ymm3,ymm3               ;ymm3 = packed sum_x
        vmovapd ymm4,ymm3                   ;ymm4 = packed sum_y
        vmovapd ymm5,ymm3                   ;ymm5 = packed sum_xx
        vmovapd ymm6,ymm3                   ;ymm6 = packed sum_yy
        vmovapd ymm7,ymm3                   ;ymm7 = packed sum_xy
 
; Calculate intermediate packed sum variables
@@:     vmovapd ymm0,ymmword ptr [eax]      ;ymm0 = packed x values
        vmovapd ymm1,ymmword ptr [edx]      ;ymm1 = packed y values
 
        vaddpd ymm3,ymm3,ymm0               ;update packed sum_x
        vaddpd ymm4,ymm4,ymm1               ;update packed sum_y
 
        vmulpd ymm2,ymm0,ymm1               ;ymm2 = packed xy values
        vaddpd ymm7,ymm7,ymm2               ;update packed sum_xy
 
        vmulpd ymm0,ymm0,ymm0               ;ymm0 = packed xx values
        vmulpd ymm1,ymm1,ymm1               ;ymm1 = packed yy values
        vaddpd ymm5,ymm5,ymm0               ;update packed sum_xx
        vaddpd ymm6,ymm6,ymm1               ;update packed sum_yy
 
        add eax,32                          ;update x ptr
        add edx,32                          ;update y ptr
        dec ecx                             ;update loop counter
        jnz @B                              ;repeat if not finished
 
; Calculate final sum variables
        vextractf128 xmm0,ymm3,1
        vaddpd xmm1,xmm0,xmm3
        vhaddpd xmm3,xmm1,xmm1              ;xmm3[63:0] = sum_x
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        vextractf128 xmm0,ymm4,1
        vaddpd xmm1,xmm0,xmm4
        vhaddpd xmm4,xmm1,xmm1              ;xmm4[63:0] = sum_y
 
        vextractf128 xmm0,ymm5,1
        vaddpd xmm1,xmm0,xmm5
        vhaddpd xmm5,xmm1,xmm1              ;xmm5[63:0] = sum_xx
 
        vextractf128 xmm0,ymm6,1
        vaddpd xmm1,xmm0,xmm6
        vhaddpd xmm6,xmm1,xmm1              ;xmm6[63:0] = sum_yy
 
        vextractf128 xmm0,ymm7,1
        vaddpd xmm1,xmm0,xmm7
        vhaddpd xmm7,xmm1,xmm1              ;xmm7[63:0] = sum_xy
 
; Save final sum variables
        mov eax,[ebp+20]                    ;eax = ptr to sums array
        vmovsd real8 ptr [eax],xmm3         ;save sum_x
        vmovsd real8 ptr [eax+8],xmm4       ;save sum_y
        vmovsd real8 ptr [eax+16],xmm5      ;save sum_xx
        vmovsd real8 ptr [eax+24],xmm6      ;save sum_yy
        vmovsd real8 ptr [eax+32],xmm7      ;save sum_xy
 
; Calculate rho numerator
; rho_num = n * sum_xy - sum_x * sum_y;
        vcvtsi2sd xmm2,xmm2,dword ptr [ebp+16]  ;xmm2 = n
        vmulsd xmm0,xmm2,xmm7                   ;xmm0= = n * sum_xy
        vmulsd xmm1,xmm3,xmm4                   ;xmm1 = sum_x * sum_y
        vsubsd xmm7,xmm0,xmm1                   ;xmm7 = rho_num
 
; Calculate rho denominator
; t1 = sqrt(n * sum_xx - sum_x * sum_x)
; t2 = sqrt(n * sum_yy - sum_y * sum_y)
; rho_den = t1 * t2
        vmulsd xmm0,xmm2,xmm5       ;xmm0 = n * sum_xx
        vmulsd xmm3,xmm3,xmm3       ;xmm3 = sum_x * sum_x
        vsubsd xmm3,xmm0,xmm3       ;xmm3 = n * sum_xx - sum_x * sum_x
        vsqrtsd xmm3,xmm3,xmm3      ;xmm3 = t1
 
        vmulsd xmm0,xmm2,xmm6       ;xmm0 = n * sum_yy
        vmulsd xmm4,xmm4,xmm4       ;xmm4 = sum_y * sum_y
        vsubsd xmm4,xmm0,xmm4       ;xmm4 = n * sum_yy - sum_y * sum_y
        vsqrtsd xmm4,xmm4,xmm4      ;xmm4 = t2
 
        vmulsd xmm0,xmm3,xmm4       ;xmm0 = rho_den
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; Calculate final value of rho
        xor eax,eax                         ;clear upper bits of eax
        vcomisd xmm0,[CcEpsilon]            ;is rho_den < CcEpsilon?
        setae al                            ;set return code
        jb BadRho                           ;jump if rho_den < CcEpsilon
 
        vdivsd xmm1,xmm7,xmm0               ;xmm1 = rho
SvRho:  mov edx,[ebp+24]                    ;eax = ptr to rho
        vmovsd real8 ptr [edx],xmm1         ;save rho
 
        vzeroupper
Done:   pop ebp
        ret
 
; Error handlers
BadRho: vxorpd xmm1,xmm1,xmm1               ;rho = 0
        jmp SvRho
BadArg: xor eax,eax                         ;eax = invalid arg ret code
        jmp Done
 
AvxPfpCorrCoef_ endp
        end
 

A correlation coefficient measures the strength of a linear association between 
two data sets or variables. Correlation coefficients can range in value from -1 to +1, 
signifying either a perfect negative or perfect positive linear relationship between the 
variables. Real-world correlation coefficients are rarely equal to these limits. A correlation 
coefficient of zero indicates that the data sets are not linearly associated. The sample 
program AvxPackedFloatingPointCorrCoef uses the following formula to calculate a 
correlation coefficient:
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You can see from the correlation coefficient formula that the sample program must 
calculate five separate sum variables:

sum x x sum y yi
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Listing 14-6 shows a C++ implementation of the correlation coefficient algorithm. 
The function AvxPfpCorrCoefCpp computes a correlation coefficient between the data 
arrays x and y. Note that both of these arrays must be aligned to a 32-byte boundary. 
Also note that the number of elements n must be evenly divisible by four. These 
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restrictions are enforced in order to facilitate 256-bit wide packed arithmetic operations 
in the corresponding x86-AVX assembly language function. The processing loop in 
AvxPfpCorrCoefCpp sweeps through the data arrays and computes the required sum 
variables. It then saves these values to the sums array and calculates the intermediate 
values rho_num and rho_den. Before computing the final value of rho, the function verifies 
that rho_den is greater than or equal to CcEpsilon.

Following its function prolog, the assembly language function AvxPfpCorrCoef_ 
(see Listing 14-7) performs the requisite array alignment and size validations. It then 
initializes packed versions of sum_x, sum_y, sum_xx, sum_yy, and sum_xy to zero using 
registers YMM3-YMM7, respectively. During each iteration of the main loop, the function 
processes four elements from arrays x and y using packed double-precision floating-point 
arithmetic. This means that the loop maintains four distinct intermediate values for each 
of the aforementioned sum variables.

Following completion of the main loop, the function must reduce each packed 
sum variable to a final result. A vextractf128 (Extract Packed Floating-Point Values) 
instruction copies the upper 128-bits of each 256-bit wide packed sum variable to an 
XMM register. The function then calculates a final result for each sum variable using the 
vaddpd and vhaddpd instructions. Figure 14-1 illustrates this technique for the variable 
sum_x. The final sum values are then saved to the sums array for comparison purposes 
with the C++ implementation of the algorithm.

1298.0 3625.0 1710.0 2030.0

vextractf128 xmm0,ymm3,1

ymm3

0.0 0.0 1298.0 3625.0 ymm0

Initial packed value of sum_x

vaddpd xmm1,xmm0,xmm3

0.0 0.0 3008.0 5655.0 ymm1

vhaddpd xmm3,xmm1,xmm1

0.0 0.0 8663.0 8663.0 ymm3

Figure 14-1. Calculation of final sum_x using vextractf128, vaddpd, and vhaddpd

The value of rho is then computed using ordinary x86-AVX scalar double-precision 
floating-point arithmetic. Note that the vcvtsi2sd xmm2,xmm2,dword ptr [ebp+16] 
instruction requires two source operands. The second source operand specifies the 
signed doubleword integer that is converted to a double-precision floating-point 
value. This instruction also sets des[127:64] = src1[127:64]. Also note that before 
computing the final value of rho, the function AvxPfpCorrCoef_ employs a vcomisd 
instruction to confirm that rho_den is greater than or equal to CcEpsilon. A vzeroupper 
instruction is included just before the function epilog. The results of sample program 
AvxPackedFloatingPointCorrCoef are shown in Output 14-3.
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Output 14-3. Sample Program AvxPackedFloatingPointCorrCoef

Results for AvxPackedFloatingPointCorrCoef
 
rho1: 0.98083554  rho2: 0.98083554
 
sum_x:       1549166      1549166
sum_y:       1537789      1537789
sum_xx:  32934744842  32934744842
sum_yy:  32471286601  32471286601
sum_xy:  32532024390  32532024390

Matrix Column Means
The final sample program of this chapter, AvxPackedFloatingPointColMeans, uses the 
x86-AVX instruction set to calculate the arithmetic mean of each column in a matrix of 
double-precision floating-point values. The C++ and assembly language source code are 
shown in Listings 14-8 and 14-9, respectively.

Listing 14-8. AvxPackedFloatingPointColMeans.cpp

#include "stdafx.h"
#include <memory.h>
#include <stdlib.h>
 
extern "C" bool AvxPfpColMeans_(const double* x, int nrows, int ncols,
double* col_means);
 
bool AvxPfpColMeansCpp(const double* x, int nrows, int ncols, double*
col_means)
{
    // Make sure nrows and ncols are valid
    if ((nrows <= 0) || (ncols <= 0))
        return false;
 
    // Make sure col_means is properly aligned
    if (((uintptr_t)col_means & 0x1f) != 0)
        return false;
 
    // Calculate column means
    memset(col_means, 0, ncols * sizeof(double));
 
    for (int i = 0; i < nrows; i++)
    {
        for (int j = 0; j < ncols; j++)
            col_means[j] += x[i * ncols + j];
    }
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    for (int j = 0; j < ncols; j++)
        col_means[j] /= nrows;
 
    return true;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int nrows = 13;
    const int ncols = 11;
    double* x = (double*)malloc(nrows * ncols * sizeof(double));
    double* col_means1 = (double*)_aligned_malloc(ncols * sizeof(double), 32);
    double* col_means2 = (double*)_aligned_malloc(ncols * sizeof(double), 32);
 
    srand(47);
    rand();
 
    for (int i = 0; i < nrows; i++)
    {
        for (int j = 0; j < ncols; j++)
            x[i * ncols + j] = rand() % 511;
    }
 
    bool rc1 = AvxPfpColMeansCpp(x, nrows, ncols, col_means1);
    bool rc2 = AvxPfpColMeans_(x, nrows, ncols, col_means2);
 
    printf("Results for sample program AvxPackedFloatingPointColMeans\n");
 
    if (rc1 != rc2)
    {
        printf("Bad return code (rc1 = %d, rc2 = %d)\n", rc1, rc2);
        return 1;
    }
 
    printf("\nTest Matrix\n");
    for (int i = 0; i < nrows; i++)
    {
        printf("row %2d: ", i);
        for (int j = 0; j < ncols; j++)
            printf("%5.0lf ", x[i * ncols + j]);
        printf("\n");
    }
    printf("\n");
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    for (int j = 0; j < ncols; j++)
    {
        printf("col_means1[%2d]: %12.4lf  ", j, col_means1[j]);
        printf("col_means2[%2d]: %12.4lf  ", j, col_means2[j]);
        printf("\n");
    }
 
    free(x);
    _aligned_free(col_means1);
    _aligned_free(col_means2);
    return 0;
}

Listing 14-9. AvxPackedFloatingPointColMeans_.asm

        .model flat,c
        .code
 
; extern "C" bool AvxPfpColMeans_(const double* x, int nrows, int ncols,
double* col_means)
;
; Description:  The following function computes the mean value of each
;               column in a matrix of DPFP values.
;
; Requires:     AVX
 
AvxPfpColMeans_ proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
        push edi
 
; Load and validate arguments
        mov esi,[ebp+8]                     ;esi = ptr to x
 
        xor eax,eax
        mov edx,[ebp+12]                    ;edx = nrows
        test edx,edx
        jle BadArg                          ;jump if nrows <= 0
 
        mov ecx,[ebp+16]                    ;ecx = ncols
        test ecx,ecx
        jle BadArg                          ;jump if ncols <= 0
 
        mov edi,[ebp+20]                    ;edi = ptr to col_means
        test edi,1fh
        jnz BadArg                          ;jump if col_means not aligned
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; Set col_means to zero
        mov ebx,ecx                         ;ebx = ncols
        shl ecx,1                           ;ecx = num dowrds in col_means
        rep stosd                           ;set col_means to zero
 
; Compute the sum of each column in x
LP1:    mov edi,[ebp+20]                    ;edi = ptr to col_means
        xor ecx,ecx                         ;ecx = col_index
 
LP2:    mov eax,ecx                         ;eax = col_index
        add eax,4
        cmp eax,ebx                         ;4 or more columns remaining?
        jg @F                               ;jump if col_index + 4 > ncols
 
; Update col_means using next four columns
        vmovupd ymm0,ymmword ptr [esi]      ;load next 4 cols of cur row
        vaddpd ymm1,ymm0,ymmword ptr [edi]  ;add to col_means
        vmovapd ymmword ptr [edi],ymm1      ;save updated col_means
        add ecx,4                           ;col_index += 4
        add esi,32                          ;update x ptr
        add edi,32                          ;update col_means ptr
        jmp NextColSet
 
@@:     sub eax,2
        cmp eax,ebx                         ;2 or more columns remaining?
        jg @F                               ;jump if col_index + 2 > ncols
 
; Update col_means using next two columns
        vmovupd xmm0,xmmword ptr [esi]      ;load next 2 cols of cur row
        vaddpd xmm1,xmm0,xmmword ptr [edi]  ;add to col_meanss
        vmovapd xmmword ptr [edi],xmm1      ;save updated col_meanss
        add ecx,2                           ;col_index += 2
        add esi,16                          ;update x ptr
        add edi,16                          ;update col_means ptr
        jmp NextColSet
 
; Update col_means using next column (or last column in the current row)
@@:     vmovsd xmm0,real8 ptr [esi]         ;load x from last column
        vaddsd xmm1,xmm0,real8 ptr [edi]    ;add to col_means
        vmovsd real8 ptr [edi],xmm1         ;save updated col_means
        add ecx,1                           ;col_index += 1
        add esi,8                           ;update x ptr
 
NextColSet:
        cmp ecx,ebx                         ;more columns in current row?
        jl LP2                              ;jump if yes
        dec edx                             ;nrows -= 1
        jnz LP1                             ;jump if more rows
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; Compute the final col_means
        mov eax,[ebp+12]                    ;eax = nrows
        vcvtsi2sd xmm2,xmm2,eax             ;xmm2 = DPFP nrows
        mov edx,[ebp+16]                    ;edx = ncols
        mov edi,[ebp+20]                    ;edi = ptr to col_means
 
@@:     vmovsd xmm0,real8 ptr [edi]         ;xmm0 = col_means[i]
        vdivsd xmm1,xmm0,xmm2               ;compute final mean
        vmovsd real8 ptr [edi],xmm1         ;save col_mean[i]
        add edi,8                           ;update col_means ptr
        dec edx                             ;ncols -= 1
        jnz @B                              ;repeat until done
        mov eax,1                           ;set success return code
        vzeroupper
 
BadArg: pop edi
        pop esi
        pop ebx
        pop ebp
        ret
 
AvxPfpColMeans_ endp
        end
 

Toward the top of the AvxPackedFloatingPointColMeans.cpp file (see Listing 14-8) 
is a function named AvxPfpColMeans, which computes the column means of a matrix 
using a simple algorithm written in C++. Note that the function does not check the input 
array x for proper alignment. The reason for this is that the algorithm must be able to 
process a standard C++ matrix of double-precision floating-point values without any 
constraints on the number of rows or columns. Recall that the elements of a C++ matrix 
are stored in a contiguous block of memory using row-major ordering (see Chapter 2), 
which means that it’s impossible to specify the alignment of a specific row, column,  
or element. The col_means array is tested for proper alignment since an x86-AVX 
assembly language function can use the vmovapd instruction to access the elements  
of a one-dimensional array without having to worry about multiple rows.

The function _tmain allocates and initializes a matrix of test values. Note that the 
malloc and _aligned_malloc functions are used to dynamically allocate storage space for 
matrix x and array col_means, respectively. The corresponding memory-free functions 
are also employed toward the end of _tmain. The remaining statements in _tmain invoke 
the C++ and assembly language column-mean calculating functions and print the results.

The x86-AVX assembly language function AvxPfpColMeans _ (see Listing 14-9) 
performs the same argument validations as its C++ counterpart function. Next, the 
elements of the col_means array are initialized to zero since they’re used to calculate 
the column sums. This action is carried out by the rep stosd instruction. In order to 
maximize throughput, the column summation loop uses different x86-AVX data move 
and add instructions depending on the current column index and the total number of 
columns in the matrix. For example, assume that the matrix x contains seven columns. 
The elements of the first four columns in x can be added to col_means using 256-bit wide 
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packed addition. The elements of the next two columns can be added to col_means using 
128-wide packed addition, and the final column element must be added to col_means 
using scalar addition. Figure 14-2 illustrates this tactic in greater detail.

vmovupd ymm0,ymmword ptr [esi]
vaddpd ymm1,ymm0,ymmword ptr [edi]
vmovapd ymmword ptr [edi],ymm1

Row i of Matrix x

vmovupd xmm0,xmmword ptr [esi+32]
vaddpd xmm1,xmm0,xmmword ptr [edi+32]
vmovapd xmmword ptr [edi+32],xmm1

vmovsd xmm0,real 8 ptr[esi+48]
vaddsd xmm1,xmm0,real8 ptr [edi+48]
vmovsd real8 ptr [edi+48],xmm1

Col 0 Value

Col 1 Value

Col 2 Value

Col 3 Value

Col 4 Value

Col 5 Value

Col 6 Value

col_means Array

ESI

Col 0 Sum

Col 1 Sum

Col 2 Sum

Col 3 Sum

Col 4 Sum

Col 5 Sum

Col 6 Sum

EDI

Example x86-AVX Instructions

Figure 14-2. Updating the col_means array using different operand sizes

The top of the column summation loop, located next to label LP1, is the starting point 
for processing each row in matrix x. Prior to the first summation loop iteration, register 
EDX contains nrows and register ESI contains a pointer to x. Each summation loop 
iteration begins with a mov edi,[ebp+20] instruction, which loads EDI with a pointer to 
col_means. The xor ecx,ecx instruction initializes col_index to zero. Next to the label 
LP2, a series of instructions determines the number of columns that remain in the current 
row. If there are four or more columns remaining, the next four elements are added to 
the col_means array using instructions that manipulate 256-bit wide packed operands. 
A vmovupd ymm0,ymmword ptr [esi] instruction loads four elements from matrix x 
into YMM0 (recall that elements of matrix x are not aligned to either a 16- or 32-byte 
boundary). Next, a vaddpd ymm1,ymm0,ymmword ptr [edi] instruction sums the current 
matrix elements in YMM0 and the corresponding elements in col_means. The updated 
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sums are then saved to col_means, which is properly aligned, using a vmovapd ymmword 
ptr [edi],ymm1 instruction. Registers ECX, ESI, and EDI are then updated in preparation 
for the next set of matrix columns.

The summation loop repeats the steps described in the previous paragraph until the 
number of columns remaining the current row is less than four. As soon as this condition 
is detected, the function knows that the elements in the remaining columns (if any) must 
be processed using instructions that handle 128-bit wide packed or 64-bit wide scalar 
operands, or both if three columns remain. This accounts for the distinct blocks of code 
that manage these scenarios. Following computation of the column sums, each element 
in col_means is divided by nrows, which yields the final column mean value. Output 14-4 
shows the results for the sample program AvxPackedFloatingPointColMeans.

Output 14-4. Sample Program AvxPackedFloatingPointColMeans

Results for sample program AvxPackedFloatingPointColMeans
 
Test Matrix
row  0:   423   199   393    76   320    72   225    63   220   499    22
row  1:   311   277   174   369   189   380   509    95   449   210   324
row  2:   318   317   439   267   450   202   182   154   246   239   150
row  3:   360   508   466   274   402   240   327   442   365   291   353
row  4:   452   432   389   386   155   438   471    93   313   148   430
row  5:    76   331   341   329   388   313   336    36    75   328   224
row  6:   133   277   250   504    80   481    20   109   445   407   252
row  7:   202   131     6   338    49    41   144   428     3   240   145
row  8:   239   336   419   223   336   483   433   296   208   459   407
row  9:   198   501   208    24   475    75    30   236   461   436    36
row 10:   508   161   291   503   386   352   492   226   291   258   276
row 11:    53   499   132   339    26   346   422   159   292   411    62
row 12:     7   230   301    16   160    71   109   479   166   417    85
 
col_means1[ 0]:     252.3077  col_means2[ 0]:     252.3077
col_means1[ 1]:     323.0000  col_means2[ 1]:     323.0000
col_means1[ 2]:     293.0000  col_means2[ 2]:     293.0000
col_means1[ 3]:     280.6154  col_means2[ 3]:     280.6154
col_means1[ 4]:     262.7692  col_means2[ 4]:     262.7692
col_means1[ 5]:     268.7692  col_means2[ 5]:     268.7692
col_means1[ 6]:     284.6154  col_means2[ 6]:     284.6154
col_means1[ 7]:     216.6154  col_means2[ 7]:     216.6154
col_means1[ 8]:     271.8462  col_means2[ 8]:     271.8462
col_means1[ 9]:     334.0769  col_means2[ 9]:     334.0769
col_means1[10]:     212.7692  col_means2[10]:     212.7692
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Summary
This chapter focused on the packed floating-point capabilities of x86-AVX. You learned 
how to perform basic arithmetic operations using 256-bit wide packed floating-point 
operands. You also examined some sample code that demonstrated useful SIMD 
processing techniques for floating-point arrays and matrices. The sample code reinforced 
what you learned about the advantages of the x86-AVX instruction set in Chapters 13 and 
14: simpler assembly language coding and elimination of most register-to-register data 
transfer operations. You also see these same benefits in the next chapter, which explains 
how to create functions that exploit the packed integer resources of x86-AVX.
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Chapter 15

X86-AVX Programming - 
Packed Integers

This chapter illustrates how to use the x86-AVX instruction set to perform operations 
using 256-bit wide packed integer operands. It includes a couple of sample programs that 
explain how to carry out basic packed integer arithmetic and unpack operations. It also 
contains a few of sample programs that implement commonly-used image processing 
algorithms using 8-bit unsigned integers. All of the sample programs in this chapter 
require a processor and operating system that support AVX2.

Packed Integer Fundamentals
This section demonstrates how to perform packed integer operations using the x86-AVX 
instruction set. The first sample program illustrates essential packed integer arithmetic 
operations using 256-bit wide operands. The second sample program shows how to 
perform integer unpack and pack operations using the YMM registers. This program also 
highlights how these instructions carry out their operations using two separate 128-bit 
wide lanes.

Packed Integer Arithmetic
The first sample program of this section, called AvxPackedIntegerArithmetic, 
demonstrates how to perform common arithmetic operations using 256-bit wide packed 
integer operands. It also exemplifies some of the packed integer processing differences 
between x86-AVX and x86-SSE. The C++ and x86-AVX assembly language source code 
files for this program are shown in Listings 15-1 and 15-2, respectively.
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Listing 15-1. AvxPackedIntegerArithmetic.cpp

#include "stdafx.h"
#include "YmmVal.h"
 
extern "C" void AvxPiI16_(YmmVal* a, YmmVal* b, YmmVal c[6]);
extern "C" void AvxPiI32_(YmmVal* a, YmmVal* b, YmmVal c[5]);
 
void AvxPiI16(void)
{
    __declspec(align(32))  YmmVal a;
    __declspec(align(32))  YmmVal b;
    __declspec(align(32))  YmmVal c[6];
 
    a.i16[0] = 10;       b.i16[0] = 1000;
    a.i16[1] = 20;       b.i16[1] = 2000;
    a.i16[2] = 3000;     b.i16[2] = 30;
    a.i16[3] = 4000;     b.i16[3] = 40;
 
    a.i16[4] = 30000;    b.i16[4] = 3000;       // add overflow
    a.i16[5] = 6000;     b.i16[5] = 32000;      // add overflow
    a.i16[6] = 2000;     b.i16[6] = -31000;     // sub overflow
    a.i16[7] = 4000;     b.i16[7] = -30000;     // sub overflow
 
    a.i16[8]  = 4000;    b.i16[8]  = -2500;
    a.i16[9]  = 3600;    b.i16[9]  = -1200;
    a.i16[10] = 6000;    b.i16[10] = 9000;
    a.i16[11] = -20000;  b.i16[11] = -20000;
 
    a.i16[12] = -25000;  b.i16[12] = -27000;    // add overflow
    a.i16[13] = 8000;    b.i16[13] = 28700;     // add overflow
    a.i16[14] = 3;       b.i16[14] = -32766;    // sub overflow
    a.i16[15] = -15000;  b.i16[15] = 24000;     // sub overflow
 
    AvxPiI16_(&a, &b, c);
 
    printf("\nResults for AvxPiI16()\n\n");
    printf("i        a       b   vpaddw vpaddsw vpsubw vpsubsw vpminsw
↳ vpmaxsw\n");
    printf("-----------------------------------------------------------\n");
 
    for (int i = 0; i < 16; i++)
    {
        const char* fs = "%7d ";
 
        printf("%2d ", i);
        printf(fs, a.i16[i]);
        printf(fs, b.i16[i]);
        printf(fs, c[0].i16[i]);
        printf(fs, c[1].i16[i]);
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        printf(fs, c[2].i16[i]);
        printf(fs, c[3].i16[i]);
        printf(fs, c[4].i16[i]);
        printf(fs, c[5].i16[i]);
        printf("\n");
    }
}
 
void AvxPiI32(void)
{
    __declspec(align(32))  YmmVal a;
    __declspec(align(32))  YmmVal b;
    __declspec(align(32))  YmmVal c[5];
 
    a.i32[0] = 64;        b.i32[0] = 4;
    a.i32[1] = 1024;      b.i32[1] = 5;
    a.i32[2] = -2048;     b.i32[2] = 2;
    a.i32[3] = 8192;      b.i32[3] = 5;
    a.i32[4] = -256;      b.i32[4] = 8;
    a.i32[5] = 4096;      b.i32[5] = 7;
    a.i32[6] = 16;        b.i32[6] = 3;
    a.i32[7] = 512;       b.i32[7] = 6;
 
    AvxPiI32_(&a, &b, c);
 
    printf("\nResults for AvxPiI32()\n\n");
    printf("i         a        b    vphaddd vphsubd vpmulld vpsllvd
↳  vpsravd\n");
    printf("-----------------------------------------------------------\n");
 
    for (int i = 0; i < 8; i++)
    {
        const char* fs = "%8d ";
 
        printf("%2d ", i);
        printf(fs, a.i32[i]);
        printf(fs, b.i32[i]);
        printf(fs, c[0].i32[i]);
        printf(fs, c[1].i32[i]);
        printf(fs, c[2].i32[i]);
        printf(fs, c[3].i32[i]);
        printf(fs, c[4].i32[i]);
        printf("\n");
    }
}
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int _tmain(int argc, _TCHAR* argv[])
{
    AvxPiI16();
    AvxPiI32();
    return 0;
}

Listing 15-2. AvxPackedIntegerArithmetic_.asm

        .model flat,c
        .code
 
; extern "C" void AvxPiI16_(YmmVal* a, YmmVal* b, YmmVal c[6]);
;
; Description:  The following function illustrates use of various
;               packed 16-bit integer arithmetic instructions
;               using 256-bit wide operands.
;
; Requires:     AVX2
 
AvxPiI16_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to a
        mov ecx,[ebp+12]                    ;ecx = ptr to b
        mov edx,[ebp+16]                    ;edx = ptr to c
 
; Load a and b, which must be properly aligned
        vmovdqa ymm0,ymmword ptr [eax]      ;ymm0 = a
        vmovdqa ymm1,ymmword ptr [ecx]      ;ymm1 = b
 
; Perform packed arithmetic operations
        vpaddw ymm2,ymm0,ymm1               ;add
        vpaddsw ymm3,ymm0,ymm1              ;add with signed saturation
        vpsubw ymm4,ymm0,ymm1               ;sub
        vpsubsw ymm5,ymm0,ymm1              ;sub with signed saturation
        vpminsw ymm6,ymm0,ymm1              ;signed minimums
        vpmaxsw ymm7,ymm0,ymm1              ;signed maximums
 
; Save results
        vmovdqa ymmword ptr [edx],ymm2          ;save vpaddw result
        vmovdqa ymmword ptr [edx+32],ymm3       ;save vpaddsw result
        vmovdqa ymmword ptr [edx+64],ymm4       ;save vpsubw result
        vmovdqa ymmword ptr [edx+96],ymm5       ;save vpsubsw result
        vmovdqa ymmword ptr [edx+128],ymm6      ;save vpminsw result
        vmovdqa ymmword ptr [edx+160],ymm7      ;save vpmaxsw result
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        vzeroupper
        pop ebp
        ret
AvxPiI16_ endp
 
; extern "C" void AvxPiI32_(YmmVal* a, YmmVal* b, YmmVal c[5]);
;
; Description:  The following function illustrates use of various
;               packed 32-bit integer arithmetic instructions
;               using 256-bit wide operands.
;
; Requires:     AVX2
 
AvxPiI32_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to a
        mov ecx,[ebp+12]                    ;ecx = ptr to b
        mov edx,[ebp+16]                    ;edx = ptr to c
 
; Load a and b, which must be properly aligned
        vmovdqa ymm0,ymmword ptr [eax]      ;ymm0 = a
        vmovdqa ymm1,ymmword ptr [ecx]      ;ymm1 = b
 
; Perform packed arithmetic operations
        vphaddd ymm2,ymm0,ymm1              ;horizontal add
        vphsubd ymm3,ymm0,ymm1              ;horizontal sub
        vpmulld ymm4,ymm0,ymm1              ;signed mul (low 32 bits)
        vpsllvd ymm5,ymm0,ymm1              ;shift left logical
        vpsravd ymm6,ymm0,ymm1              ;shift right arithmetic
 
; Save results
        vmovdqa ymmword ptr [edx],ymm2      ;save vphaddd result
        vmovdqa ymmword ptr [edx+32],ymm3   ;save vphsubd result
        vmovdqa ymmword ptr [edx+64],ymm4   ;save vpmulld result
        vmovdqa ymmword ptr [edx+96],ymm5   ;save vpsllvd result
        vmovdqa ymmword ptr [edx+128],ymm6  ;save vpsravd result
 
        vzeroupper
        pop ebp
        ret
AvxPiI32_ endp
        end
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The C++ file AvxPackedIntegerArithmetic.cpp (see Listing 15-1) includes a 
function named AvxPiI16 that initializes a couple of YmmVal variables using 16-bit signed 
integers. It then calls the assembly language function AvxPiI16_, which carries out a 
number of common packed arithmetic operations, including addition, subtraction, 
signed minimums, and signed maximums. The results of these operations are then 
displayed using a series of printf statements. AvxPackedIntegerArithmetic.cpp also 
includes a function named AvxPiI32 that arranges a couple of YmmVal instances using 
32-bit signed integers. These YmmVal values are passed to the assembly language function 
named AvxPiI32_, which performs horizontal addition and subtraction, multiplication, 
and variable shift operations.

Following its function prolog, function AvxPiI16_ loads pointer argument values 
a, b, and c into registers EAX, ECX, and EDX, respectively. The instruction vmovdqa 
ymm0,ymmword ptr [eax] loads the variable a into register YMM0. Note that the vmovdqa 
instruction requires any 256-bit wide memory operand that it references to be properly 
aligned on a 32-byte boundary (the vmovdqu instruction can be used for unaligned 
operands). Another vmovdqa instruction loads b into YMM1. A series of arithmetic 
instructions follows next, including packed signed integer addition (vpaddw and vpaddsw), 
subtraction (vpsubw and vpsubsw), signed minimums (vpminsw), and signed maximums 
(vpmaxsw). The results are then saved to the array c, which also must be properly aligned.

The function AvxPiI32_ uses the same sequence of instructions as AvxPiI16_ to 
load a and b into registers YMM0 and YMM1. It then performs some common arithmetic 
operations, including horizontal addition (vphaddd), horizontal subtraction (vphsubd), 
and signed 32-bit multiplication (vpmulld). The AvxPiI32_function also exercises the 
variable bits shift instructions vpsllvd (Variable Bit Shift Left Logical) and vpsravd 
(Variable Bit Shift Right Arithmetic). These instructions, first included with AVX2, shift 
the doubleword elements of the first source operand using bit counts that are specified by 
the corresponding doubleword elements of the second source operand, as illustrated in 
Figure 15-1. Note that both AvxPiI16_ and AvxPiI32_ include a vzeroupper instruction 
prior to their respective epilogs. Output 15-1 shows the results of the sample program 
AvxPackedIntegerArithmetic.
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Output 15-1. Sample Program AvxPackedIntegerArithmetic

Results for AvxPiI16()
 
i        a       b   vpaddw vpaddsw  vpsubw vpsubsw  vpminsw vpmaxsw
--------------------------------------------------------------------
 0      10    1000    1010    1010    -990    -990      10    1000
 1      20    2000    2020    2020   -1980   -1980      20    2000
 2    3000      30    3030    3030    2970    2970      30    3000
 3    4000      40    4040    4040    3960    3960      40    4000
 4   30000    3000  -32536   32767   27000   27000    3000   30000
 5    6000   32000  -27536   32767  -26000  -26000    6000   32000
 6    2000  -31000  -29000  -29000  -32536   32767  -31000    2000
 7    4000  -30000  -26000  -26000  -31536   32767  -30000    4000
 8    4000   -2500    1500    1500    6500    6500   -2500    4000
 9    3600   -1200    2400    2400    4800    4800   -1200    3600
10    6000    9000   15000   15000   -3000   -3000    6000    9000
11  -20000  -20000   25536  -32768       0       0  -20000  -20000
12  -25000  -27000   13536  -32768    2000    2000  -27000  -25000
13    8000   28700  -28836   32767  -20700  -20700    8000   28700
14       3  -32766  -32763  -32763  -32767   32767  -32766       3
15  -15000   24000    9000    9000   26536  -32768  -15000   24000
 

ymm0

vpsllvd ymm2,ymm0,ymm1

ymm2

512 16 4096 -256 8192 -2048 1024 64

ymm16 3 7 8 5 2 5 4

32768 128 524288 -65536 262144 -8192 32768 1024

vpsravd ymm2,ymm0,ymm1

ymm28 2 32 -1 256 -512 32 4

ymm0512 16 4096 -256 8192 -2048 1024 64

ymm16 3 7 8 5 2 5 4

Figure 15-1. Execution of the vpsllvd and vpsravd instructions
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Results for AvxPiI32()
 
i         a        b    vphaddd  vphsubd  vpmulld  vpsllvd  vpsravd
-------------------------------------------------------------------
0        64        4     1088     -960      256     1024        4
1      1024        5     6144   -10240     5120    32768       32
2     -2048        2        9       -1    -4096    -8192     -512
3      8192        5        7       -3    40960   262144      256
4      -256        8     3840    -4352    -2048   -65536       -1
5      4096        7      528     -496    28672   524288       32
6        16        3       15        1       48      128        2
7       512        6        9       -3     3072    32768        8

Packed Integer Unpack Operations
Like MMX and x86-SSE, the x86-AVX instruction set supports data unpack 
operations using various element sizes. In the next sample program, which is called 
AvxPackedIntegerUnpack, you learn about the instructions that unpack doublewords 
to quadwords using 256-bit wide operands. You also learn how to pack a 256-bit wide 
operand of doublewords to words using signed saturation. Listings 15-3 and 15-4  
show the C++ and assembly language source code for the sample program 
AvxPackedIntegerUnpack.

Listing 15-3. AvxPackedIntegerUnpack.cpp

#include "stdafx.h"
#include "YmmVal.h"
 
extern "C" void AvxPiUnpackDQ_(YmmVal* a, YmmVal* b, YmmVal c[2]);
extern "C" void AvxPiPackDW_(YmmVal* a, YmmVal* b, YmmVal* c);
 
void AvxPiUnpackDQ(void)
{
    __declspec(align(32))  YmmVal a;
    __declspec(align(32))  YmmVal b;
    __declspec(align(32))  YmmVal c[2];
 
    a.i32[0] = 0x00000000;  b.i32[0] = 0x88888888;
    a.i32[1] = 0x11111111;  b.i32[1] = 0x99999999;
    a.i32[2] = 0x22222222;  b.i32[2] = 0xaaaaaaaa;
    a.i32[3] = 0x33333333;  b.i32[3] = 0xbbbbbbbb;
 
    a.i32[4] = 0x44444444;  b.i32[4] = 0xcccccccc;
    a.i32[5] = 0x55555555;  b.i32[5] = 0xdddddddd;
    a.i32[6] = 0x66666666;  b.i32[6] = 0xeeeeeeee;
    a.i32[7] = 0x77777777;  b.i32[7] = 0xffffffff;
 
    AvxPiUnpackDQ_(&a, &b, c);
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    printf("\nResults for AvxPiUnpackDQ()\n\n");
    printf("i   a           b           vpunpckldq  vpunpckhdq\n");
    printf("--------------------------------------------------\n");
 
    for (int i = 0; i < 8; i++)
    {
        const char* fs = "0x%08X  ";
 
        printf("%-2d  ", i);
        printf(fs, a.u32[i]);
        printf(fs, b.u32[i]);
        printf(fs, c[0].u32[i]);
        printf(fs, c[1].u32[i]);
        printf("\n");
    }
}
 
void AvxPiPackDW(void)
{
    char buff[256];
    __declspec(align(32))  YmmVal a;
    __declspec(align(32))  YmmVal b;
    __declspec(align(32))  YmmVal c;
 
    a.i32[0] = 10;          b.i32[0] = 32768;
    a.i32[1] = -200000;     b.i32[1] = 6500;
    a.i32[2] = 300000;      b.i32[2] = 42000;
    a.i32[3] = -4000;       b.i32[3] = -68000;
 
    a.i32[4] = 9000;        b.i32[4] = 25000;
    a.i32[5] = 80000;       b.i32[5] = 500000;
    a.i32[6] = 200;         b.i32[6] = -7000;
    a.i32[7] = -32769;      b.i32[7] = 12500;
 
    AvxPiPackDW_(&a, &b, &c);
    printf("\nResults for AvxPiPackDW()\n\n");
 
    printf("a lo %s\n", a.ToString_i32(buff, sizeof(buff), false));
    printf("a hi %s\n", a.ToString_i32(buff, sizeof(buff), true));
    printf("\n");
 
    printf("b lo %s\n", b.ToString_i32(buff, sizeof(buff), false));
    printf("b hi %s\n", b.ToString_i32(buff, sizeof(buff), true));
    printf("\n");
 
    printf("c lo %s\n", c.ToString_i16(buff, sizeof(buff), false));
    printf("c hi %s\n", c.ToString_i16(buff, sizeof(buff), true));
}
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int _tmain(int argc, _TCHAR* argv[])
{
    AvxPiUnpackDQ();
    AvxPiPackDW();
    return 0;
}

Listing 15-4. AvxPackedIntegerUnpack_.asm

        .model flat,c
        .code
 
; extern "C" void AvxPiUnpackDQ_(YmmVal* a, YmmVal* b, YmmVal c[2]);
;
; Description:  The following function demonstrates use of the
;               vpunpckldq and vpunpckhdq instructions using
;               256-bit wide operands.
;
; Requires:     AVX2
 
AvxPiUnpackDQ_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to a
        mov ecx,[ebp+12]                    ;ecx = ptr to b
        mov edx,[ebp+16]                    ;edx = ptr to c
        vmovdqa ymm0,ymmword ptr [eax]      ;ymm0 = a
        vmovdqa ymm1,ymmword ptr [ecx]      ;ymm1 = b
 
; Perform dword to qword unpacks
        vpunpckldq ymm2,ymm0,ymm1           ;unpack low doublewords
        vpunpckhdq ymm3,ymm0,ymm1           ;unpack high doublewords
        vmovdqa ymmword ptr [edx],ymm2      ;save low result
        vmovdqa ymmword ptr [edx+32],ymm3   ;save high result
 
        vzeroupper
        pop ebp
        ret
AvxPiUnpackDQ_ endp
 
; extern "C" void AviPiPackDW_(YmmVal* a, YmmVal* b, YmmVal* c);
;
; Description:  The following function demonstrates use of
;               vpackssdw using 256-bit wide operands.
;
; Requires:     AVX2
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AvxPiPackDW_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to a
        mov ecx,[ebp+12]                    ;ecx = ptr to b
        mov edx,[ebp+16]                    ;edx = ptr to c
        vmovdqa ymm0,ymmword ptr [eax]      ;ymm0 = a
        vmovdqa ymm1,ymmword ptr [ecx]      ;ymm1 = b
 
; Perform pack dword to word with signed saturation
        vpackssdw ymm2,ymm0,ymm1            ;ymm2 = packed words
        vmovdqa ymmword ptr [edx],ymm2      ;save result
 
        vzeroupper
        pop ebp
        ret
AvxPiPackDW_ endp
        end
 

Near the top of Listing 15-3, the function AvxPiUnpackDQ initializes YmmVal instances 
a and b using doubleword test values. It then invokes the assembly language function 
AvxPiUnpackDQ_, which executes the x86-AVX unpack instructions vpunpckldq and 
vpunpckhdq. The results from this function are then displayed using a simple for 
loop and several printf statements. The C++ code also includes a function named 
AvxPiPackDW. This function initializes two YmmVal variables and calls AvxPiPackDW_ in 
order to demonstrate use of the vpackssdw (Pack with Signed Saturation Doubleword to 
Word) instruction.

The assembly language file AvxPackedIntegerUnpack_.asm (see Listing 15-4) 
contains the definitions for functions AvxPiUnpackDQ_ and AvxPiPackDW_. The former 
function begins by loading argument values a and b into registers YMM0 and YMM1, 
respectively. It then executes the vpunpckldq and vpunpckhdq instructions and saves the 
results to the c array. Recall from the discussion in Chapter 12 that many 256-bit wide 
x86-AVX instructions carry out their operation using two independent 128-bit wide lanes. 
Figure 15-2 illustrates this principle in greater detail for the instructions vpunpckldq 
and vpunpckhdq.This figure shows that both of these instructions perform two discrete 
unpack operations: one that uses register bits 255:128 (upper lane) and another that 
employs register bits 127:0 (lower lane). Exploitation of the YMM registers by function 
AvxPiUnpackDQ_ also necessitates inclusion of a vzeroupper instruction prior to its epilog.
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ymm0

vpunpckldq ymm2,ymm0,ymm1

ymm2

0x7777 0x6666 0x5555 0x4444 0x3333 0x2222 0x1111 0x0000

ymm10xFFFF 0xEEEE 0xDDDD 0xCCCC 0xBBBB 0xAAAA 0x9999 0x8888

0xDDDD 0x5555 0xCCCC 0x4444 0x9999 0x1111 0x8888 0x0000

ymm0

vpunpckhdq ymm2,ymm0,ymm1

ymm2

0x7777 0x6666 0x5555 0x4444 0x3333 0x2222 0x1111 0x0000

ymm10xFFFF 0xEEEE 0xDDDD 0xCCCC 0xBBBB 0xAAAA 0x9999 0x8888

0xFFFF 0x7777 0xEEEE 0x6666 0xBBBB 0x3333 0xAAAA 0x2222

= Don’t care value

Figure 15-2. Execution of the vpunpckldq and vpunpckhdq instructions

ymm 0

vpackssdw ymm2,ymm0,ymm1

ymm 2

-32769 200 80000 9000 -4000 300000 -200000 10

ymm 112500 -7000 500000 25000 -68000 42000 6500 32768

-32768 1032767-40006500 3276732767-3276832767 9000200-3276832767 25000-700012500

ymm0[127:0]ymm 1[127:0]ymm0[255:128]ymm1[255:128]

Original Source Operands

Figure 15-3. Execution of the vpackssdw instruction

The assembly language function AvxPiPackDW_ also loads argument values a and b 
into registers YMM0 and YMM1, respectively. A vpackssdw ymm2,ymm0,ymm1 instruction 
converts the packed signed doubleword integers in YMM0 and YMM1 to packed signed 
word integers using signed saturation. It then saves the result to YMM2. Figure 15-3 
elucidates execution of the vpackssdw instruction in greater detail. Output 15-2 shows the 
results of the sample program AvxPackedIntegerUnpack.
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Output 15-2. Sample Program AvxPackedIntegerUnpack

Results for AvxPiUnpackDQ()
 
i   a           b           vpunpckldq  vpunpckhdq
--------------------------------------------------
0   0x0000      0x8888      0x0000      0x2222
1   0x1111      0x9999      0x8888      0xAAAA
2   0x2222      0xAAAA      0x1111      0x3333
3   0x3333      0xBBBB      0x9999      0xBBBB
4   0x4444      0xCCCC      0x4444      0x6666
5   0x5555      0xDDDD      0xCCCC      0xEEEE
6   0x6666      0xEEEE      0x5555      0x7777
7   0x7777      0xFFFF      0xDDDD      0xFFFF
 
Results for AvxPiPackDW()
 
a lo           10      -200000 |       300000        -4000
a hi         9000        80000 |          200       -32769
 
b lo        32768         6500 |        42000       -68000
b hi        25000       500000 |        -7000        12500
 
c lo   10   -32768    32767    -4000 |    32767     6500    32767   -32768
c hi 9000    32767      200   -32768 |    25000    32767    -7000    12500

Advanced Programming
The sample programs in this section emphasize advanced programming techniques 
using the packed integer resources of x86-AVX. The first sample program employs the 
x86-AVX instruction set to implement a pixel-clipping algorithm. The second sample 
program is an x86-AVX implementation of the image-thresholding algorithm that you saw 
in Chapter 10. Besides illustrating the differences between x86-SSE and x86-AVX, both 
of these sample programs also demonstrate how to use some of the new packed integer 
instructions included with AVX2.

Image Pixel Clipping
Pixel clipping is an image-processing technique that bounds the intensity value of each 
pixel in an image between two threshold limits. This technique is often used to reduce the 
dynamic range of an image by eliminating its extremely dark and light pixels. The sample 
program of this section, called AvxPackedIntegerPixelClip, illustrates how to use the 
x86-AVX instruction set to clip the pixels of an 8-bit grayscale image. The source code files 
for this sample program are shown in Listings 15-5, 15-6, and 15-7.
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Listing 15-5. AvxPackedIntegerPixelClip.h

#pragma once
 
#include "MiscDefs.h"
 
// The following structure must match the stucture that's declared
// in the file AvxPackedIntegerPixelClip_.asm.
typedef struct
{
    Uint8* Src;                 // source buffer
    Uint8* Des;                 // destination buffer
    Uint32 NumPixels;           // number of pixels
    Uint32 NumClippedPixels;    // number of clipped pixels
    Uint8 ThreshLo;             // low threshold
    Uint8 ThreshHi;             // high threshold
} PcData;
 
// Functions defined in AvxPackedIntegerPixelClip.cpp
bool AvxPiPixelClipCpp(PcData* pc_data);
 
// Functions defined in AvxPackedIntegerPixelClip_.asm
extern "C" bool AvxPiPixelClip_(PcData* pc_data);
 
// Functions defined in AvxPackedIntegerPixelClipTimed.cpp
void AvxPackedIntegerPixelClipTimed(void);

Listing 15-6. AvxPackedIntegerPixelClip.cpp

#include "stdafx.h"
#include "AvxPackedIntegerPixelClip.h"
#include <malloc.h>
#include <memory.h>
#include <stdlib.h>
 
bool AvxPiPixelClipCpp(PcData* pc_data)
{
    Uint32 num_pixels = pc_data->NumPixels;
    Uint8* src = pc_data->Src;
    Uint8* des = pc_data->Des;
 
    if ((num_pixels < 32) || ((num_pixels & 0x1f) != 0))
        return false;
 
    if (((uintptr_t)src & 0x1f) != 0)
        return false;
    if (((uintptr_t)des & 0x1f) != 0)
        return false;
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    Uint8 thresh_lo = pc_data->ThreshLo;
    Uint8 thresh_hi = pc_data->ThreshHi;
    Uint32 num_clipped_pixels = 0;
 
    for (Uint32 i = 0; i < num_pixels; i++)
    {
        Uint8 pixel = src[i];
 
        if (pixel < thresh_lo)
        {
            des[i] = thresh_lo;
            num_clipped_pixels++;
        }
        else if (pixel > thresh_hi)
        {
            des[i] = thresh_hi;
            num_clipped_pixels++;
        }
        else
            des[i] = src[i];
    }
 
    pc_data->NumClippedPixels = num_clipped_pixels;
    return true;
}
 
void AvxPackedIntegerPixelClip(void)
{
    const Uint8 thresh_lo = 10;
    const Uint8 thresh_hi = 245;
    const Uint32 num_pixels = 4 * 1024 * 1024;
    Uint8* src = (Uint8*)_aligned_malloc(num_pixels, 32);
    Uint8* des1 = (Uint8*)_aligned_malloc(num_pixels, 32);
    Uint8* des2 = (Uint8*)_aligned_malloc(num_pixels, 32);
 
    srand(157);
    for (int i = 0; i < num_pixels; i++)
    src[i] = (Uint8)(rand() % 256);
 
    PcData pc_data1;
    PcData pc_data2;
 
    pc_data1.Src = pc_data2.Src = src;
    pc_data1.Des = des1;
    pc_data2.Des = des2;
    pc_data1.NumPixels = pc_data2.NumPixels = num_pixels;
    pc_data1.ThreshLo = pc_data2.ThreshLo = thresh_lo;
    pc_data1.ThreshHi = pc_data2.ThreshHi = thresh_hi;
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 15 ■ X86-aVX programming - paCked integers

420

    AvxPiPixelClipCpp(&pc_data1);
    AvxPiPixelClip_(&pc_data2);
 
    printf("Results for AvxPackedIntegerPixelClip\n");
 
    if (pc_data1.NumClippedPixels != pc_data2.NumClippedPixels)
        printf("  NumClippedPixels compare error!\n");
 
    printf("  NumClippedPixels1: %u\n", pc_data1.NumClippedPixels);
    printf("  NumClippedPixels2: %u\n", pc_data2.NumClippedPixels);
 
    if (memcmp(des1, des2, num_pixels) == 0)
        printf("  Destination buffer memory compare passed\n");
    else
        printf("  Destination buffer memory compare failed!\n");
 
    _aligned_free(src);
    _aligned_free(des1);
    _aligned_free(des2);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxPackedIntegerPixelClip();
    AvxPackedIntegerPixelClipTimed();
    return 0;
}

Listing 15-7. AvxPackedIntegerPixelClip_.asm

        .model flat,c
 
; The following structure must match the stucture that's declared
; in the file AvxPackedIntegerPixelClip.h.
 
PcData              struct
Src                 dword ?             ;source buffer
Des                 dword ?             ;destination buffer
NumPixels           dword ?             ;number of pixels
NumClippedPixels    dword ?             ;number of clipped pixels
ThreshLo            byte ?              ;low threshold
ThreshHi            byte ?              ;high threshold
PcData              ends
 
; Custom segment for constant values
PcConstVals segment readonly align(32) public
 
PixelScale  byte 32 dup(80h)            ;Pixel Uint8 to Int8 scale value
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; The following values defined are for illustrative purposes only
; Note that the align 32 directive does not work in a .const section
Test1       dword 10
Test2       qword -20
            align 32
Test3       byte 32 dup(7fh)
PcConstVals ends
            .code
 
; extern "C" bool AvxPiPixelClip_(PcData* pc_data);
;
; Description:  The following function clips the pixels of an image
;               buffer to values between ThreshLo and ThreshHi.
;
; Requires:     AVX2, POPCNT
 
AvxPiPixelClip_ proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
        push edi
 
; Load and validate arguments
        xor eax,eax
        mov ebx,[ebp+8]                     ;ebx = pc_data
        mov ecx,[ebx+PcData.NumPixels]      ;ecx = num_pixels
        cmp ecx,32
        jl BadArg                           ;jump if num_pixels < 32
        test ecx,1fh
        jnz BadArg                          ;jump if num_pixels % 32 != 0
 
        mov esi,[ebx+PcData.Src]            ;esi = Src
        test esi,1fh
        jnz BadArg                          ;jump if Src is misaligned
 
        mov edi,[ebx+PcData.Des]            ;edi = Des
        test edi,1fh
        jnz BadArg                          ;jump if Des is misaligned
 
; Create packed thresh_lo and thresh_hi data values
        vmovdqa ymm5,ymmword ptr [PixelScale]
 
        vpbroadcastb ymm0,[ebx+PcData.ThreshLo]     ;ymm0 = thresh_lo
        vpbroadcastb ymm1,[ebx+PcData.ThreshHi]     ;ymm1 = thresh_hi
 
        vpsubb ymm6,ymm0,ymm5               ;ymm6 = scaled thresh_lo
        vpsubb ymm7,ymm1,ymm5               ;ymm7 = scaled thresh_hi
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        xor edx,edx                         ;edx = num_clipped_pixels
        shr ecx,5                           ;ecx = number of 32-byte blocks
 
; Sweep through the image buffer and clip pixels to threshold values
@@:     vmovdqa ymm0,ymmword ptr [esi]      ;ymmo = unscaled pixels
        vpsubb ymm0,ymm0,ymm5               ;ymm0 = scaled pixels
 
        vpcmpgtb ymm1,ymm0,ymm7             ;mask of pixels GT thresh_hi
        vpand ymm2,ymm1,ymm7                ;new values for GT pixels
 
        vpcmpgtb ymm3,ymm6,ymm0             ;mask of pixels LT thresh_lo
        vpand ymm4,ymm3,ymm6                ;new values for LT pixels
 
        vpor ymm1,ymm1,ymm3                 ;mask of all clipped pixels
 
        vpor ymm2,ymm2,ymm4                 ;clipped pixels
        vpandn ymm3,ymm1,ymm0               ;unclipped pixels
 
        vpor ymm4,ymm3,ymm2                 ;final scaled clipped pixels
        vpaddb ymm4,ymm4,ymm5               ;final unscaled clipped pixels
 
        vmovdqa ymmword ptr [edi],ymm4      ;save clipped pixels
 
; Update num_clipped_pixels
        vpmovmskb eax,ymm1                  ;eax = clipped pixel mask
        popcnt eax,eax                      ;count clipped pixels
        add edx,eax                         ;update num_clipped_pixels
        add esi,32
        add edi,32
        dec ecx
        jnz @B
 
; Save num_clipped_pixels
        mov eax,1                           ;set success return code
        mov [ebx+PcData.NumClippedPixels],edx
        vzeroupper
 
BadArg: pop edi
        pop esi
        pop ebx
        pop ebp
        ret
AvxPiPixelClip_ endp
        end
 

The C++ header file AvxPackedIntegerPixelClip.h (see Listing 15-5) declares a structure 
named PcData. This structure and its assembly language equivalent are used to maintain the 
pixel-clipping algorithm’s data items. Toward the top of the AvxPackedIntegerPixelClip.cpp  
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file (see Listing 15-6) is a function named AvxPiPixelClipCpp, which clips the pixels of the 
source image buffer using the provided threshold limits. The function starts by performing a 
validation check of num_pixels for the correct size and even divisibility by 32. Restricting the 
algorithm to images that contain an even multiple of 32 pixels is not as inflexible as it might 
appear. Most digital camera images are sized using multiples of 64 pixels due to the processing 
requirements of the JPEG compression technique. The image buffers src and des are then 
checked for proper alignment.

The algorithm used by the main processing loop is straightforward. Any pixel in the 
source image buffer determined to be below thresh_lo or above thresh_hi is replaced in 
the destination image buffer with the corresponding threshold value. Source image buffer 
pixels between the two threshold limits are copied to the destination buffer unaltered. 
The processing loop also counts the number of clipped pixels for comparison purposes 
with the assembly language version of the algorithm.

Listing 15-6 also includes a C++ function AvxPackedIntegerPixelClip, which 
starts its processing by dynamically allocating storage space for simulated source and 
destination image buffers. It then initializes each pixel in the source image buffer using a 
random value between 0 and 255. Following initialization of the PcData structure variables 
pc_data1 and pc_data2, the function invokes the C++ and assembly language versions of 
the pixel-clipping algorithm. It then compares the results for any discrepancies.

Listing 15-7 shows the assembly language implementation of the pixel-clipping 
algorithm. It begins by declaring an assembly language version of the structure PcData. 
Next, a discrete memory segment named PcConstVals is defined, which contains the 
constant values required by the algorithm. A discrete memory segment is used here instead 
of a .const section since the latter does not allow its data items to be aligned on a 32-byte 
boundary. The PcConstVals segment readonly align(32) public statement defines a 
read-only memory segment that permits 32-byte aligned data values. Note that the first data 
value in this memory segment, PixelScale, is automatically aligned to a 32-byte boundary. 
Proper alignment of 256-bit wide packed values enables use of the vmovdqa instruction. 
The remaining data values in PcConstVals are included for illustrative purposes only.

Following its prolog, the function AvxPiPixelClip_ performs the same pixel size 
and buffer alignment validations as its C++ counterpart. A vmovdqa ymm5,ymmword ptr 
[PixelScale] instruction loads the pixel scale value into register YMM5. This value 
is used to rescale image pixel values from [0, 255] to [-128, 127]. The next instruction, 
vpbroadcastb ymm0,[ebx+PcData.ThreshLo] (Broadcast Integer Data), copies the 
source operand byte ThreshLo to all 32 byte elements in YMM0. Another vpbroadcastb 
instruction performs the same operation using register YMM1 and ThreshHi. Both of 
these values are then rescaled by PixelScale using a vpsubb instruction.

Figure 15-4 highlights the sequence of instructions that carry out the pixel-clipping 
procedure. Each iteration of the main processing loop starts by loading a block of  
32 pixels from the source image buffer into register YMM0 using a vmovdqa instruction. 
The function then rescales the pixels in YMM0 using a vpsubb ymm0,ymm0,ymm5 
instruction (recall that YMM5 contains PixelScale). This facilitates use of the vpcmpgtb 
instruction, which computes a mask of all pixels greater than ThreshHi. Note that the 
vpcmpgtb instruction performs its byte compares using signed integer arithmetic, 
and explains the previous pixel rescaling operations. A second vpcmpgtb instruction 
calculates a mask of all pixels less than ThreshLo. It is important to note here that the 
source operands are reversed (i.e., the first operand contains the threshold values and 
the second operand contains the pixel values), which is required by vpcmpgtb in order to 
compute a mask of pixels less than ThreshLo. The function uses these threshold masks 
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and some packed Boolean algebra to replace all pixels above or below the threshold with 
the corresponding threshold limits. The updated pixel block is then saved to the  
destination buffer.

ymm6

ymm7

vmovdqa ymm0, ymmword ptr [esi]

8Ah 8Ah 8Ah 8Ah 8Ah8Ah8Ah8Ah

75h 75h 75h 75h 75h75h75h75h

Scaled ThreshLo (Unscaled = 0Ah)

Scaled ThreshHi (Unscaled = F5h)

21h 06h FBh 44h 11h08h16hFAh

vpsubb ymm0, ymm0, ymm5

A1h 86h 7Bh C4h 91h88h96h7Ah

ymm0

ymm0

ymm580h 80h 80h 80h 80h80h80h80h

PixelScale

vpcmpgtb ymm1, ymm0, ymm7

00h 00h FFh 00h 00h00h00hFFh ymm1

vpand ymm2, ymm1, ymm7

00h 00h 75h 00h 00h00h00h75h ymm2

vpcmpgtb ymm3, ymm6, ymm0

00h FFh 00h 00h 00hFFh00h00h ymm3

vpand ymm4, ymm3, ymm6

00h 8Ah 00h 00h 00h8Ah00h00h ymm4

vpor ymm1, ymm1, ymm3

00h FFh FFh 00h 00hFFh00hFFh ymm1

vpor ymm2, ymm2, ymm4

00h 8Ah 75h 00h 00h8Ah00h75h ymm2

vpandn ymm3, ymm1, ymm0

A1h 00h 00h C4h 91h00h96h00h ymm3

vpor ymm4, ymm3, ymm2

A1h 8Ah 75h C4h 91h8Ah96h75h ymm4

vpaddb ymm4, ymm4, ymm5

21h 0Ah F5h 44h 11h0Ah16hF5h ymm4

Unscaled Pixels

Scaled Pixels

Mask of Pixels GT ThreshHi

Mask of Pixels LT ThreshLo

Mask of All Clipped Pixels

Clipped Pixels

Final Unscaled Clipped Pixels

Final Scaled Clipped Pixels

Unclipped Pixels

New Values for Pixels GT ThreshHi

New Values for Pixels LT ThreshLo

Note: The instruction sequence shown above shows
only the low-order eight bytes of each YMM register.

Figure 15-4. X86-AVX instruction sequence used to perform pixel clipping
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A vpmovmskb eax,ymm1 instruction creates a mask of clipped pixels and  
saves this mask to register EAX (the operation performed by vpmovmskb corresponds to 
eax[i] = ymm1[i*8+7] for i = 0,1,2, ... 31). This is followed by a popcnt eax,eax 
instruction, which counts and saves the number of clipped pixels in the current pixel 
block to EAX. An add edx,eax then updates the total number of clipped pixels that’s 
maintained in EDX. Upon completion of the main processing loop, register EDX is saved 
to PcData structure member NumClippedPixels.

The results of the sample program AvxPackedIntegerPixelClip are shown in 
Output 15-3. Table 15-1 presents timing measurements for the C++ and assembly 
language versions of the pixel-clipping algorithm using an 8MB image buffer. Unlike 
earlier timing measurement tables in this book, Table 15-1 does not include benchmark 
times for an Intel Core i3-2310M since this processor doesn’t support the AVX2 
instruction set.

Output 15-3. Sample Program AvxPackedIntegerPixelClip

Results for AvxPackedIntegerPixelClip
  NumClippedPixels1: 327228
  NumClippedPixels2: 327228
  Destination buffer memory compare passed
 
Benchmark times saved to file __AvxPackedIntegerPixelClipTimed.csv 

Table 15-1. Mean Execution Times (in Microseconds) for AvxPiPixelClip Functions

CPU AvxPiPixelClipCpp (C++) AvxPiPixelClip_ (x86-AVX)

Intel Core i7-4770 8866 1075

Intel Core i7-4600U 10235 1201

Image Threshold Part Deux
In Chapter 10, you examined a sample program named SsePackedIntegerThreshold, 
which used the x86-SSE instruction set to perform image thresholding of a grayscale image. 
It also calculated the mean intensity value of the grayscale pixels that exceeded the threshold 
value. In this section, an x86-AVX compatible version of the image-thresholding program 
is presented. The updated sample program, which is named AvxPackedIntegerThreshold, 
also substantiates the performance benefits of x86-AVX versus x86-SSE. The source code 
for this sample program is presented in Listings 15-8, 15-9, and 15-10.
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Listing 15-8. AvxPackedIntegerThreshold.h

#pragma once
#include "ImageBuffer.h"
 
// Image threshold data structure. This structure must agree with the
// structure that's defined in AvxPackedIntegerThreshold_.asm.
typedef struct
{
    Uint8* PbSrc;               // Source image pixel buffer
    Uint8* PbMask;              // Mask mask pixel buffer
    Uint32 NumPixels;           // Number of source image pixels
    Uint8 Threshold;            // Image threshold value
    Uint8 Pad[3];               // Available for future use
    Uint32 NumMaskedPixels;     // Number of masked pixels
    Uint32 SumMaskedPixels;     // Sum of masked pixels
    double MeanMaskedPixels;    // Mean of masked pixels
} ITD;
 
// Functions defined in AvxPackedIntegerThreshold.cpp
extern bool AvxPiThresholdCpp(ITD* itd);
extern bool AvxPiCalcMeanCpp(ITD* itd);
 
// Functions defined in AvxPackedIntegerThreshold_.asm
extern "C" bool AvxPiThreshold_(ITD* itd);
extern "C" bool AvxPiCalcMean_(ITD* itd);
 
// Functions defined in AvxPackedIntegerThresholdTimed.cpp
extern void AvxPiThresholdTimed(void);
 
// Miscellaneous constants
const Uint8 TEST_THRESHOLD = 96;

Listing 15-9. AvxPackedIntegerThreshold.cpp

#include "stdafx.h"
#include "AvxPackedIntegerThreshold.h"
#include <stddef.h>
 
extern "C" Uint32 NUM_PIXELS_MAX = 16777216;
 
bool AvxPiThresholdCpp(ITD* itd)
{
    Uint8* pb_src     = itd->PbSrc;
    Uint8* pb_mask    = itd->PbMask;
    Uint8 threshold   = itd->Threshold;
    Uint32 num_pixels = itd->NumPixels;
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    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels > NUM_PIXELS_MAX))
        return false;
    if ((num_pixels & 0x1f) != 0)
        return false;
 
    // Make sure image buffers are properly aligned
    if (((uintptr_t)pb_src & 0x1f) != 0)
        return false;
    if (((uintptr_t)pb_mask & 0x1f) != 0)
        return false;
 
    // Threshold the image
    for (Uint32 i = 0; i < num_pixels; i++)
        *pb_mask++ = (*pb_src++ > threshold) ? 0xff : 0x00;
 
    return true;
}
 
bool AvxPiCalcMeanCpp(ITD* itd)
{
    Uint8* pb_src = itd->PbSrc;
    Uint8* pb_mask = itd->PbMask;
    Uint32 num_pixels = itd->NumPixels;
 
    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels > NUM_PIXELS_MAX))
        return false;
    if ((num_pixels & 0x1f) != 0)
        return false;
 
    // Make sure image buffers are properly aligned
    if (((uintptr_t)pb_src & 0x1f) != 0)
        return false;
    if (((uintptr_t)pb_mask & 0x1f) != 0)
        return false;
 
    // Calculate mean of masked pixels
    Uint32 sum_masked_pixels = 0;
    Uint32 num_masked_pixels = 0;
 
    for (Uint32 i = 0; i < num_pixels; i++)
    {
        Uint8 mask_val = *pb_mask++;
        num_masked_pixels += mask_val & 1;
        sum_masked_pixels += (*pb_src++ & mask_val);
}
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    itd->NumMaskedPixels = num_masked_pixels;
    itd->SumMaskedPixels = sum_masked_pixels;
 
    if (num_masked_pixels > 0)
        itd->MeanMaskedPixels = (double)sum_masked_pixels /
↳num_masked_pixels;
    else
        itd->MeanMaskedPixels = -1.0;
 
    return true;
}
 
void AvxPiThreshold()
{
    wchar_t* fn_src = L"..\\..\\..\\DataFiles\\TestImage2.bmp";
    wchar_t* fn_mask1 = L"__TestImage2_Mask1.bmp";
    wchar_t* fn_mask2 = L"__TestImage2_Mask2.bmp";
    ImageBuffer* im_src = new ImageBuffer(fn_src);
    ImageBuffer* im_mask1 = new ImageBuffer(*im_src, false);
    ImageBuffer* im_mask2 = new ImageBuffer(*im_src, false);
    ITD itd1, itd2;
 
    itd1.PbSrc     = (Uint8*)im_src->GetPixelBuffer();
    itd1.PbMask    = (Uint8*)im_mask1->GetPixelBuffer();
    itd1.NumPixels = im_src->GetNumPixels();
    itd1.Threshold = TEST_THRESHOLD;
 
    itd2.PbSrc = (Uint8*)im_src->GetPixelBuffer();
    itd2.PbMask = (Uint8*)im_mask2->GetPixelBuffer();
    itd2.NumPixels = im_src->GetNumPixels();
    itd2.Threshold = TEST_THRESHOLD;
 
    bool rc1 = AvxPiThresholdCpp(&itd1);
    bool rc2 = AvxPiThreshold_(&itd2);
 
    if (!rc1 || !rc2)
    {
        printf("Bad Threshold return code: rc1=%d, rc2=%d\n", rc1, rc2);
        return;
    }
 
    im_mask1->SaveToBitmapFile(fn_mask1);
    im_mask2->SaveToBitmapFile(fn_mask2);
 
    // Calculate mean of masked pixels
    rc1 = AvxPiCalcMeanCpp(&itd1);
    rc2 = AvxPiCalcMean_(&itd2);
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    if (!rc1 || !rc2)
    {
        printf("Bad CalcMean return code: rc1=%d, rc2=%d\n", rc1, rc2);
        return;
    }
 
    printf("Results for AvxPackedIntegerThreshold\n\n");
    printf("                           C++       X86-AVX\n");
    printf("--------------------------------------------\n");
    printf("SumPixelsMasked:  ");
    printf("%12u  %12u\n", itd1.SumMaskedPixels, itd2.SumMaskedPixels);
    printf("NumPixelsMasked:  ");
    printf("%12u  %12u\n", itd1.NumMaskedPixels, itd2.NumMaskedPixels);
    printf("MeanPixelsMasked: ");
    printf("%12.6lf  %12.6lf\n", itd1.MeanMaskedPixels,
↳itd2.MeanMaskedPixels);
 
    delete im_src;
    delete im_mask1;
    delete im_mask2;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    try
    {
        AvxPiThreshold();
        AvxPiThresholdTimed();
    }
 
    catch (...)
    {
        printf("Unexpected exception has occurred!\n");
        printf("File: %s (_tmain)\n", __FILE__);
    }
    return 0;
}

Listing 15-10. AvxPackedIntegerThreshold_.asm

        .model flat,c
         extern NUM_PIXELS_MAX:dword
 
; Image threshold data structure (see AvxPackedIntegerThreshold.h)
ITD                 struct
PbSrc               dword ?
PbMask              dword ?
NumPixels           dword ?
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Threshold           byte ?
Pad                 byte 3 dup(?)
NumMaskedPixels     dword ?
SumMaskedPixels     dword ?
MeanMaskedPixels    real8 ?
ITD                 ends
 
; Custom segment for constant values
ItConstVals segment readonly align(32) public
PixelScale      byte 32 dup(80h)            ;uint8 to int8 scale value
R8_MinusOne     real8 -1.0                  ;invalid mean value
ItConstVals     ends
 
                .code
 
; extern "C" bool AvxPiThreshold_(ITD* itd);
;
; Description:  The following function performs image thresholding
;               of an 8 bits-per-pixel grayscale image.
;
; Returns:      0 = invalid size or unaligned image buffer
;               1 = success
;
; Requires:     AVX2
 
AvxPiThreshold_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Load and verify the argument values in ITD structure
        mov edx,[ebp+8]                     ;edx = 'itd'
        xor eax,eax                         ;set error return code
        mov ecx,[edx+ITD.NumPixels]         ;ecx = NumPixels
        test ecx,ecx
        jz Done                             ;jump if num_pixels == 0
        cmp ecx,[NUM_PIXELS_MAX]
        ja Done                             ;jump if num_pixels too big
        test ecx,1fh
        jnz Done                            ;jump if num_pixels % 32 != 0
        shr ecx,5                           ;ecx = number of packed pixels
 
        mov esi,[edx+ITD.PbSrc]             ;esi = PbSrc
        test esi,1fh
        jnz Done                            ;jump if misaligned
        mov edi,[edx+ITD.PbMask]            ;edi = PbMask
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        test edi,1fh
        jnz Done                            ;jump if misaligned
 
; Initialize packed threshold
        vpbroadcastb ymm0,[edx+ITD.Threshold]   ;ymm0 = packed threshold
        vmovdqa ymm7,ymmword ptr [PixelScale]   ;ymm7 = uint8 to int8 SF
        vpsubb ymm2,ymm0,ymm7                   ;ymm1 = scaled threshold
 
; Create the mask image
@@:     vmovdqa ymm0,ymmword ptr [esi]      ;load next packed pixel
        vpsubb ymm1,ymm0,ymm7               ;ymm1 = scaled image pixels
        vpcmpgtb ymm3,ymm1,ymm2             ;compare against threshold
        vmovdqa ymmword ptr [edi],ymm3      ;save packed threshold mask
 
        add esi,32
        add edi,32
        dec ecx
        jnz @B                              ;repeat until done
        mov eax,1                           ;set return code
 
Done:   pop edi
        pop esi
        pop ebp
        ret
AvxPiThreshold_ endp
 
; Marco AvxPiCalcMeanUpdateSums
;
; Description:  The following macro updates sum_masked_pixels in ymm4.
;               It also resets any necessary intermediate values in
;               order to prevent an overflow condition.
;
; Register contents:
;   ymm3:ymm2 = packed word sum_masked_pixels
;   ymm4 = packed dword sum_masked_pixels
;   ymm7 = packed zero
;
; Temp registers:
;   ymm0, ymm1, ymm5, ymm6
 
AvxPiCalcMeanUpdateSums macro
 
; Promote packed word sum_masked_pixels to dword
        vpunpcklwd ymm0,ymm2,ymm7
        vpunpcklwd ymm1,ymm3,ymm7
        vpunpckhwd ymm5,ymm2,ymm7
        vpunpckhwd ymm6,ymm3,ymm7
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; Update packed dword sums in sum_masked_pixels
        vpaddd ymm0,ymm0,ymm1
        vpaddd ymm5,ymm5,ymm6
        vpaddd ymm4,ymm4,ymm0
        vpaddd ymm4,ymm4,ymm5
 
; Reset intermediate values
        xor edx,edx                         ;reset update counter
        vpxor ymm2,ymm2,ymm2                ;reset sum_masked_pixels lo
        vpxor ymm3,ymm3,ymm3                ;reset sum_masked_pixels hi
        endm
 
; extern "C" bool AvxPiCalcMean_(ITD* itd);
;
; Description:  The following function calculates the mean value of all
;               above-threshold image pixels using the mask created by
;               function AvxPiThreshold_.
;
; Returns:      0 = invalid image size or unaligned image buffer
;               1 = success
;
; Requires:     AVX2, POPCNT
 
AvxPiCalcMean_  proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
        push edi
 
; Load and verify the argument values in ITD structure
        mov eax,[ebp+8]                     ;eax = 'itd'
        mov ecx,[eax+ITD.NumPixels]         ;ecx = NumPixels
        test ecx,ecx
        jz Error                            ;jump if num_pixels == 0
        cmp ecx,[NUM_PIXELS_MAX]
        ja Error                            ;jump if num_pixels too big
        test ecx,1fh
        jnz Error                           ;jump if num_pixels % 32 != 0
        shr ecx,5                           ;ecx = number of packed pixels
 
        mov edi,[eax+ITD.PbMask]            ;edi = PbMask
        test edi,1fh
        jnz Error                           ;jump if PbMask not aligned
        mov esi,[eax+ITD.PbSrc]             ;esi = PbSrc
        test esi,1fh
        jnz Error                           ;jump if PbSrc not aligned
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; Initialize values for mean calculation
        xor edx,edx                 ;edx = update counter
        vpxor ymm7,ymm7,ymm7        ;ymm7 = packed zero
        vmovdqa ymm2,ymm7           ;ymm2 = sum_masked_pixels (16 words)
        vmovdqa ymm3,ymm7           ;ymm3 = sum_masked_pixels (16 words)
        vmovdqa ymm4,ymm7           ;ymm4 = sum_masked_pixels (8 dwords)
        xor ebx,ebx                 ;ebx = num_masked_pixels (1 dword)
 
; Register usage for processing loop
; esi = PbSrc, edi = PbMask, eax = scratch register
; ebx = num_pixels_masked, ecx = NumPixels / 32, edx = update counter
;
; ymm0 = packed pixel, ymm1 = packed mask
; ymm3:ymm2 = sum_masked_pixels (32 words)
; ymm4 = sum_masked_pixels (8 dwords)
; ymm5 = scratch register
; ymm6 = scratch register
; ymm7 = packed zero
 
@@:     vmovdqa ymm0,ymmword ptr [esi]      ;load next packed pixel
        vmovdqa ymm1,ymmword ptr [edi]      ;load next packed mask
 
; Update mum_masked_pixels
        vpmovmskb eax,ymm1
        popcnt eax,eax
        add ebx,eax
 
; Update sum_masked_pixels (word values)
        vpand ymm6,ymm0,ymm1            ;set non-masked pixels to zero
        vpunpcklbw ymm0,ymm6,ymm7
        vpunpckhbw ymm1,ymm6,ymm7       ;ymm1:ymm0 = masked pixels (words)
        vpaddw ymm2,ymm2,ymm0
        vpaddw ymm3,ymm3,ymm1           ;ymm3:ymm2 = sum_masked_pixels
 
; Check and see if it's necessary to update the dword sum_masked_pixels
; in xmm4 and num_masked_pixels in ebx
        inc edx
        cmp edx,255
        jb NoUpdate
        AvxPiCalcMeanUpdateSums
NoUpdate:
        add esi,32
        add edi,32
        dec ecx
        jnz @B                              ;repeat loop until done
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 15 ■ X86-aVX programming - paCked integers

434

; Main processing loop is finished. If necessary, perform final update
; of sum_masked_pixels in xmm4 & num_masked_pixels in ebx.
        test edx,edx
        jz @F
        AvxPiCalcMeanUpdateSums
 
; Compute and save final sum_masked_pixels & num_masked_pixels
@@:     vextracti128 xmm0,ymm4,1
        vpaddd xmm1,xmm0,xmm4
        vphaddd xmm2,xmm1,xmm7
        vphaddd xmm3,xmm2,xmm7
        vmovd edx,xmm3                      ;edx = final sum_mask_pixels
 
        mov eax,[ebp+8]                     ;eax = 'itd'
        mov [eax+ITD.SumMaskedPixels],edx   ;save final sum_masked_pixels
        mov [eax+ITD.NumMaskedPixels],ebx   ;save final num_masked_pixels
 
; Compute mean of masked pixels
        test ebx,ebx                        ;is num_mask_pixels zero?
        jz NoMean                           ;if yes, skip calc of mean
        vcvtsi2sd xmm0,xmm0,edx             ;xmm0 = sum_masked_pixels
        vcvtsi2sd xmm1,xmm1,ebx             ;xmm1 = num_masked_pixels
        vdivsd xmm0,xmm0,xmm1               ;xmm0 = mean_masked_pixels
        jmp @F
NoMean: vmovsd xmm0,[R8_MinusOne]               ;use -1.0 for no mean
@@:     vmovsd [eax+ITD.MeanMaskedPixels],xmm0  ;save mean
        mov eax,1                               ;set return code
        vzeroupper
 
Done:   pop edi
        pop esi
        pop ebx
        pop ebp
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp Done
AvxPiCalcMean_  endp
        end
 

The C++ code for the sample program AvxPackedIntegerThreshold (see  
Listings 15-8 and 15-9) is nearly identical to the C++ code in SsePackedIntegerThreshold. 
The most notable change is that num_pixels is now tested to determine if it’s an even 
multiple of 32 instead of 16 in functions AvxPiThresholdCpp and AvxPiCalcMeanCpp. 
These functions also check the source and destination image buffers for proper alignment 
on a 32-byte boundary.
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The assembly language code in the AvxPackedIntegerThreshold_.asm file (see 
Listing 15-10) contains a number of modifications that warrant discussion. The most 
obvious difference between the original x86-SSE implementation and the new x86-AVX 
version is the latter’s use of the YMM registers instead of the XMM registers. This means 
the algorithms can process pixel blocks of 32 instead of 16. The x86-AVX version also 
uses instructions not supported by SSSE3, which was the level of x86-SSE used to code 
the original image-thresholding and mean-calculating algorithms. A custom memory 
segment named ItConstVals is also defined in order to facilitate proper alignment of the 
256-bit wide constant value PixelScale.

The AvxPiThreshold_ function includes some minor changes compared to its 
corresponding x86-SSE function. The value of structure member NumPixels is now 
tested for even divisibility by 32 instead of 16. The source and destination image buffers, 
PbSrc and PbDes, are also checked for 32-byte alignment. Finally, a vpbroadcastb 
ymm0, [edx+ITD.Threshold] instruction creates the packed threshold value instead of a 
vpshufb instruction.

The original x86-SSE version included a private function named 
SsePiCalcMeanUpdateSums, which periodically updated the intermediate doubleword 
pixels sums and pixel counts maintained by the algorithm. The x86-AVX implementation 
of the algorithm implements AvxPiCalcMeanUpdateSums as a macro since it has fewer 
processing requirements. The primary reason for the reduced processing requirements is 
a more efficient method of counting the masked pixels.

The AvxPiCalcMean_ function also includes the aforementioned sizes and 
alignment checks of NumPixels and the image buffers. The main processing loop now 
uses the vpmovmskb and popcnt instructions to count the number of masked pixels. 
This change eliminated a couple of data transfer instructions and also simplified the 
coding of the AvxPiCalcMeanUpdateSums macro. Following the main processing loop, a 
vextracti128 instruction is now used in the sequence of instructions that calculates the 
final value of SumMaskedPixels, as illustrated in Figure 15-5. The last change involves the 
vcvtsi2sd instruction, which requires two source operands. Like all other x86-AVX scalar 
double-precision floating-point instructions, the upper quadword of the first source 
operand is copied to the upper quadword of the destination operand. The second source 
operand contains the signed integer value that is converted to double-precision floating-
point. This result is saved to the lower quadword of the destination operand. Output 15-4 
shows the results of AvxPackedIntegerThreshold.
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vextracti128 xmm0,ymm4,1

ymm4

Initial value of SumMaskedPixels (8 doublewords)

1200 520 750 210 425 1475 330 940

0 0 0 0 1200 520 750 210 ymm0

vpaddd xmm1,xmm0,xmm4

0 0 0 0 1625 1995 1080 1150 ymm1

vphaddd xmm2,xmm1,xmm7

0 0 0 0 0 0 3620 2230 ymm2

vphaddd xmm3,xmm2,xmm7

0 0 0 0 0 0 0 5850 ymm3

vmovd edx,xmm3

5850 edx

Note: Register XMM7 contains all zeros.

Figure 15-5. Instruction sequence used to calculate the final value of SumMaskedPixels

Output 15-4. Sample Program AvxPackedIntegerThreshold

Results for AvxPackedIntegerThreshold
 
                           C++       X86-AVX
--------------------------------------------
SumPixelsMasked:      23813043      23813043
NumPixelsMasked:        138220        138220
MeanPixelsMasked:   172.283628    172.283628
 
Benchmark times saved to file __AvxPackedImageThresholdTimed.csv
 

Table 15-2 presents some timing measurements for the C++ and x86-AVX assembly 
language versions of the thresholding algorithms. It also contains timing measurements 
for the x86-SSE implementation of the algorithm that were reported in Table 10-2.
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Summary
This chapter illustrated how to use the packed integer capabilities of x86-AVX. You learned 
how to perform basic arithmetic operations using 256-bit wide packed integer operands. 
You also examined a couple of sample programs that employed the x86-AVX instruction 
set to carry out common image-processing techniques. The sample programs in this 
chapter and the two previous chapters accentuated many of the differences between 
x86-SSE and x86-AVX when working with packed integer, packed floating-point, and scalar 
floating-point operands. In the next chapter, you learn how to exploit some of the new 
instructions that were introduced with AVX2 and its concomitant feature set extensions.

Table 15-2. Mean Execution Times (in Microseconds) of  
Image-Thresholding Algorithms Using TestImage2.bmp

CPU C++ X86-AVX X86-SSE

Intel Core i7-4770 518 39 49

Intel Core i7-4600U 627 50 60
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Chapter 16

X86-AVX Programming - New 
Instructions

In the previous three chapters, you learned how to manipulate scalar floating-point, 
packed floating-point, and packed integer operands using the x86-AVX instruction set. 
In this chapter you how to use some of the new programming features included with 
x86-AVX. The chapter begins with a sample program that illustrates the use of the cpuid 
instruction, which can be used to determine if the processor supports x86-SSE, x86-AVX, 
or a specific instruction-group feature extension. This is followed by collection of sample 
programs that explain how to use x86-AVX’s advanced data-manipulation instructions. 
The final section of this chapter describes some of the x86’s new general-purpose register 
instructions.

Detecting Processor Features (CPUID)
When writing software that exploits an x86 processor feature extension such as x86-SSE, 
x86-AVX, or one of the instruction group enhancements, you should never assume that 
the corresponding instruction set is available based on the processor’s microarchitecture, 
model number, or brand name. You should always test for a specific feature using the 
cpuid (CPU Identification) instruction. The sample program of this section, called 
AvxCpuid, illustrates how to use this instruction to detect specific processor extensions 
and features. Listings 16-1 and 16-2 show the C++ and assembly language source for this 
sample program.

Listing 16-1. AvxCpuid.cpp

#include "stdafx.h"
#include "MiscDefs.h"
#include <memory.h>
 
// This structure is used to save cpuid instruction results. It must
// match the structure that's defined in AvxCpuid_.asm.
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typedef struct
{
    Uint32 EAX;
    Uint32 EBX;
    Uint32 ECX;
    Uint32 EDX;
} CpuidRegs;
 
// This structure contains status flags for cpuid reportable features
// used in this book.
typedef struct
{
    // General information
    Uint32 MaxEAX;      // Maximum EAX value supported by cpuid
    char VendorId[13];  // Processor vendor id string
 
    // Processor feature flags. Set to 'true' if feature extension
    // or instruction group is available for use.
    bool SSE;
    bool SSE2;
    bool SSE3;
    bool SSSE3;
    bool SSE4_1;
    bool SSE4_2;
    bool AVX;
    bool AVX2;
    bool F16C;
    bool FMA;
    bool POPCNT;
    bool BMI1;
    bool BMI2;
    bool LZCNT;
    bool MOVBE;
 
    // OS enabled feature information
    bool OSXSAVE;       // True if XSAVE feature set is enabled by the OS
    bool SSE_STATE;     // True if XMM state is enabled by the OS
    bool AVX_STATE;     // True if YMM state is enabled by the OS
} CpuidFeatures;
 
extern "C" Uint32 Cpuid_(Uint32 r_eax, Uint32 r_ecx, CpuidRegs* out);
extern "C" void Xgetbv_(Uint32 r_ecx, Uint32* r_eax, Uint32* r_edx);
 
// This function will not work on older CPUs, especially
// those introduced before 2006. It has been tested using
// only Windows 7 (SP1) and Windows 8.1.
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void GetCpuidFeatures(CpuidFeatures* cf)
{
    CpuidRegs r_out;
 
    memset(cf, 0, sizeof(CpuidFeatures));
 
    // Get MaxEAX and VendorID
    Cpuid_(0, 0, &r_out);
    cf->MaxEAX = r_out.EAX;
    *(Uint32 *)(cf->VendorId + 0) = r_out.EBX;
    *(Uint32 *)(cf->VendorId + 4) = r_out.EDX;
    *(Uint32 *)(cf->VendorId + 8) = r_out.ECX;
    cf->VendorId[12] = '\0';
 
    // Quit if processor is too old
    if (cf->MaxEAX < 10)
        return;
 
    // Get CPUID.01H feature flags
    Cpuid_(1, 0, &r_out);
    Uint32 cpuid01_ecx = r_out.ECX;
    Uint32 cpuid01_edx = r_out.EDX;
 
    // Get CPUID (EAX = 07H, ECX = 00H) feature flags
    Cpuid_(7, 0, &r_out);
    Uint32 cpuid07_ebx = r_out.EBX;
 
    // CPUID.01H:EDX.SSE[bit 25]
    cf->SSE = (cpuid01_edx & (0x1 << 25)) ? true : false;
 
    // CPUID.01H:EDX.SSE2[bit 26]
    if (cf->SSE)
        cf->SSE2 = (cpuid01_edx & (0x1 << 26)) ? true : false;
 
    // CPUID.01H:ECX.SSE3[bit 0]
    if (cf->SSE2)
        cf->SSE3 = (cpuid01_ecx & (0x1 << 0)) ? true : false;
 
    // CPUID.01H:ECX.SSSE3[bit 9]
    if (cf->SSE3)
        cf->SSSE3 = (cpuid01_ecx & (0x1 << 9)) ? true : false;
 
    // CPUID.01H:ECX.SSE4.1[bit 19]
    if (cf->SSSE3)
        cf->SSE4_1 = (cpuid01_ecx & (0x1 << 19)) ? true : false;
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    // CPUID.01H:ECX.SSE4.2[bit 20]
    if (cf->SSE4_1)
        cf->SSE4_2 = (cpuid01_ecx & (0x1 << 20)) ? true : false;
 
    // CPUID.01H:ECX.POPCNT[bit 23]
    if (cf->SSE4_2)
        cf->POPCNT = (cpuid01_ecx & (0x1 << 23)) ? true : false;
 
    // CPUID.01H:ECX.OSXSAVE[bit 27]
    cf->OSXSAVE = (cpuid01_ecx & (0x1 << 27)) ? true : false;
 
    // Test OSXSAVE status to verify XGETBV is enabled
    if (cf->OSXSAVE)
    {
        // Use XGETBV to obtain following information
        //  XSAVE uses SSE state if (XCR0[1] == 1) is true
        //  XSAVE uses AVX state if (XCR0[2] == 1) is true
 
        Uint32 xgetbv_eax, xgetbv_edx;
 
        Xgetbv_(0, &xgetbv_eax, &xgetbv_edx);
        cf->SSE_STATE = (xgetbv_eax & (0x1 << 1)) ? true : false;
        cf->AVX_STATE = (xgetbv_eax & (0x1 << 2)) ? true : false;
 
        // Is SSE and AVX state information supported by the OS?
        if (cf->SSE_STATE && cf->AVX_STATE)
        {
            // CPUID.01H:ECX.AVX[bit 28] = 1
            cf->AVX = (cpuid01_ecx & (0x1 << 28)) ? true : false;
 
            if (cf->AVX)
            {
                // CPUID.01H:ECX.F16C[bit 29]
                cf->F16C = (cpuid01_ecx & (0x1 << 29)) ? true : false;
 
                // CPUID.01H:ECX.FMA[bit 12]
                cf->FMA = (cpuid01_ecx & (0x1 << 12)) ? true : false;
 
                // CPUID.(EAX = 07H, ECX = 00H):EBX.AVX2[bit 5]
                cf->AVX2 = (cpuid07_ebx & (0x1 << 5)) ? true : false;
            }
        }
    }
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    // CPUID.(EAX = 07H, ECX = 00H):EBX.BMI1[bit 3]
    cf->BMI1 = (cpuid07_ebx & (0x1 << 3)) ? true : false;
 
    // CPUID.(EAX = 07H, ECX = 00H):EBX.BMI2[bit 8]
    cf->BMI2 = (cpuid07_ebx & (0x1 << 8)) ? true : false;
 
    // CPUID.80000001H:ECX.LZCNT[bit 5]
    Cpuid_(0x80000001, 0, &r_out);
    cf->LZCNT = (r_out.ECX & (0x1 << 5)) ? true : false;
 
    // Get MOVBE
    // CPUID.01H:ECX.MOVBE[bit 22]
    cf->MOVBE = cpuid01_ecx & (0x1 << 22) ? true : false;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    CpuidFeatures cf;
 
    GetCpuidFeatures(&cf);
    printf("Results for AvxCpuid\n");
    printf("MaxEAX:    %d\n", cf.MaxEAX);
    printf("VendorId:  %s\n", cf.VendorId);
    printf("SSE:       %d\n", cf.SSE);
    printf("SSE2:      %d\n", cf.SSE2);
    printf("SSE3:      %d\n", cf.SSE3);
    printf("SSSE3:     %d\n", cf.SSSE3);
    printf("SSE4_1:    %d\n", cf.SSE4_1);
    printf("SSE4_2:    %d\n", cf.SSE4_2);
    printf("POPCNT:    %d\n", cf.POPCNT);
    printf("AVX:       %d\n", cf.AVX);
    printf("F16C:      %d\n", cf.F16C);
    printf("FMA:       %d\n", cf.FMA);
    printf("AVX2:      %d\n", cf.AVX2);
    printf("BMI1       %d\n", cf.BMI1);
    printf("BMI2       %d\n", cf.BMI2);
    printf("LZCNT      %d\n", cf.LZCNT);
    printf("MOVBE      %d\n", cf.MOVBE);
    printf("\n");
    printf("OSXSAVE    %d\n", cf.OSXSAVE);
    printf("SSE_STATE  %d\n", cf.SSE_STATE);
    printf("AVX_STATE  %d\n", cf.AVX_STATE);
 
    return 0;
}
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Listing 16-2. AvxCpuid_.asm

        .model flat,c
 
; This structure must match the structure that's defined
; in AvxCpuid.cpp
 
CpuidRegs   struct
RegEAX      dword ?
RegEBX      dword ?
RegECX      dword ?
RegEDX      dword ?
CpuidRegs   ends
            .code
 
; extern "C" Uint32 Cpuid_(Uint32 r_eax, Uint32 r_ecx, CpuidRegs* r_out);
;
; Description:  The following function uses the CPUID instruction to
;               query processor identification and feature information.
;
; Returns:      eax == 0     Unsupported CPUID leaf
;               eax != 0     Supported CPUID leaf
;
;               The return code is valid only if r_eax <= MaxEAX.
 
Cpuid_  proc
        push ebp
        mov ebp,esp
        push ebx
        push esi
 
; Load eax and ecx with provided values, then use cpuid
        mov eax,[ebp+8]
        mov ecx,[ebp+12]
        cpuid
 
; Save results
        mov esi,[ebp+16]
        mov [esi+CpuidRegs.RegEAX],eax
        mov [esi+CpuidRegs.RegEBX],ebx
        mov [esi+CpuidRegs.RegECX],ecx
        mov [esi+CpuidRegs.RegEDX],edx
 
; Test for unsupported CPUID leaf
        or eax,ebx
        or ecx,edx
        or eax,ecx                          ;eax = return code
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        pop esi
        pop ebx
        pop ebp
        ret
Cpuid_  endp
 
; extern "C" void Xgetbv_(Uint32 r_ecx, Uint32* r_eax, Uint32* r_edx);
;
; Description:  The following function uses the XGETBV instruction to
;               obtain the contents of the extended control register
;               that's specified by r_ecx.
;
; Notes:        A processor exception will occur if r_ecx is invalid
;               or if the XSAVE feature set is disabled.
 
Xgetbv_  proc
        push ebp
        mov ebp,esp
 
        mov ecx,[ebp+8]                     ;ecx = extended control reg
        xgetbv
 
        mov ecx,[ebp+12]
        mov [ecx],eax                       ;save result (low dword)
        mov ecx,[ebp+16]
        mov [ecx],edx                       ;save result (high dword)
 
        pop ebp
        ret
Xgetbv_ endp
        end
 

Before examining the source code, you need to understand the basics of how the 
cpuid instruction works. Prior to using this instruction, register EAX must be loaded with 
a “leaf” value that specifies what type of information the cpuid instruction should return. 
A second or “sub-leaf” value also may be required in register ECX depending on the leaf 
value in EAX. The cpuid instruction returns its results in registers EAX, EBX, ECX, and 
EDX. The sample program of this section focuses on using the cpuid instruction to detect 
architectural features and instruction groups that are allied with this book’s content. 
You should refer to the Intel or AMD reference manuals and application notes listed in 
Appendix C if you’re interested in learning how to use the cpuid instruction to identify 
additional processor features and hardware capabilities.

Toward the top of the AvxCpuid.cpp file (see Listing 16-1), two C++ structures are 
declared. The first structure is called CpuidRegs and is used to save the results returned 
by the cpuid instruction. The second structure, named CpuidFeatures, contains various 
flags that indicate whether or not a particular processor feature is available for use. 
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Following the structure declarations are two declaration statements for the assembly 
language functions Cpuid_ and Xgetbv_, which are used to execute the cpuid and xgetbv 
(Get Value of Extended Control Register) instructions, respectively.

In the function GetCpuidFeatures, the statement Cpuid_(0, 0, &r_out) 
determines the maximum EAX value that is supported by the cpuid instruction. The first 
two arguments of Cpuid_ are used to initialize registers EAX and ECX prior to execution 
of the cpuid instruction; the third argument designates a CpuidRegs structure for the 
results from cpuid. Note that in the function GetCpuidFeatures, the value supplied for 
register ECX is ignored by the cpuid instruction, except when EAX is equal to seven. Upon 
return from Cpuid_, r_out.EAX contains the maximum allowable EAX value supported by 
the cpuid instruction, and r_out.EBX, r_out.ECX, and r_out.EDX comprise a processor 
vendor ID string. All of these values are saved to the specified CpuidFeatures structure.

In order to keep the remaining logic reasonable, the GetCpuidFeatures function 
terminates if it detects that it’s running on an older processor. Next, the function Cpuid_ 
is called twice to obtain the necessary cpuid feature status flags. The cpuid status flags 
related to x86-SSE are then decoded and saved.

An application program can use the computational resources of x86-AVX only if it’s 
supported by both the processor and its host operating system. The processor’s OSXSAVE 
flag indicates whether or not the operating system saves x86-AVX state information 
during a task switch. An OSXSAVE flag state of true also indicates that it’s safe to use the 
xgetbv instruction in order to determine operating system state support for the XMM 
and YMM registers. Once this information is established, the GetCpuidFeatures function 
proceeds to decode the cpuid status flags related to x86-AVX and its concomitant feature 
extensions. It also ascertains the presence of several instruction groups whose availability 
is independent of operating system state support for x86-AVX.

Near the top of the AvxCpuid_.asm file (see Listing 16-2) is the assembly language 
version of the CpuidRegs structure. The code for function Cpuid_ is straightforward: It 
loads registers EAX and ECX with the provided argument values, executes the cpuid 
instruction, and saves the results to the designated location in memory. Note that if the 
leaf value supplied in EAX is invalid and less than or equal to the maximum leaf value 
supported by the processor, the cpuid instruction returns zeroes in registers EAX, EBX, 
ECX, and EDX.

The code for function Xgetbv_ is also straight forward. It’s important to note, 
however, that the processor will generate an exception if the extended control register 
that’s specified in r_ecx is invalid or if the processor’s OSXSAVE status flag is set to false. 
This explains why OSXSAVE was tested in the C++ function GetCpuidFeatures prior to 
calling Xgetbv_. Table 16-1 summarizes the results generated by the AvxCpuid sample 
program using several different processors.
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Data-Manipulation Instructions
X86-AVX includes a variety of enhanced data-manipulation instructions that can be used 
with either packed floating-point or packed integer operands. Many of these instructions 
are structured to be a more efficient substitute for an existing x86-SSE instruction or 
sequence of instructions. Enhanced data manipulations include broadcast, blend, 
permute, and gather operations. The sample code in this section demonstrates how to 
use representative instructions from each of these groups.

Data Broadcast
The first sample program of this section, named AvxBroadcast, demonstrates how to 
use some of x86-AVX’s integer and floating-point broadcast instructions. A broadcast 
instruction copies a single data value to each element of the destination operand. These 
instructions are often used to create packed constant values. Listings 16-3 and 16-4 show 
the C++ and assembly language source for sample program AvxBroadcast.

Table 16-1. Summary of Results from Sample Program AvxCpuid

Feature E6700 Q9650 i3-2310M i7-4600U i7-4770

MaxEAX 10 13 13 13 13

VendorId GenuineIntel GenuineIntel GenuineIntel GenuineIntel GenuineIntel

SSE 1 1 1 1 1

SSE2 1 1 1 1 1

SSE3 1 1 1 1 1

SSSE3 1 1 1 1 1

SSE4_1 0 1 1 1 1

SSE4_2 0 0 1 1 1

POPCNT 0 0 1 1 1

AVX 0 0 1 1 1

F16C 0 0 0 1 1

FMA 0 0 0 1 1

AVX2 0 0 0 1 1

BMI1 0 0 0 1 1

BMI2 0 0 0 1 1

LZCNT 0 0 0 1 1

MOVBE 0 0 0 1 1
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Listing 16-3. AvxBroadcast.cpp

#include "stdafx.h"
#include "XmmVal.h"
#include "YmmVal.h"
#include <memory.h>
#define _USE_MATH_DEFINES
#include <math.h>
 
// The order of values in the following enum must match the table
// that's defined in AvxBroadcast_.asm.
enum Brop : unsigned int
{
    Byte, Word, Dword, Qword
};
 
extern "C" void AvxBroadcastIntegerYmm_(YmmVal* des, const XmmVal* src, Brop op);
extern "C" void AvxBroadcastFloat_(YmmVal* des, float val);
extern "C" void AvxBroadcastDouble_(YmmVal* des, double val);
 
void AvxBroadcastInteger(void)
{
    char buff[512];
    __declspec(align(16)) XmmVal src;
    __declspec(align(32)) YmmVal des;
 
    memset(&src, 0, sizeof(XmmVal));
 
    src.i16[0] = 42;
    AvxBroadcastIntegerYmm_(&des, &src, Brop::Word);
 
    printf("\nResults for AvxBroadcastInteger() - Brop::Word\n");
    printf("src    %s\n", src.ToString_i16(buff, sizeof(buff)));
    printf("des lo %s\n", des.ToString_i16(buff, sizeof(buff), false));
    printf("des hi %s\n", des.ToString_i16(buff, sizeof(buff), true));
 
    src.i64[0] = -80;
    AvxBroadcastIntegerYmm_(&des, &src, Brop::Qword);
 
    printf("\nResults for AvxBroadcastInteger() - Brop::Qword\n");
    printf("src: %s\n", src.ToString_i64(buff, sizeof(buff)));
    printf("des lo: %s\n", des.ToString_i64(buff, sizeof(buff), false));
    printf("des hi: %s\n", des.ToString_i64(buff, sizeof(buff), true));
}
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void AvxBroadcastFloatingPoint(void)
{
    char buff[512];
    __declspec(align(32)) YmmVal des;
 
    AvxBroadcastFloat_(&des, (float)M_SQRT2);
    printf("\nResults for AvxBroadcastFloatingPoint() - float\n");
    printf("des lo: %s\n", des.ToString_r32(buff, sizeof(buff), false));
    printf("des hi: %s\n", des.ToString_r32(buff, sizeof(buff), true));
 
    AvxBroadcastDouble_(&des, M_PI);
    printf("\nResults for AvxBroadcastFloatingPoint() - double\n");
    printf("des lo: %s\n", des.ToString_r64(buff, sizeof(buff), false));
    printf("des hi: %s\n", des.ToString_r64(buff, sizeof(buff), true));
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxBroadcastInteger();
    AvxBroadcastFloatingPoint();
    return 0;
}

Listing 16-4. AvxBroadcast_.asm

        .model flat,c
        .code
 
; extern "C" void AvxBroadcastIntegerYmm_(YmmVal* des, const XmmVal* src,
Brop op);
;
; Description:  The following function demonstrates use of the
;               vpbroadcastX instruction.
;
; Requires:     AVX2
 
AvxBroadcastIntegerYmm_ proc
        push ebp
        mov ebp,esp
 
; Make sure op is valid
        mov eax,[ebp+16]                ;eax = op
        cmp eax,BropTableCount
        jae BadOp                       ;jump if op is invalid
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; Load parameters and jump to specified instruction
        mov ecx,[ebp+8]                 ;ecx = des
        mov edx,[ebp+12]                ;edx = src
        vmovdqa xmm0,xmmword ptr [edx]  ;xmm0 = broadcast value (low item)
        mov edx,[BropTable+eax*4]
        jmp edx
 
; Perform byte broadcast
BropByte:
        vpbroadcastb ymm1,xmm0
        vmovdqa ymmword ptr [ecx],ymm1
        vzeroupper
        pop ebp
        ret
 
; Perform word broadcast
BropWord:
        vpbroadcastw ymm1,xmm0
        vmovdqa ymmword ptr [ecx],ymm1
        vzeroupper
        pop ebp
        ret
 
; Perform dword broadcast
BropDword:
        vpbroadcastd ymm1,xmm0
        vmovdqa ymmword ptr [ecx],ymm1
        vzeroupper
        pop ebp
        ret
 
; Perform qword broadcast
BropQword:
        vpbroadcastq ymm1,xmm0
        vmovdqa ymmword ptr [ecx],ymm1
        vzeroupper
        pop ebp
        ret
 
BadOp:  pop ebp
        ret
 
; The order of values in the following table must match the enum Brop
; that's defined in AvxBroadcast.cpp.
 
        align 4
BropTable dword BropByte, BropWord, BropDword, BropQword
BropTableCount equ ($ - BropTable) / size dword
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AvxBroadcastIntegerYmm_ endp
 
; extern "C" void AvxBroadcastFloat_(YmmVal* des, float val);
;
; Description:  The following function demonstrates use of the
;               vbroadcastss instruction.
;
; Requires:     AVX
 
AvxBroadcastFloat_ proc
        push ebp
        mov ebp,esp
 
; Broadcast val to all elements of des
        mov eax,[ebp+8]
        vbroadcastss ymm0,real4 ptr [ebp+12]
        vmovaps ymmword ptr [eax],ymm0
 
        vzeroupper
        pop ebp
        ret
AvxBroadcastFloat_ endp
 
; extern "C" void AvxBroadcastDouble_(YmmVal* des, double val);
;
; Description:  The following function demonstrates use of the
;               vbroadcastsd instruction.
;
; Requires:     AVX
 
AvxBroadcastDouble_ proc
        push ebp
        mov ebp,esp
 
; Broadcast val to all elements of des.
        mov eax,[ebp+8]
        vbroadcastsd ymm0,real8 ptr [ebp+12]
        vmovapd ymmword ptr [eax],ymm0
 
        vzeroupper
        pop ebp
        ret
AvxBroadcastDouble_ endp
        end
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 16 ■ X86-aVX programming - new instruCtions

452

The C++ file AvxBroadcast.cpp (see Listing 16-3) includes two functions that 
initialize test cases for integer and floating-point broadcast operations. The first function, 
AvxBroadcastInteger, invokes the assembly language function AvxBroadcastInteger_ 
to illustrate integer broadcasts using words and quadwords. The second function, 
AvxBroadcastFloat, employs two assembly language functions that demonstrate 
broadcast operations using single-precision and double-precision floating-point values.

The assembly language file AvxBroadcast_.asm (see Listing 16-4) contains 
the functions that perform the actual broadcast operations. The function named 
AvxBroadcastInteger_ illustrates use of the vpbroadcast( b| w| d| q) (byte, word, 
doubleword, and quadword) instructions. The source operand for these instructions 
must be an XMM register (the low-order element) or a memory location. The destination 
operand can be either an XMM or YMM register. Besides the vpbroadcast( b| w| d| q)  
instructions, the x86-AVX instruction set also includes a vbroadcasti128 instruction, 
which broadcasts 128 bits of integer data from a memory location to the lower and upper 
128 bits of a YMM register.

The functions AvxBroadcastFloat_ and AvxBroadcastDouble_ illustrate use of 
the vbroadcastss and vbroadcastsd (Broadcast Floating-Point Data) instructions. 
The source operands for these instructions must be a memory location or an XMM 
register. Note that AVX2 is required to use these instructions with an XMM source 
operand. The destination operand of the vbroadcastss instruction can be an XMM 
or YMM register; the destination operand of the vbroadcastsd instruction must be a 
YMM register. The x86-AVX instruction set also supports a 128-bit broadcast instruction 
named vbroadcastf128 for floating-point data. Output 16-1 shows the results for sample 
program AvxBroadcast.

Output 16-1. Sample Program AvxBroadcast

Results for AvxBroadcastInteger() - Brop::Word
src      42        0        0        0 |        0        0        0        0
des lo   42       42       42       42 |       42       42       42       42
des hi   42       42       42       42 |       42       42       42       42
 
Results for AvxBroadcastInteger() - Brop::Qword
src:                 -80 |                0
des lo:              -80 |              -80
des hi:              -80 |              -80
 
Results for AvxBroadcastFloatingPoint() - float
des lo:     1.414214     1.414214 |     1.414214     1.414214
des hi:     1.414214     1.414214 |     1.414214     1.414214
 
Results for AvxBroadcastFloatingPoint() - double
des lo:           3.141592653590  |           3.141592653590
des hi:           3.141592653590  |           3.141592653590
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Data Blend
A data blend operation conditionally copies the elements of two packed source operands 
to a packed destination operand using a control value that specifies which elements to 
copy. The next sample program is called AvxBlend and it demonstrates the use of two 
x86-AVX blend instructions using packed floating-point and packed integer operands. 
Listings 16-5 and 16-6 show the C++ and assembly language source code for AvxBlend.

Listing 16-5. AvxBlend.cpp

#include "stdafx.h"
#include "YmmVal.h"
 
extern "C" void AvxBlendFloat_(YmmVal* des, YmmVal* src1, YmmVal* src2,
YmmVal* src3);
extern "C" void AvxBlendByte_(YmmVal* des, YmmVal* src1, YmmVal* src2,
YmmVal* src3);
 
void AvxBlendFloat(void)
{
    char buff[256];
    const Uint32 select1 = 0x00000000;
    const Uint32 select2 = 0x80000000;
    __declspec(align(32)) YmmVal des, src1, src2, src3;
 
    src1.r32[0] = 100.0f;       src2.r32[0] = -1000.0f;
    src1.r32[1] = 200.0f;       src2.r32[1] = -2000.0f;
    src1.r32[2] = 300.0f;       src2.r32[2] = -3000.0f;
    src1.r32[3] = 400.0f;       src2.r32[3] = -4000.0f;
    src1.r32[4] = 500.0f;       src2.r32[4] = -5000.0f;
    src1.r32[5] = 600.0f;       src2.r32[5] = -6000.0f;
    src1.r32[6] = 700.0f;       src2.r32[6] = -7000.0f;
    src1.r32[7] = 800.0f;       src2.r32[7] = -8000.0f;
 
    src3.u32[0] = select2;
    src3.u32[1] = select2;
    src3.u32[2] = select1;
    src3.u32[3] = select2;
    src3.u32[4] = select1;
    src3.u32[5] = select1;
    src3.u32[6] = select2;
    src3.u32[7] = select1;
 
    AvxBlendFloat_(&des, &src1, &src2, &src3);
 
    printf("\nResults for AvxBlendFloat()\n");
    printf("src1 lo: %s\n", src1.ToString_r32(buff, sizeof(buff), false));
    printf("src1 hi: %s\n", src1.ToString_r32(buff, sizeof(buff), true));
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    printf("src2 lo: %s\n", src2.ToString_r32(buff, sizeof(buff), false));
    printf("src2 hi: %s\n", src2.ToString_r32(buff, sizeof(buff), true));
    printf("\n");
    printf("src3 lo: %s\n", src3.ToString_x32(buff, sizeof(buff), false));
    printf("src3 hi: %s\n", src3.ToString_x32(buff, sizeof(buff), true));
    printf("\n");
    printf("des lo:  %s\n", des.ToString_r32(buff, sizeof(buff), false));
    printf("des hi:  %s\n", des.ToString_r32(buff, sizeof(buff), true));
}
 
void AvxBlendByte(void)
{
    char buff[256];
    __declspec(align(32)) YmmVal des, src1, src2, src3;
 
    // Control values required to perform doubleword blend
    // using vpblendvb instruction
    const Uint32 select1 = 0x00000000;      // select src1
    const Uint32 select2 = 0x80808080;      // select src2
 
    src1.i32[0] = 100;          src2.i32[0] = -1000;
    src1.i32[1] = 200;          src2.i32[1] = -2000;
    src1.i32[2] = 300;          src2.i32[2] = -3000;
    src1.i32[3] = 400;          src2.i32[3] = -4000;
    src1.i32[4] = 500;          src2.i32[4] = -5000;
    src1.i32[5] = 600;          src2.i32[5] = -6000;
    src1.i32[6] = 700;          src2.i32[6] = -7000;
    src1.i32[7] = 800;          src2.i32[7] = -8000;
 
    src3.u32[0] = select1;
    src3.u32[1] = select1;
    src3.u32[2] = select2;
    src3.u32[3] = select1;
    src3.u32[4] = select2;
    src3.u32[5] = select2;
    src3.u32[6] = select1;
    src3.u32[7] = select2;
 
    AvxBlendByte_(&des, &src1, &src2, &src3);
 
    printf("\nResults for AvxBlendByte() - doublewords\n");
    printf("src1 lo: %s\n", src1.ToString_i32(buff, sizeof(buff), false));
    printf("src1 hi: %s\n", src1.ToString_i32(buff, sizeof(buff), true));
    printf("src2 lo: %s\n", src2.ToString_i32(buff, sizeof(buff), false));
    printf("src2 hi: %s\n", src2.ToString_i32(buff, sizeof(buff), true));
    printf("\n");
    printf("src3 lo: %s\n", src3.ToString_x32(buff, sizeof(buff), false));
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    printf("src3 hi: %s\n", src3.ToString_x32(buff, sizeof(buff), true));
    printf("\n");
    printf("des lo:  %s\n", des.ToString_i32(buff, sizeof(buff), false));
    printf("des hi:  %s\n", des.ToString_i32(buff, sizeof(buff), true));
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxBlendFloat();
    AvxBlendByte();
    return 0;
}

Listing 16-6. AvxBlend_.asm

        .model flat,c
        .code
 
; extern "C" void AvxBlendFloat_(YmmVal* des, YmmVal* src1, YmmVal* src2,
YmmVal* src3);
;
; Description:  The following function demonstrates used of the vblendvps
;               instruction using YMM registers.
;
; Requires:     AVX
 
AvxBlendFloat_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+12]                    ;eax = ptr to src1
        mov ecx,[ebp+16]                    ;ecx = ptr to src2
        mov edx,[ebp+20]                    ;edx = ptr to src3
 
        vmovaps ymm1,ymmword ptr [eax]      ;ymm1 = src1
        vmovaps ymm2,ymmword ptr [ecx]      ;ymm2 = src2
        vmovdqa ymm3,ymmword ptr [edx]      ;ymm3 = src3
 
; Perform variable SPFP blend
        vblendvps ymm0,ymm1,ymm2,ymm3       ;ymm0 = blend result
        mov eax,[ebp+8]
        vmovaps ymmword ptr [eax],ymm0      ;save blend result
 
        vzeroupper
        pop ebp
        ret
AvxBlendFloat_ endp
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; extern "C" void AvxBlendByte_(YmmVal* des, YmmVal* src1, YmmVal* src2,
YmmVal* src3);
;
; Description:  The following function demonstrates use of the vpblendvb
;               instruction.
;
; Requires:     AVX2
 
AvxBlendByte_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+12]                    ;eax = ptr to src1
        mov ecx,[ebp+16]                    ;ecx = ptr to src2
        mov edx,[ebp+20]                    ;edx = ptr to src3
 
        vmovdqa ymm1,ymmword ptr [eax]      ;ymm1 = src1
        vmovdqa ymm2,ymmword ptr [ecx]      ;ymm2 = src2
        vmovdqa ymm3,ymmword ptr [edx]      ;ymm3 = src3
 
; Perform variable byte blend
        vpblendvb ymm0,ymm1,ymm2,ymm3       ;ymm0 = blend result
        mov eax,[ebp+8]
        vmovdqa ymmword ptr [eax],ymm0      ;save blend result
        vzeroupper
        pop ebp
        ret
AvxBlendByte_ endp
        end
 

The C++ file AvxBlend.cpp (see Listing 16-5) contains a function named 
AvxBlendFloat that initializes YmmVal variables src1 and src2 using single-precision 
floating-point values. It also initializes a third YmmVal instance named src3 for use as a 
blend control value. The high-order bit of each doubleword element in src3 specifies 
whether the corresponding element from src1 (high-order bit = 0) or src2 (high-order 
bit = 1) is copied to the destination operand. The three source operands are used by the 
vblendvps (Variable Blend Packed Single-Precision Floating-Point Values) instruction, 
which is executed by the assembly language function AvxBlendFloat_. Following 
execution of this function, a series of printf statements displays the results.

The AvxBlend.cpp file also contains a function named AvxBlendInt32, which 
initializes YmmVal variables src1 and src2 in order to demonstrate a packed doubleword 
integer blend operation. This function also uses a third source operand to specify which 
source operand elements are copied to the destination operand. The values src1, src2, 
and src3 are ultimately used by the vpblendvb (Variable Blend Packed Bytes) instruction, 
which is contained in the assembly language function AvxBlendInt32_.
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The AvxBlendFloat_ function (see Listing 16-6) begins by loading argument values 
src1, src2, and src3 into registers YMM1, YMM2, and YMM3, respectively. It then 
executes a vblendvps ymm0,ymm1,ymm2,ymm3 instruction to carry out the floating-point 
blend operation, as shown in Figure 16-1. The vblendvps instruction and its double-
precision counterpart vblendvpd are examples of x86-AVX instructions that require three 
source operands. Floating-point blend operations using an immediate control value are 
possible with the vblendps and vblendpd instructions.

X86-AVX includes several instructions that can be used to carry out integer blend 
operations. The vpblendw (Blend Packed Words) and vpblendd (Blend Packed Dwords) 
instructions perform packed integer blends using words and doublewords, respectively. 
Both of these instructions require an 8-bit immediate operand that specifies the blend 
control value.

The x86-AVX instruction set also includes the vpblendvb instruction that blends 
bytes using a variable control value. This instruction uses the high-order bit of each byte 
in the third source operand to select a byte from one of the first two source operands. 
The vpblendvb instruction can also be employed to blend words, doublewords, and 
quadwords if it’s used with a suitable control value. For example, in order to blend 
doublewords, the AvxBlendInt32_ function (see Listing 16-6) uses the control value 
0x00000000 or 0x80808080 to select a doubleword element from the first or second source 
operand, respectively. Output 16-2 contains the results for sample program AvxBlend.

Output 16-2. Sample Program AvxBlend

Results for AvxBlendFloat()
src1 lo:   100.000000   200.000000 |   300.000000   400.000000
src1 hi:   500.000000   600.000000 |   700.000000   800.000000
src2 lo: -1000.000000 -2000.000000 | -3000.000000 -4000.000000
src2 hi: -5000.000000 -6000.000000 | -7000.000000 -8000.000000
 
src3 lo: 80000000 80000000 | 00000000 80000000
src3 hi: 00000000 00000000 | 80000000 00000000
 

vblendvps ymm0,ymm1,ymm2,ymm3

ymm 1

ymm 2

100.0700.0800.0 600.0 500.0 400.0 300.0 200.0

-1000.0-7000.0-8000.0 -6000.0 -5000.0 -4000.0 -3000.0 -2000.0

-1000.0-7000.0800.0 600.0 500.0 -4000.0 300 -2000.0 ymm 0

800000008000000000000000 00000000 00000000 80000000 00000000 80000000 ymm 3

Note: Each doubleword element of YMM3 is a hexadecimal value.

Figure 16-1. Execution of the vblendvps instruction
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des lo:  -1000.000000 -2000.000000 |   300.000000 -4000.000000
des hi:    500.000000   600.000000 | -7000.000000   800.000000
 
Results for AvxBlendByte() - doublewords
src1 lo:          100          200 |          300          400
src1 hi:          500          600 |          700          800
src2 lo:        -1000        -2000 |        -3000        -4000
src2 hi:        -5000        -6000 |        -7000        -8000
 
src3 lo: 00000000 00000000 | 80808080 00000000
src3 hi: 80808080 80808080 | 00000000 80808080
 
des lo:           100          200 |        -3000          400
des hi:         -5000        -6000 |          700        -8000

Data Permute
The x86-AVX instruction set includes several data permute instructions, which rearrange 
the elements of a packed data value according to a control value. The sample program  
of this section, named AvxPermute, explains how to use a few of these instructions. 
Listings 16-7 and 16-8 present the source code for sample program AvxPermute.

Listing 16-7. AvxPermute.cpp

#include "stdafx.h"
#include "YmmVal.h"
#include <math.h>
 
extern "C" void AvxPermuteInt32_(YmmVal* des, YmmVal* src, YmmVal* ind);
extern "C" void AvxPermuteFloat_(YmmVal* des, YmmVal* src, YmmVal* ind);
extern "C" void AvxPermuteFloatIl_(YmmVal* des, YmmVal* src, YmmVal* ind);
 
void AvxPermuteInt32(void)
{
    __declspec(align(32)) YmmVal des, src, ind;
 
    src.i32[0] = 10;        ind.i32[0] = 3;
    src.i32[1] = 20;        ind.i32[1] = 7;
    src.i32[2] = 30;        ind.i32[2] = 0;
    src.i32[3] = 40;        ind.i32[3] = 4;
    src.i32[4] = 50;        ind.i32[4] = 6;
    src.i32[5] = 60;        ind.i32[5] = 6;
    src.i32[6] = 70;        ind.i32[6] = 1;
    src.i32[7] = 80;        ind.i32[7] = 2;
 
    AvxPermuteInt32_(&des, &src, &ind);
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    printf("\nResults for AvxPermuteInt32()\n");
    for (int i = 0; i < 8; i++)
    {
        printf("des[%d]: %5d  ", i, des.i32[i]);
        printf("ind[%d]: %5d  ", i, ind.i32[i]);
        printf("src[%d]: %5d  ", i, src.i32[i]);
        printf("\n");
    }
}
 
void AvxPermuteFloat(void)
{
    __declspec(align(32)) YmmVal des, src, ind;
 
    // src1 indices must be between 0 and 7.
    src.r32[0] = 800.0f;       ind.i32[0] = 3;
    src.r32[1] = 700.0f;       ind.i32[1] = 7;
    src.r32[2] = 600.0f;       ind.i32[2] = 0;
    src.r32[3] = 500.0f;       ind.i32[3] = 4;
    src.r32[4] = 400.0f;       ind.i32[4] = 6;
    src.r32[5] = 300.0f;       ind.i32[5] = 6;
    src.r32[6] = 200.0f;       ind.i32[6] = 1;
    src.r32[7] = 100.0f;       ind.i32[7] = 2;
 
    AvxPermuteFloat_(&des, &src, &ind);
 
    printf("\nResults for AvxPermuteFloat()\n");
    for (int i = 0; i < 8; i++)
    {
        printf("des[%d]: %8.1f  ", i, des.r32[i]);
        printf("ind[%d]: %5d  ", i, ind.i32[i]);
        printf("src[%d]: %8.1f  ", i, src.r32[i]);
        printf("\n");
    }
}
 
void AvxPermuteFloatIl(void)
{
    __declspec(align(32)) YmmVal des, src, ind;
 
    // Lower lane
    src.r32[0] = sqrt(10.0f);       ind.i32[0] = 3;
    src.r32[1] = sqrt(20.0f);       ind.i32[1] = 2;
    src.r32[2] = sqrt(30.0f);       ind.i32[2] = 2;
    src.r32[3] = sqrt(40.0f);       ind.i32[3] = 0;
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    // Upper lane
    src.r32[4] = sqrt(50.0f);       ind.i32[4] = 1;
    src.r32[5] = sqrt(60.0f);       ind.i32[5] = 3;
    src.r32[6] = sqrt(70.0f);       ind.i32[6] = 3;
    src.r32[7] = sqrt(80.0f);       ind.i32[7] = 2;
 
    AvxPermuteFloatIl_(&des, &src, &ind);
 
    printf("\nResults for AvxPermuteFloatIl()\n");
    for (int i = 0; i < 8; i++)
    {
        if (i == 0)
            printf("Lower lane\n");
        else if (i == 4)
            printf("Upper lane\n");
 
        printf("des[%d]: %8.4f  ", i, des.r32[i]);
        printf("ind[%d]: %5d  ", i, ind.i32[i]);
        printf("src[%d]: %8.4f  ", i, src.r32[i]);
        printf("\n");
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxPermuteInt32();
    AvxPermuteFloat();
    AvxPermuteFloatIl();
    return 0;
}

Listing 16-8. AvxPermute_.asm

        .model flat,c
        .code
 
; extern "C" void AvxPermuteInt32_(YmmVal* des, YmmVal* src, YmmVal* ind);
;
; Description:  The following function demonstrates use of the
;               vpermd instruction.
;
; Requires:     AVX2
 
AvxPermuteInt32_ proc
        push ebp
        mov ebp,esp
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; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to des
        mov ecx,[ebp+12]                    ;ecx = ptr to src
        mov edx,[ebp+16]                    ;edx = ptr to ind
 
; Perform dword permutation
        vmovdqa ymm1,ymmword ptr [edx]      ;ymm1 = ind
        vpermd ymm0,ymm1,ymmword ptr [ecx]
        vmovdqa ymmword ptr [eax],ymm0      ;save result
 
        vzeroupper
        pop ebp
        ret
AvxPermuteInt32_ endp
 
; extern "C" void AvxPermuteFloat_(YmmVal* des, YmmVal* src, YmmVal* ind);
;
; Description:  The following function demonstrates use of the
;               vpermps instruction.
;
; Requires:     AVX2
 
AvxPermuteFloat_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to des
        mov ecx,[ebp+12]                    ;ecx = ptr to src
        mov edx,[ebp+16]                    ;edx = ptr to ind
 
; Perform SPFP permutation
        vmovdqa ymm1,ymmword ptr [edx]      ;ymm1 = ind
        vpermps ymm0,ymm1,ymmword ptr [ecx]
        vmovaps ymmword ptr [eax],ymm0      ;save result
 
        vzeroupper
        pop ebp
        ret
AvxPermuteFloat_ endp
 
; extern "C" void AvxPermuteFloatIl_(YmmVal* des, YmmVal* src, YmmVal* ind);
;
; Description:  The following function demonstrates use of the
;               vpermilps instruction.
;
; Requires:     AVX2
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AvxPermuteFloatIl_ proc
        push ebp
        mov ebp,esp
 
; Load argument values
        mov eax,[ebp+8]                     ;eax = ptr to des
        mov ecx,[ebp+12]                    ;ecx = ptr to src
        mov edx,[ebp+16]                    ;edx = ptr to ind
 
; Perform in-lane SPFP permutation.  Note that the second source
; operand of vpermilps specifies the indices.
        vmovdqa ymm1,ymmword ptr [ecx]      ;ymm1 = src
        vpermilps ymm0,ymm1,ymmword ptr [edx]
        vmovaps ymmword ptr [eax],ymm0      ;save result
 
        vzeroupper
        pop ebp
        ret
AvxPermuteFloatIl_ endp
        end
 

The source code file AvxPermute.cpp (see Listing 16-7) includes a function named 
AvxPermuteInt32 that initializes a test case in order to demonstrate a packed doubleword 
integer permutation. The variable ind contains a set of indices that specifies which 
elements from src are copied to des. For example, the statement ind.i32[0] = 3 
signifies that the permute operation should perform des.i32[0] = src.i32[3]. Each 
index in ind must lie between zero and seven. An index can be used more than once 
in ind in order to copy an element from src to multiple locations in des. The function 
AvxPermuteFloat is similar to AvxPermuteInt32, except that it establishes a test case for a 
packed single-precision floating-point permutation.

The source code file AvxPermute.cpp also contains a function named 
AvxPermuteFloatIl, which initializes the YmmVal variables src and ind for an in-lane 
permutation of a packed single-precision floating-point value. An in-lane permutation 
carries out its operations using two separate 128-bit lanes. The control indices for an 
in-lane permutation must range between zero and three, and each lane requires its own 
set of indices.

The assembly language file AvxPermute_.asm (see Listing 16-8) contains the 
AvxPermuteInt32_ and AvxPermuteFloat_ functions. These functions use the x86-AVX 
instructions vpermd and vpermps to carry out packed doubleword integer and single-
precision floating-point permutations. Both instructions require the first source operand 
to contain the control indices; the second source operand contains the packed data value 
to permute. The AvxPermute_.asm file also includes the AvxPermuteFloatIl_ function, 
which demonstrates use of the in-lane permutation instruction vpermilps. Note that for 
this instruction, the first source operand contains the packed data value to permute and 
the second source operand holds the control indices. Output 16-3 shows the results for 
sample program AvxPermute.
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Output 16-3. Sample Program AvxPermute

Results for AvxPermuteInt32()
des[0]:    40  ind[0]:     3  src[0]:    10
des[1]:    80  ind[1]:     7  src[1]:    20
des[2]:    10  ind[2]:     0  src[2]:    30
des[3]:    50  ind[3]:     4  src[3]:    40
des[4]:    70  ind[4]:     6  src[4]:    50
des[5]:    70  ind[5]:     6  src[5]:    60
des[6]:    20  ind[6]:     1  src[6]:    70
des[7]:    30  ind[7]:     2  src[7]:    80
 
Results for AvxPermuteFloat()
des[0]:    500.0  ind[0]:     3  src[0]:    800.0
des[1]:    100.0  ind[1]:     7  src[1]:    700.0
des[2]:    800.0  ind[2]:     0  src[2]:    600.0
des[3]:    400.0  ind[3]:     4  src[3]:    500.0
des[4]:    200.0  ind[4]:     6  src[4]:    400.0
des[5]:    200.0  ind[5]:     6  src[5]:    300.0
des[6]:    700.0  ind[6]:     1  src[6]:    200.0
des[7]:    600.0  ind[7]:     2  src[7]:    100.0
 
Results for AvxPermuteFloatIl()
Lower lane
des[0]:   6.3246  ind[0]:     3  src[0]:   3.1623
des[1]:   5.4772  ind[1]:     2  src[1]:   4.4721
des[2]:   5.4772  ind[2]:     2  src[2]:   5.4772
des[3]:   3.1623  ind[3]:     0  src[3]:   6.3246
Upper lane
des[4]:   7.7460  ind[4]:     1  src[4]:   7.0711
des[5]:   8.9443  ind[5]:     3  src[5]:   7.7460
des[6]:   8.9443  ind[6]:     3  src[6]:   8.3666
des[7]:   8.3666  ind[7]:     2  src[7]:   8.9443

Data Gather
The final sample program of this section, AvxGather, illuminates use of the x86-AVX gather 
instructions. A gather instruction conditionally copies elements from an array in memory 
to an XMM or YMM register. Each gather instruction requires a set of indices and a control 
mask that specifies the exact elements to copy from the array. The C++ and assembly 
language source for sample program AvxGather are shown in Listings 16-9 and 16-10.
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Listing 16-9. AvxGather.cpp

#include "stdafx.h"
#include "XmmVal.h"
#include "YmmVal.h"
#include <stdlib.h>
 
extern "C" void AvxGatherFloat_(YmmVal* des, YmmVal* indices, YmmVal* mask,
const float* x);
extern "C" void AvxGatherI64_(YmmVal* des, XmmVal* indices, YmmVal* mask,
const Int64* x);
 
void AvxGatherFloatPrint(const char* msg, YmmVal& des, YmmVal& indices,
YmmVal& mask)
{
    printf("\n%s\n", msg);
 
    for (int i = 0; i < 8; i++)
    {
        printf("ElementID: %d  ", i);
        printf("des: %8.1f  ", des.r32[i]);
        printf("indices: %4d  ", indices.i32[i]);
        printf("mask: 0x%08X\n", mask.i32[i]);
    }
}
 
void AvxGatherI64Print(const char* msg, YmmVal& des, XmmVal& indices,
YmmVal& mask)
{
    printf("\n%s\n", msg);
 
    for (int i = 0; i < 4; i++)
    {
        printf("ElementID: %d  ", i);
        printf("des: %8lld  ", des.i64[i]);
        printf("indices: %4d  ", indices.i32[i]);
        printf("mask: 0x%016llX\n", mask.i64[i]);
    }
}
 
void AvxGatherFloat(void)
{
    const int merge_no = 0;
    const int merge_yes = 0x80000000;
    const int n = 15;
    float x[n];
    __declspec(align(32)) YmmVal des;
    __declspec(align(32)) YmmVal indices;
    __declspec(align(32)) YmmVal mask;
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    // Initialize the test array
    srand(22);
    for (int i = 0; i < n; i++)
        x[i] = (float)(rand() % 1000);
 
    // Load des with initial values
    for (int i = 0; i < 8; i++)
        des.r32[i] = -1.0f;
 
    // Initialize the indices
    indices.i32[0] = 2;
    indices.i32[1] = 1;
    indices.i32[2] = 6;
    indices.i32[3] = 5;
    indices.i32[4] = 4;
    indices.i32[5] = 13;
    indices.i32[6] = 11;
    indices.i32[7] = 9;
 
    // Initialize the mask value
    mask.i32[0] = merge_yes;
    mask.i32[1] = merge_yes;
    mask.i32[2] = merge_no;
    mask.i32[3] = merge_yes;
    mask.i32[4] = merge_yes;
    mask.i32[5] = merge_no;
    mask.i32[6] = merge_yes;
    mask.i32[7] = merge_yes;
 
    printf("\nResults for AvxGatherFloat()\n");
    printf("Test array\n");
    for (int i = 0; i < n; i++)
        printf("x[%02d]: %6.1f\n", i, x[i]);
    printf("\n");
 
    const char* s1 = "Values BEFORE call to AvxGatherFloat_()";
    const char* s2 = "Values AFTER call to AvxGatherFloat_()";
 
    AvxGatherFloatPrint(s1, des, indices, mask);
    AvxGatherFloat_(&des, &indices, &mask, x);
    AvxGatherFloatPrint(s2, des, indices, mask);
}
 
void AvxGatherI64(void)
{
    const Int64 merge_no = 0;
    const Int64 merge_yes = 0x8000000000000000LL;
    const int n = 15;
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    Int64 x[n];
    __declspec(align(32)) YmmVal des;
    __declspec(align(16)) XmmVal indices;
    __declspec(align(32)) YmmVal mask;
 
    // Initialize the test array
    srand(36);
    for (int i = 0; i < n; i++)
        x[i] = (Int64)(rand() % 1000);
 
    // Load des with initial values
    for (int i = 0; i < 4; i++)
        des.i64[i] = -1;
 
    // Initialize the indices and mask elements
    indices.i32[0] = 2;
    indices.i32[1] = 7;
    indices.i32[2] = 9;
    indices.i32[3] = 12;
 
    mask.i64[0] = merge_yes;
    mask.i64[1] = merge_yes;
    mask.i64[2] = merge_no;
    mask.i64[3] = merge_yes;
 
    printf("\nResults for AvxGatherI64()\n");
    printf("Test array\n");
    for (int i = 0; i < n; i++)
        printf("x[%02d]: %8lld\n", i, x[i]);
    printf("\n");
 
    const char* s1 = "Values BEFORE call to AvxGatherI64_()";
    const char* s2 = "Values AFTER call to AvxGatherI64_()";
 
    AvxGatherI64Print(s1, des, indices, mask);
    AvxGatherI64_(&des, &indices, &mask, x);
    AvxGatherI64Print(s2, des, indices, mask);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxGatherFloat();
    AvxGatherI64();
    return 0;
}
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Listing 16-10. AvxGather_.asm

        .model flat,c
        .code
 
; extern "C" void AvxGatherFloat_(YmmVal* des, YmmVal* indices, YmmVal*
mask, const float* x);
;
; Description:  The following function demonstrates use of the
;               vgatherdps instruction.
;
; Requires:     AVX2
 
AvxGatherFloat_ proc
        push ebp
        mov ebp,esp
        push ebx
 
; Load argument values. The contents of des are loaded into ymm0
; prior to execution of the vgatherdps instruction in order to
; demonstrate the conditional effects of the control mask.
        mov eax,[ebp+8]                     ;eax = ptr to des
        mov ebx,[ebp+12]                    ;ebx = ptr to indices
        mov ecx,[ebp+16]                    ;ecx = ptr to mask
        mov edx,[ebp+20]                    ;edx = ptr to x
        vmovaps ymm0,ymmword ptr [eax]      ;ymm0 = des (initial values)
        vmovdqa ymm1,ymmword ptr [ebx]      ;ymm1 = indices
        vmovdqa ymm2,ymmword ptr [ecx]      ;ymm2 = mask
 
; Perform the gather operation and save the results.
        vgatherdps ymm0,[edx+ymm1*4],ymm2   ;ymm0 = gathered elements
        vmovaps ymmword ptr [eax],ymm0      ;save des
        vmovdqa ymmword ptr [ebx],ymm1      ;save indices (unchanged)
        vmovdqa ymmword ptr [ecx],ymm2      ;save mask (all zeros)
 
        vzeroupper
        pop ebx
        pop ebp
        ret
AvxGatherFloat_ endp
 
; extern "C" void AvxGatherI64_(YmmVal* des, XmmVal* indices, YmmVal* mask,
const Int64* x);
;
; Description:  The following function demonstrates use of the vpgatherdq
;               instruction.
;
; Requires:     AVX2
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AvxGatherI64_ proc
        push ebp
        mov ebp,esp
        push ebx
 
; Load argument values. Note that the indices are loaded.
; into register XMM1.
        mov eax,[ebp+8]                     ;eax = ptr to des
        mov ebx,[ebp+12]                    ;ebx = ptr to indices
        mov ecx,[ebp+16]                    ;ecx = ptr to mask
        mov edx,[ebp+20]                    ;edx = ptr to x
        vmovdqa ymm0,ymmword ptr [eax]      ;ymm0 = des (initial values)
        vmovdqa xmm1,xmmword ptr [ebx]      ;xmm1 = indices
        vmovdqa ymm2,ymmword ptr [ecx]      ;ymm2 = mask
 
; Perform the gather and save the results.  Note that the
; scale factor matches the size of the gathered elements.
        vpgatherdq ymm0,[edx+xmm1*8],ymm2   ;ymm0 = gathered elements
        vmovdqa ymmword ptr [eax],ymm0      ;save des
        vmovdqa xmmword ptr [ebx],xmm1      ;save indices (unchanged)
        vmovdqa ymmword ptr [ecx],ymm2      ;save mask (all zeros)
 
        vzeroupper
        pop ebx
        pop ebp
        ret
AvxGatherI64_ endp
        end
 

Chapter 12 presented an overview of the x86-AVX gather instructions, including a 
graphic (see Figure 12-4) that illustrated execution of a gather instruction. You may find 
it helpful to review that material prior to perusing the comments and sample code in this 
section.

The C++ file AvxGather.cpp (see Listing 16-9) includes a function named 
AvxGatherFloat, which initializes a test case in order to demonstrate use of the 
vgatherdps (Gather Packed SPFP Values Using Signed Dword Indices) instruction. This 
function starts by initializing an array of single-precision floating-point values that will be 
used by the vgatherdps instruction as its source array. It then loads the necessary array 
indices into the YmmVal instance indices. Note that the values in indices are treated as 
signed integers. The YmmVal variable mask is initialized next, which selects the values that 
are ultimately copied from the source array to des. The AvxGather.cpp file also includes 
a function named AvxGatherI64. This function prepares a test array, a set of indices, and 
a control mask in order to illustrate use of the vpgatherdq (Gather Packed Qword Values 
Using Signed Dword Indices) instruction.

Listing 16-10 shows the assembly language code for sample program AvxGather. The 
AvxGatherFloat _ function loads des, indices, and mask into registers YMM0, YMM1, 
and YMM2, respectively. It also load a pointer to the source array x into register EDX.  
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The vgatherdps ymm0,[edx+ymm1*4],ymm2 instruction performs the actual gather 
operation. Note that the VSIB operand uses a scale factor of four, which designates 
that the size of each element in the source array is four bytes. The scale factor also 
specifies the size of the elements in the control mask. The use of an incorrect scale 
factor by a gather instruction will yield an invalid result. Following execution of the 
vgatherdps instruction, registers YMM0, YMM1, and YMM0 are saved to des, indices, 
and mask. The organization of assembly language function AvxGatherI64_ is similar to 
AvxGatherFloat_. One noteworthy difference between these two functions is the former’s 
use of XMM1 to hold the indices. The vpgatherdq ymm0,[edx+xmm1*8],ymm2 instruction 
uses a scale factor of eight since the instruction is gathering quadword values from the 
source array.

Output 16-4 shows the results for sample program AvxGather. The x86-AVX gather 
instructions are somewhat atypical in that they modify the source operand register that 
contains the control mask. This is illustrated in the output. The control mask register of 
a gather instruction is set to all zeros if the instruction completes its execution without 
causing a processor exception.

Output 16-4. Sample Program AvxGather

Results for AvxGatherFloat()
Test array
x[00]:  110.0
x[01]:  808.0
x[02]:   34.0
x[03]:  542.0
x[04]:  399.0
x[05]:  649.0
x[06]:  303.0
x[07]:  653.0
x[08]:  257.0
x[09]:  427.0
x[10]:  599.0
x[11]:   70.0
x[12]:  446.0
x[13]:  852.0
x[14]:  245.0
 
Values BEFORE call to AvxGatherFloat_()
ElementID: 0  des:     -1.0  indices:    2  mask: 0x80000000
ElementID: 1  des:     -1.0  indices:    1  mask: 0x80000000
ElementID: 2  des:     -1.0  indices:    6  mask: 0x00000000
ElementID: 3  des:     -1.0  indices:    5  mask: 0x80000000
ElementID: 4  des:     -1.0  indices:    4  mask: 0x80000000
ElementID: 5  des:     -1.0  indices:   13  mask: 0x00000000
ElementID: 6  des:     -1.0  indices:   11  mask: 0x80000000
ElementID: 7  des:     -1.0  indices:    9  mask: 0x80000000
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Values AFTER call to AvxGatherFloat_()
ElementID: 0  des:     34.0  indices:    2  mask: 0x00000000
ElementID: 1  des:    808.0  indices:    1  mask: 0x00000000
ElementID: 2  des:     -1.0  indices:    6  mask: 0x00000000
ElementID: 3  des:    649.0  indices:    5  mask: 0x00000000
ElementID: 4  des:    399.0  indices:    4  mask: 0x00000000
ElementID: 5  des:     -1.0  indices:   13  mask: 0x00000000
ElementID: 6  des:     70.0  indices:   11  mask: 0x00000000
ElementID: 7  des:    427.0  indices:    9  mask: 0x00000000
 
Results for AvxGatherI64()
Test array
x[00]:      156
x[01]:      446
x[02]:      988
x[03]:      748
x[04]:      731
x[05]:       87
x[06]:      109
x[07]:      207
x[08]:       43
x[09]:      890
x[10]:      528
x[11]:      686
x[12]:      710
x[13]:      125
x[14]:      255
 
Values BEFORE call to AvxGatherI64_()
ElementID: 0  des:       -1  indices:    2  mask: 0x8000000000000000
ElementID: 1  des:       -1  indices:    7  mask: 0x8000000000000000
ElementID: 2  des:       -1  indices:    9  mask: 0x0000000000000000
ElementID: 3  des:       -1  indices:   12  mask: 0x8000000000000000
 
Values AFTER call to AvxGatherI64_()
ElementID: 0  des:      988  indices:    2  mask: 0x0000000000000000
ElementID: 1  des:      207  indices:    7  mask: 0x0000000000000000
ElementID: 2  des:       -1  indices:    9  mask: 0x0000000000000000
ElementID: 3  des:      710  indices:   12  mask: 0x0000000000000000

Fused-Multiply-Add Programming
Fused-multiply-add operations are suitable for use in a wide variety of algorithmic 
domains, including computer graphics and signal processing. The sample program of 
this section, called AvxFma, demonstrates how to implement a common signal-processing 
technique using FMA instructions. Listings 16-11 and 16-12 contain the C++ and 
assembly language source code for sample program AvxFma.
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Listing 16-11. AvxFma.cpp

#include "stdafx.h"
#include "AvxFma.h"
#include <stdio.h>
#include <malloc.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdlib.h>
 
bool AvxFmaInitX(float* x, Uint32 n)
{
    const float degtorad = (float)(M_PI / 180.0);
    const float t_start = 0;
    const float t_step = 0.002f;
    const Uint32 m = 3;
    const float amp[m] = {1.0f, 0.80f, 1.20f};
    const float freq[m] = {5.0f, 10.0f, 15.0f};
    const float phase[m] = {0.0f, 45.0f, 90.0f};
    float t = t_start;
 
    srand(97);
 
    for (Uint32 i = 0; i < n; i++, t += t_step)
    {
        float x_total = 0;
 
        for (Uint32 j = 0; j < m; j++)
        {
            float omega = 2.0f * (float)M_PI * freq[j];
            float x_temp1 = amp[j] * sin(omega * t + phase[j] * degtorad);
            float noise = (float)((rand() % 300) - 150) / 10.0f;
            float x_temp2 = x_temp1 + x_temp1 * noise / 100.0f;
 
            x_total += x_temp2;
        }
 
        x[i] = x_total;
    }
 
    return true;
}
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void AvxFmaSmooth5Cpp(float* y, const float*x, Uint32 n, const float*
sm5_mask)
{
    for (Uint32 i = 2; i < n - 2; i++)
    {
        float sum = 0;
 
        sum += x[i - 2] * sm5_mask[0];
        sum += x[i - 1] * sm5_mask[1];
        sum += x[i + 0] * sm5_mask[2];
        sum += x[i + 1] * sm5_mask[3];
        sum += x[i + 2] * sm5_mask[4];
        y[i] = sum;
    }
}
 
void AvxFma(void)
{
    const Uint32 n = 512;
    float* x = (float*)_aligned_malloc(n * sizeof(float), 32);
    float* y_cpp = (float*)_aligned_malloc(n * sizeof(float), 32);
    float* y_a = (float*)_aligned_malloc(n * sizeof(float), 32);
    float* y_b = (float*)_aligned_malloc(n * sizeof(float), 32);
    float* y_c = (float*)_aligned_malloc(n * sizeof(float), 32);
    const float sm5_mask[] = { 0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f };
 
    printf("Results for AvxFma\n");
 
    if (!AvxFmaInitX(x, n))
    {
        printf("Data initialization failed\n");
        return;
    }
 
    AvxFmaSmooth5Cpp(y_cpp, x, n, sm5_mask);
    AvxFmaSmooth5a_(y_a, x, n, sm5_mask);
    AvxFmaSmooth5b_(y_b, x, n, sm5_mask);
    AvxFmaSmooth5b_(y_c, x, n, sm5_mask);
 
    FILE* fp;
    const char* fn = "__AvxFmaRawData.csv";
 
    if (fopen_s(&fp, fn, "wt") != 0)
    {
        printf("File open failed (%s)\n", fn);
        return;
    }
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    fprintf(fp, "i, x, y_cpp, y_a, y_b, y_c, ");
    fprintf(fp, "diff_ab, diff_ac, diff_bc\n");
 
    Uint32 num_diff_ab = 0, num_diff_ac = 0, num_diff_bc = 0;
 
    for (Uint32 i = 2; i < n - 2; i++)
    {
        bool diff_ab = false, diff_ac = false, diff_bc = false;
 
        if (y_a[i] != y_b[i])
        {
            diff_ab = true;
            num_diff_ab++;
        }
 
        if (y_a[i] != y_c[i])
        {
            diff_ac = true;
            num_diff_ac++;
        }
 
        if (y_b[i] != y_c[i])
        {
            diff_bc = true;
            num_diff_bc++;
        }
 
        const char* fs1 = "%15.8f, ";
        fprintf(fp, "%4d, ", i);
        fprintf(fp, fs1, x[i]);
        fprintf(fp, fs1, y_cpp[i]);
        fprintf(fp, fs1, y_a[i]);
        fprintf(fp, fs1, y_b[i]);
        fprintf(fp, fs1, y_c[i]);
        fprintf(fp, "%d, %d, %d, ", diff_ab, diff_ac, diff_bc);
        fprintf(fp, "\n");
    }
 
    fclose(fp);
    printf("\nRaw data saved to file %s\n", fn);
    printf("\nNumber of data point differences between\n");
    printf("  y_a and y_b: %u\n", num_diff_ab);
    printf("  y_a and y_c: %u\n", num_diff_ac);
    printf("  y_b and y_c: %u\n", num_diff_bc);
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    _aligned_free(x);
    _aligned_free(y_cpp);
    _aligned_free(y_a);
    _aligned_free(y_b);
    _aligned_free(y_c);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    try
    {
        AvxFma();
        AvxFmaTimed();
    }
 
    catch (...)
    {
        printf("Unexpected exception has occurred!\n");
        printf("File: %s (_tmain)\n", __FILE__);
    }
 
    return 0;
}

Listing 16-12. AvxFma_.asm

        .model flat,c
        .code
 
; void AvxFmaSmooth5a_(float* y, const float*x, Uint32 n, const float*
sm5_mask);
;
; Description:  The following function applies a weighted-average
;               smoothing transformation to the input array x using
;               scalar SPFP multiplication and addition.
;
; Requires:     AVX
 
AvxFmaSmooth5a_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Load argument values
        mov edi,[ebp+8]                     ;edi = ptr to y
        mov esi,[ebp+12]                    ;esi = ptr to x
        mov ecx,[ebp+16]                    ;ecx = n
        mov eax,[ebp+20]                    ;eax = ptr to sm5_mask
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        add esi,8                           ;adjust pointers and
        add edi,8                           ;counter to skip first 2
        sub ecx,4                           ;and last 2 elements
        align 16
 
; Apply smoothing operator to each element of x
@@:     vxorps xmm6,xmm6,xmm6               ;x_total=0
 
; Compute x_total += x[i-2]*sm5_mask[0]
        vmovss xmm0,real4 ptr [esi-8]
        vmulss xmm1,xmm0,real4 ptr [eax]
        vaddss xmm6,xmm6,xmm1
 
; Compute x_total += x[i-1]*sm5_mask[1]
        vmovss xmm2,real4 ptr [esi-4]
        vmulss xmm3,xmm2,real4 ptr [eax+4]
        vaddss xmm6,xmm6,xmm3
 
; Compute x_total += x[i]*sm5_mask[2]
        vmovss xmm0,real4 ptr [esi]
        vmulss xmm1,xmm0,real4 ptr [eax+8]
        vaddss xmm6,xmm6,xmm1
 
; Compute x_total += x[i+1]*sm5_mask[3]
        vmovss xmm2,real4 ptr [esi+4]
        vmulss xmm3,xmm2,real4 ptr [eax+12]
        vaddss xmm6,xmm6,xmm3
 
; Compute x_total += x[i+2]*sm5_mask[4]
        vmovss xmm0,real4 ptr [esi+8]
        vmulss xmm1,xmm0,real4 ptr [eax+16]
        vaddss xmm6,xmm6,xmm1
 
; Save x_total
        vmovss real4 ptr [edi],xmm6
 
        add esi,4
        add edi,4
        sub ecx,1
        jnz @B
 
        pop edi
        pop esi
        pop ebp
        ret
AvxFmaSmooth5a_ endp
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; void AvxFmaSmooth5b_(float* y, const float*x, Uint32 n, const float*
sm5_mask);
;
; Description:  The following function applies a weighted-average
;               smoothing transformation to the input array x using
;               scalar SPFP fused-multiply-add operations.
;
; Requires:     AVX2, FMA
 
AvxFmaSmooth5b_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Load argument values
        mov edi,[ebp+8]                     ;edi = ptr to y
        mov esi,[ebp+12]                    ;esi = ptr to x
        mov ecx,[ebp+16]                    ;ecx = n
        mov eax,[ebp+20]                    ;eax = ptr to sm5_mask
 
        add esi,8                           ;adjust pointers and
        add edi,8                           ;counter to skip first 2
        sub ecx,4                           ;and last 2 elements
        align 16
 
; Apply smoothing operator to each element of x
@@:     vxorps xmm6,xmm6,xmm6               ;set x_total1 = 0
        vxorps xmm7,xmm7,xmm7               ;set x_total2 = 0
 
; Compute x_total1 = x[i-2] * sm5_mask[0] + x_total1
        vmovss xmm0,real4 ptr [esi-8]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax]
 
; Compute x_total2 = x[i-1] * sm5_mask[1] + x_total2
        vmovss xmm2,real4 ptr [esi-4]
        vfmadd231ss xmm7,xmm2,real4 ptr [eax+4]
 
; Compute x_total1 = x[i] * sm5_mask[2] + x_total1
        vmovss xmm0,real4 ptr [esi]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax+8]
 
; Compute x_total2 = x[i+1] * sm5_mask[3] + x_total2
        vmovss xmm2,real4 ptr [esi+4]
        vfmadd231ss xmm7,xmm2,real4 ptr [eax+12]
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; Compute x_total1 = x[i+2] * sm5_mask[4] + x_total1
        vmovss xmm0,real4 ptr [esi+8]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax+16]
 
; Compute final x_total and save result
        vaddss xmm5,xmm6,xmm7
        vmovss real4 ptr [edi],xmm5
 
        add esi,4
        add edi,4
        sub ecx,1
        jnz @B
 
        pop edi
        pop esi
        pop ebp
        ret
AvxFmaSmooth5b_ endp
 
; void AvxFmaSmooth5c_(float* y, const float*x, Uint32 n, const float*
sm5_mask);
; Description:  The following function applies a weighted-average
;               smoothing transformation to the input array x using
;               scalar SPFP fused-multiply-add operations.
;
; Requires:     AVX2, FMA
 
AvxFmaSmooth5c_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Load argument values
        mov edi,[ebp+8]                     ;edi = ptr to y
        mov esi,[ebp+12]                    ;esi = ptr to x
        mov ecx,[ebp+16]                    ;ecx = n
        mov eax,[ebp+20]                    ;eax = ptr to sm5_mask
 
        add esi,8                           ;adjust pointers and
        add edi,8                           ;counter to skip first 2
        sub ecx,4                           ;and last 2 elements
        align 16
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; Apply smoothing operator to each element of x, save result to y
@@:     vxorps xmm6,xmm6,xmm6               ;set x_total = 0
 
; Compute x_total = x[i-2] * sm5_mask[0] + x_total
        vmovss xmm0,real4 ptr [esi-8]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax]
 
; Compute x_total = x[i-1] * sm5_mask[1] + x_total
        vmovss xmm0,real4 ptr [esi-4]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax+4]
 
; Compute x_total = x[i] * sm5_mask[2] + x_total
        vmovss xmm0,real4 ptr [esi]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax+8]
 
; Compute x_total = x[i+1] * sm5_mask[3] + x_total
        vmovss xmm0,real4 ptr [esi+4]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax+12]
 
; Compute x_total = x[i+2] * sm5_mask[4] + x_total
        vmovss xmm0,real4 ptr [esi+8]
        vfmadd231ss xmm6,xmm0,real4 ptr [eax+16]
 
; Save result
        vmovss real4 ptr [edi],xmm6
 
        add esi,4
        add edi,4
        sub ecx,1
        jnz @B
 
        pop edi
        pop esi
        pop ebp
        ret
AvxFmaSmooth5c_ endp
        end
 

Smoothing transformations are often used to reduce the amount of noise that’s 
present in a signal, as shown in Figure 16-2. In this figure, the raw signal in the top 
graph contains a fair amount of noise. The signal in the bottom graph presents the data 
subsequent to the application of a smoothing operator. A smoothing operator is a set of 
constant weight values that are applied to each raw signal data point and its adjacent 
neighbors. Figure 16-3 illustrates this technique in greater detail. The application 
of a smoothing operator to each raw signal data point normally involves successive 
multiplications and additions. This means that data-smoothing algorithms are ideal for 
implementation using FMA operations.
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Figure 16-2. Illustration of a raw data signal (top) and its smoothed counterpart (bottom)
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Figure 16-3. Application of a smoothing operator to a raw signal data point
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The C++ file AvxFma.cpp (see Listing 16-11) contains a function named AvxFmaInitX. 
This function constructs a synthetic raw data signal and saves the corresponding data 
points to an array for test purposes. The raw data signal consists of three sinusoidal 
waveforms that are summed along with some random noise. The raw data signal 
corresponds to the top graph in Figure 16-2. Following AvxFmaInitX is a function named 
AvxFmaSmooth5Cpp, which applies the smoothing operator to the raw data signal x. Note 
that the smoothing operator is not applied to the first two and last two data points in x in 
order to simplify both the C++ and assembly language versions of the algorithm.

The other function of note in AvxFma.cpp is called AvxFma. This function allocates 
space for the required signal arrays, invokes the various smoothing functions, and saves 
the results. Besides the function AvxFmaSmooth5Cpp, AvxFma also calls the smoothing 
functions AvxFmaSmooth5a_, AvxFmaSmooth5b_, and AvxFmaSmooth5c_. These functions 
implement the smoothing algorithm using different assembly language instruction 
sequences.

Listing 16-12 shows the source code for the aforementioned assembly language 
smoothing functions. The AvxFmaSmooth5a_ function carries out the smoothing 
technique using a series of vmulss and vaddss instructions. Note that when performing 
multiplication, the AvxFmaSmooth5a_ function alternates between XMM register pairs, 
which improves performance. The AvxFmaSmooth5b_ function takes advantage of the 
vfmadd231ss (Fused Multiply-Add of Scalar Single-Precision Floating-Point Values) 
instruction to perform data smoothing. This function employs multiple XMM registers 
to compute two intermediate FMA results. These intermediate values are then summed 
using a vaddss instruction, which generates the final result.

Effective use of the FMA instructions often requires a bit of programming diligence 
in order to avoid inadvertent performance delays. For example, the AvxFmaSmooth5c_ 
function also employs the vfmadd231ss instruction, but each instruction uses XMM6 
as its destination register. This creates a detrimental data dependency that prevents the 
processor from fully exploiting all of its FMA execution units (processor execution units 
are discussed in Chapter 21).

Table 16-2 contains timing measurements for the various smoothing functions in 
sample program AvxFma. Note that the mean execution time of the Smooth5b_ function, 
which uses FMA instructions, is about 5% faster than the non-FMA function Smooth5a_. 
In other words, performing five FMA operations is noticeably faster than five discrete 
multiplications and additions. Also note that the intentional data dependency added 
to Smooth5c_ causes it to execute about 7% slower than Smooth5b_, even though both 
functions use the vfmadd231ss instruction. The Smooth5c_ function is also slower 
than the non-FMA function Smooth5a_. The lesson of sample program AvxFma is that 
simple replacement of discrete multiplications and additions with an equivalent FMA 
instruction is not guaranteed to improve performance, and may actually be slower if the 
code contains critical data dependencies.
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Not surprisingly, a function that performs its calculations using FMA operations 
normally generates slightly different results than an equivalent function using discrete 
multiplication and addition. This is confirmed by the results of sample program AvxFma 
(see Output 16-5), which shows the number of data point differences between the various 
result arrays. The output file __AvxFmaRawData.csv contains the raw data points along 
with the smoothed values computed by each implementation of the algorithm. Table 16-3 
contains a few examples of data points from this file that are different. For this sample 
program, the magnitudes of these differences are insignificant given that the smoothing 
algorithm performs only five multiply-add operations per data point. The benefits of 
FMA’s improved precision are likely to be more apparent in algorithms that require 
numerous multiply-add operations or in programs where the accumulation of rounding 
errors must be kept to a minimum.

Output 16-5. Sample Program AvxFma

Results for AvxFma
 
Raw data saved to file __AvxFmaRawData.csv
 
Number of data point differences between
  y_a and y_b: 178
  y_a and y_c: 178
  y_b and y_c: 0
 
Benchmark times saved to file __AvxFmaTimed.csv

Table 16-2. Mean Execution Times (in Microseconds) of the Smoothing Functions  
(50,000 Data Points)

CPU C++ Smooth5a_

vmulss,vaddss

Smooth5b_

vfmadd231ss

Smooth5c_

vfmadd231ss

(One XMM reg.)

Intel Core i7-4770 76.4 73.7 70.2 75.1

Intel Core i7-4600U 116.7 109.1 104.5 112.4

Table 16-3. Examples of Data Point Values Using Various Smoothing Algorithms

Index x C++ Smooth5a_ Smooth5b_ Smooth5c_

4 1.89155102 1.90318263 1.90318263 1.90318251 1.90318251

17 -0.323192 -0.28281462 -0.28281462 -0.28281465 -0.28281465

120 -0.37265474 -0.19113629 -0.19113629 -0.19113627 -0.19113627

135 1.30851579 1.29426527 1.29426527 1.29426503 1.29426503

482 -2.9402566 -2.96991372 -2.96991372 -2.96991324 -2.96991324
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General-Purpose Register Instructions
Processors based on recent micro architectures such as Has well include several new 
general-purpose register instructions. These instructions can be used to carry out flagless 
multiplication and shift operations, which are faster than their flag-based counterparts. 
Instructions are also available that support enhanced bit-manipulation operations. The 
sample code in this section illustrates how to perform flagless multiplications and shifts. 
It also demonstrates use of several enhanced bit-manipulation instructions.

Flagless Multiplication and Bit Shifts
In this section, you examine a sample program named AvxGprMulxShiftx, which 
illustrates use of the flagless unsigned integer multiplication and shift instructions. 
Listings 16-13 and 16-14 show the C++ and assembly language source code for sample 
program AvxGprMulxShiftx.

Listing 16-13. AvxGprMulxShiftx.cpp

#include "stdafx.h"
#include "MiscDefs.h"
 
extern "C" Uint64 AvxGprMulx_(Uint32 a, Uint32 b, Uint8 flags[2]);
extern "C" void AvxGprShiftx_(Int32 x, Uint32 count, Int32 results[3]);
 
void AvxGprMulx(void)
{
    const int n = 3;
    Uint32 a[n] = {64, 3200, 100000000};
    Uint32 b[n] = {1001, 12, 250000000};
 
    printf("Results for AvxGprMulx()\n");
    for (int i = 0; i < n; i++)
    {
        Uint8 flags[2];
        Uint64 c = AvxGprMulx_(a[i], b[i], flags);
 
        printf("Test case %d\n", i);
        printf("  a: %u  b: %u  c: %llu\n", a[i], b[i], c);
        printf("  status flags before mulx: 0x%02X\n", flags[0]);
        printf("  status flags after mulx:  0x%02X\n", flags[1]);
    }
}
 
void AvxGprShiftx(void)
{
    const int n = 4;
    Int32 x[n] = { 0x00000008, 0x80000080, 0x00000040, 0xfffffc10 };
    Uint32 count[n] = { 2, 5, 3, 4 };
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    printf("\nResults for AvxGprShiftx()\n");
    for (int i = 0; i < n; i++)
    {
        Int32 results[3];
 
        AvxGprShiftx_(x[i], count[i], results);
        printf("Test case %d\n", i);
        printf("  x:    0x%08X (%11d) count: %u\n", x[i], x[i], count[i]);
        printf("  sarx: 0x%08X (%11d)\n", results[0], results[0]);
        printf("  shlx: 0x%08X (%11d)\n", results[1], results[1]);
        printf("  shrx: 0x%08X (%11d)\n", results[2], results[2]);
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxGprMulx();
    AvxGprShiftx();
    return 0;
}

Listing 16-14. AvxGprMulxShiftx_.asm

        .model flat,c
        .code
 
; extern "C" Uint64 AvxGprMulx_(Uint32 a, Uint32 b, Uint8 flags[2]);
;
; Description:  The following function demonstrates use of the
;               flagless unsigned integer multiply instruction mulx.
;
; Requires      BMI2.
 
AvxGprMulx_ proc
        push ebp
        mov ebp,esp
 
; Save copy of status flags before mulx
        mov ecx,[ebp+16]
        lahf
        mov byte ptr [ecx],ah
 
; Perform flagless multiplication.  The mulx instruction below computes
; the product of explicit source operand [ebp+8] and implicit source
; operand edx. The 64-bit result is saved to the register pair edx:eax.
        mov edx,[ebp+12]                    ;edx = b
        mulx edx,eax,[ebp+8]                ;edx:eax = [ebp+8] * edx
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; Save copy of status flags after mulx
        push eax
        lahf
        mov byte ptr [ecx+1],ah
        pop eax
 
        pop ebp
        ret
AvxGprMulx_ endp
 
; extern "C" void AvxGprShiftx_(Int32 x, Uint32 count, Int32 results[3]);
;
; Description:  The following function demonstrates use of the flagless
;               shift instructions sarx, shlx, and shrx.
;
; Requires      BMI2
 
AvxGprShiftx_ proc
        push ebp
        mov ebp,esp
 
; Load argument values and perform shifts. Note that each shift
; instruction requires three operands: DesOp, SrcOp, and CountOp.
        mov ecx,[ebp+12]            ;ecx = shift bit count
        mov edx,[ebp+16]            ;edx = ptr to results
 
        sarx eax,[ebp+8],ecx        ;shift arithmetic right
        mov [edx],eax
        shlx eax,[ebp+8],ecx        ;shift logical left
        mov [edx+4],eax
        shrx eax,[ebp+8],ecx        ;shift logical right
        mov [edx+8],eax
 
        pop ebp
        ret
AvxGprShiftx_ endp
        end
 

The AvxGprMulxShiftx.cpp file (see Listing 16-13) contains two functions named 
AvxGprMulx and AvxGprShiftx. These functions set up test cases that demonstrate 
flagless multiplication and shift operations, respectively. In function AvxGprMulx, the 
flags array contains the values of the status bits in EFLAGS before and after each flagless 
multiplication operation.

Listing 16-14 shows the assembly language code for sample program 
AvxGprMulxShiftx. The AvxGprMulx_ function uses a mulx edx,eax,[ebp+8] (Unsigned 
Multiply Without Affecting Flags) instruction to perform flagless multiplication. This 
instruction multiplies the contents of memory location [ebp+8] by implicit operand EDX 
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and saves the 64-bit unsigned product to register pair EDX:EAX. Note that a lahf  
(Load Status Flags into AH register) instruction is used before and after mulx in order to 
verify that the status bits in EFLAGS were not modified.

The AvxGprShift_ function includes examples of the sarx, shlx, and shrx  
(Shift Without Affecting Flags) instructions. These instructions shift the first source 
operand by the count value that’s specified in the second source operand. The result is 
then saved to the destination operand. Output 16-6 shows the results for sample program 
AvxGprMulxShiftx.

Output 16-6. Sample Program AvxGprMulxShiftX

Results for AvxGprMulx()
Test case 0
  a: 64  b: 1001  c: 64064
  status flags before mulx: 0x46
  status flags after mulx:  0x46
Test case 1
  a: 3200  b: 12  c: 38400
  status flags before mulx: 0x93
  status flags after mulx:  0x93
Test case 2
  a: 100000000  b: 250000000  c: 25000000000000000
  status flags before mulx: 0x97
  status flags after mulx:  0x97
 
Results for AvxGprShiftx()
Test case 0
  x:    0x00000008 (          8) count: 2
  sarx: 0x00000002 (          2)
  shlx: 0x00000020 (         32)
  shrx: 0x00000002 (          2)
Test case 1
  x:    0x80000080 (-2147483520) count: 5
  sarx: 0xFC000004 (  -67108860)
  shlx: 0x00001000 (       4096)
  shrx: 0x04000004 (   67108868)
Test case 2
  x:    0x00000040 (         64) count: 3
  sarx: 0x00000008 (          8)
  shlx: 0x00000200 (        512)
  shrx: 0x00000008 (          8)
Test case 3
  x:    0xFFFFFC10 (      -1008) count: 4
  sarx: 0xFFFFFFC1 (        -63)
  shlx: 0xFFFFC100 (     -16128)
  shrx: 0x0FFFFFC1 (  268435393)
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Enhanced Bit Manipulation
The final sample program in this chapter, AvxGprBitManip, illustrates how to use some 
of the new bit-manipulation instructions. It also demonstrates an alternative method 
of accessing argument values on the stack. The source code for sample program 
AvxGprBitManip is shown in Listings 16-15 and 16-16.

Listing 16-15. AvxGprBitManip.cpp

#include "stdafx.h"
#include "MiscDefs.h"
 
extern "C" void AvxGprCountZeroBits_(Uint32 x, Uint32* lzcnt, Uint32* tzcnt);
extern "C" Uint32 AvxGprBextr_(Uint32 x, Uint8 start, Uint8 length);
extern "C" Uint32 AvxGprAndNot_(Uint32 x, Uint32 y);
 
void AvxGprCountZeroBits(void)
{
    const int n = 5;
    Uint32 x[n] = { 0x001000008, 0x00008000, 0x8000000, 0x00000001, 0 };
 
    printf("\nResults for AvxGprCountZeroBits()\n");
    for (int i = 0; i < n; i++)
    {
        Uint32 lzcnt, tzcnt;
 
        AvxGprCountZeroBits_(x[i], &lzcnt, &tzcnt);
        printf("x: 0x%08X  ", x[i]);
        printf("lzcnt: %2u  ", lzcnt);
        printf("tzcnt: %2u\n", tzcnt);
    }
}
 
void AvxGprExtractBitField(void)
{
    const int n = 3;
    Uint32 x[n] = { 0x12345678, 0x80808080, 0xfedcba98 };
    Uint8 start[n] = { 4, 7, 24 };
    Uint8 len[n] = { 16, 9, 8 };
 
    printf("\nResults for AvxGprExtractBitField()\n");
    for (int i = 0; i < n; i++)
    {
        Uint32 bextr = AvxGprBextr_(x[i], start[i], len[i]);
 
        printf("x: 0x%08X  ", x[i]);
        printf("start: %2u  ", start[i]);
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        printf("len:  %2u  ", len[i]);
        printf("bextr: 0x%08X\n", bextr);
    }
}
 
void AvxGprAndNot(void)
{
    const int n = 3;
    Uint32 x[n] = { 0xf000000f, 0xff00ff00, 0xaaaaaaaa };
    Uint32 y[n] = { 0x12345678, 0x12345678, 0xffaa5500 };
 
    printf("\nResults for AvxGprAndNot()\n");
    for (int i = 0; i < n; i++)
    {
        Uint32 andn = AvxGprAndNot_(x[i], y[i]);
        printf("x: 0x%08X  y: 0x%08X  z: 0x%08X\n", x[i], y[i], andn);
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    AvxGprCountZeroBits();
    AvxGprExtractBitField();
    AvxGprAndNot();
    return 0;
}

Listing 16-16. AvxGrpBitManip_.asm

        .model flat,c
        .code
 
; extern "C" void AvxGprCountZeroBits_(Uint32 x, Uint32* lzcnt, Uint32* tzcnt);
;
; Description:  The following function demonstrates use of the lzcnt and
;               tzcnt instructions.
;
; Requires:     BMI1, LZCNT
 
AvxGprCountZeroBits_ proc
        mov eax,[esp+4]                     ;eax = x
 
        lzcnt ecx,eax                       ;count leading zeros
        mov edx,[esp+8]
        mov [edx],ecx                       ;save result
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        tzcnt ecx,eax                       ;count trailing zeros
        mov edx,[esp+12]
        mov [edx],ecx                       ;save result
        ret
AvxGprCountZeroBits_ endp
 
; extern "C" Uint32 AvxGprBextr_(Uint32 x, Uint8 start, Uint8 length);
;
; Description:  The following function demonstrates use of the
;               bextr instruction.
;
; Requires:     BMI1
 
AvxGprBextr_ proc
        mov cl,[esp+8]                      ;cl = start index
        mov ch,[esp+12]                     ;ch = length of bit field
        bextr eax,[esp+4],ecx               ;eax = extracted bit field
        ret
AvxGprBextr_ endp
 
; extern "C" Uint32 AvxGprAndNot_(Uint32 x, Uint32 y);
;
; Description:  The following function demonstrates use of the
;               andn instruction.
;
; Requires:     BMI1
 
AvxGprAndNot_ proc
        mov ecx,[esp+4]
        andn eax,ecx,[esp+8]                ;eax = ~ecx & [esp+8]
        ret
AvxGprAndNot_ endp
        end
 

Most of the new bit-manipulation instructions are geared toward improving the 
performance of specialized algorithms such as data encryption and decryption. They  
also can be employed to simplify bit-manipulation operations in more mundane 
algorithms. The sample program AvxGprBitManip demonstrates how to use some of the 
bit-manipulation instructions that have broad generic applications.

The C++ file AvxGprBitManip.cpp (see Listing 16-15) contains three short functions 
that set up test cases for the assembly language functions. The first function, named 
AvxGprCountZeroBits, initializes an array of test values for use with the lzcnt (Count 
the Number of Leading Zero Bits) and tzcnt (Count the Number of Trailing Zero Bits) 
instructions. The second function, called AvxGprExtractBitField, demonstrates the 
bextr (Bit Field Extract) instruction. The final function in AvxGprBitManip is called 
AvxGprAndNot and it prepares several test values for use with the andn (Logical AND NOT) 
instruction.
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The assembly language functions that exercise the aforementioned bit-manipulation 
instructions are located in the AvxGprBitManip_.asm file (see Listing 16-16). The 
AvxGprCountZeroBits_ function demonstrates use of the lzcnt and tzcnt instructions, 
which count the number of leading and trailing zero bits, respectively, in the source 
operand. It also illustrates an alternative method of accessing argument values on the 
stack using the ESP register instead of EBP. Figure 16-4 shows the contents of the stack 
prior to execution of the mov eax,[esp+4] instruction, which uses the ESP register as a 
base pointer to access the argument x on the stack. This approach is suitable for short leaf 
functions (i.e., functions that do not call other functions). Note that register EBP is still 
considered a volatile register and its contents must be preserved. The drawback of using 
ESP instead of EBP is that the argument value offsets are not fixed; changing the value of 
ESP changes the offsets of any argument values (and local variables) on the stack.

The AvxGprBextr_ function exercises the bextr instruction. This instruction 
extracts a contiguous bit field from the first source operand using the start index and 
length specified by the second source operand. Note that the AvxGprBextr_ function 
uses the instructions mov cl,[esp+8] and mov ch,[esp+12] to transfer the start index 
and length into the correct positions of the second source operand. The last assembly 
language function is named AvxGprAndNot_. This function shows how to use the andn 
instruction, which computes DesOp = ~SrcOp1 & SrcOp2. The andn instruction is often 
used to simplify Boolean masking operations. Output 16-7 presents the results for sample 
program AvxGprBitManip.

Output 16-7. Sample Program AvxGprBitManip

Results for AvxGprCountZeroBits()
x: 0x01000008  lzcnt:  7  tzcnt:  3
x: 0x00008000  lzcnt: 16  tzcnt: 15
x: 0x08000000  lzcnt:  4  tzcnt: 27
x: 0x00000001  lzcnt: 31  tzcnt:  0
x: 0x00000000  lzcnt: 32  tzcnt: 32
 

x

Return Address ESP

High Memory

Low Memory

+4

+8

+12

lzcnt

tzcnt

.

.

.

�

Figure 16-4. Stack contents at entry to function AvxGprCountZeroBits_
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Results for AvxGprExtractBitField()
x: 0x12345678  start:  4  len:  16  bextr: 0x00004567
x: 0x80808080  start:  7  len:   9  bextr: 0x00000101
x: 0xFEDCBA98  start: 24  len:   8  bextr: 0x000000FE
 
Results for AvxGprAndNot()
x: 0xF000000F  y: 0x12345678  z: 0x02345670
x: 0xFF00FF00  y: 0x12345678  z: 0x00340078
x: 0xAAAAAAAA  y: 0xFFAA5500  z: 0x55005500

Summary
In this chapter, you learned how to use the cpuid instruction to detect processor support 
for x86-SSE, x86-AVX, and other x86 instruction set extensions. You also discovered how 
to exploit some of x86-AVX’s data-manipulation instructions. Finally, you examined 
sample code that highlighted use of several new general-purpose instructions, including 
flagless operations and enhanced bit manipulations.

Thus far, this book’s instructive material and sample code book has focused 
exclusively on x86-32 assembly language programming. This changes in the next chapter, 
where the focus shifts to learning about the x86’s 64-bit computational resources and 
programming environment.
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Chapter 17

X86-64 Core Architecture

Chapter 17 explores the fundamentals of the x86-64 core architecture. It begins with 
an overview of its internal architecture, which includes details of the execution units, 
general-purpose registers, instruction operands, and memory addressing modes. Next is 
a discussion of the differences between the x86-64 and x86-32 execution environments 
that programmers need to be aware of when coding assembly language functions. The 
final section of this chapter encapsulates the x86-64 instruction set. All of the material in 
this chapter assumes that you have a basic understanding of the x86-32 core architecture 
and the x86-32 instruction set.

Internal Architecture
From the perspective of an application program, the internal architecture of an x86-64 
processor can be logically partitioned into several distinct execution units, as shown in 
Figure 17-1. The core execution unit includes the general-purpose registers, RFLAGS 
register, and the RIP (or instruction pointer) register. Other execution units include the 
x87 FPU and the computational elements that perform SIMD operations. An executing 
task always uses the resources of the core execution unit; use of the x87 FPU or a SIMD 
resource is optional.
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The remainder of this section explores the x86-64 core execution unit in greater 
detail. It focuses on the execution elements that an application program uses, including 
the general-purpose registers, RFLAGS register, and the instruction pointer. Following this 
is an examination of x86-64 instruction operands and memory addressing modes. Use of 
the x87 FPU and MMX execution units by an x86-64 assembly language function is also 
mentioned later in this chapter. Chapter 19 discusses the x86-64 SIMD execution units.

General-Purpose Registers
The x86-64 core execution unit contains 16 64-bit general-purpose registers, which are 
used to perform arithmetic, logical, and address calculations. They also can be employed 
as pointers to reference data items in memory. The low-order doubleword, word, and 
byte of each 64-bit register are independently accessible and can be used to manipulate 
32-bit, 16-bit, and 8-bit wide operands. Figure 17-2 shows the complete set of general-
purpose registers.

RFLAGS

MXCSR

General Purpose 
Registers

AVX/SSE Control 
and Status

Program Status 
And Control

RAX

RBX

RDI

RBP

RSP

RSI

RDX

RCX

YMM0/XMM0

YMM1/XMM1

YMM5/XMM5

YMM6/XMM6

YMM7/XMM7

YMM4/XMM4

YMM3/XMM3

YMM2/XMM2

RIP

Instruction Pointer

X87 Control, Status, 
and

Tag Registers

X87 Register Stack
(MMX Registers)

AVX/SSE
Registers

R7 (MM7)

R6 (MM6)

R2 (MM2)

R1 (MM1)

R0 (MM0)

R3 (MM3)

R4 (MM4)

R5 (MM5)

R8

R9

R13

R14

R15

R12

R11

R10

YMM8/XMM8

YMM9/XMM9

YMM13/XMM13

YMM14/XMM14

YMM15/XMM15

YMM12/XMM12

YMM11/XMM11

YMM10/XMM10

Figure 17-1. X86-64 internal architecture
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It should be noted that a discrepancy exists regarding the names of the eight new 
byte registers. The Intel documentation refers to these registers as R8L-R15L. However, 
the Microsoft 64-bit assembler requires instructions to use the names that are shown 
in Figure 17-2. This book uses the names R8B-R15B in order to maintain consistency 
between the text and the sample code. The x86-64 platform also supports use of the 
legacy registers AH, BH, CH, and DH, albeit with some restrictions. These restrictions are 
discussed later in this chapter.

Similar to the x86-32 instruction set, the x86-64 instruction set includes some 
constraints on how the 64-bit registers can be used. For example, the single operand 
version of the imul instruction always returns a 128-bit product in register pair RDX:RAX. 
The idiv instruction requires its 128-bit dividend to be loaded in register pair RDX:RAX; 

AX

64-Bit and 32-Bit Registers

03163

RBX EBX

RCX ECX

RDX EDX

RSI ESI

RDI

RBP

RSP

R8

R10

R11

R9

R12

R13

R14

R15

EDI

EBP

ESP

R8D

R9D

R10D

R11D

R12D

R13D

R14D

R15D

ALRAX EAX

0715

BX BL

CX CL

DX DL

SI SIL

DI DIL

BP BPL

R14W R14B

R15W R15B

R9W R9B

R10W R10B

R11W R11B

SP SPL

R12W R12B

R13W R13B

R8W R8B

16-Bit and 8-Bit 
Registers

Figure 17-2. X86-64 general-purpose registers
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the 64-bit quotient and remainder are saved to RAX and RDX, respectively. All string 
instructions must use RSI and RDI as pointers to the source and destination strings,  
and any string instruction that employs a repeat prefix must use register RCX as the 
counter. Finally, the 64-bit rotate and shift instructions are required to use register CL to 
carry out variable-bit operations.

The processor uses the stack pointer register RSP to support function calls and 
returns. The call and ret instructions carry out their stack write and read operations 
using 64-bit wide operands. The push and pop instructions also use 64-bit operands. This 
means that the location of the stack in memory is usually aligned to an 8-byte boundary. 
Some run-time environments align the stack and RSP to a 16-byte boundary in order to 
enable aligned data transfers to and from an XMM register. Register RBP can be used as a 
stack frame pointer or as a general-purpose register.

RFLAGS Register
The RFLAGS register is a 64-bit wide register that contains various processor status flags 
and control bits. The low-order 32 bits of this register correspond to the EFLAGS register; 
the function of the auxiliary carry flag (AF), carry flag (CF), overflow flag (OF), parity flag 
(PF), sign flag (SF), and zero flag (ZF) are unchanged. The high-order 32-bits of RFLAGS 
are reserved for future use. The pushfq and popfq instructions can be used to push or pop 
RFLAGS onto or from the stack, respectively.

Instruction Pointer Register
The 64-bit RIP register contains the offset of the next instruction to be executed. Like 
its 32-bit counterpart, RIP is implicitly manipulated by the control-transfer instructions 
call, ret, jmp, and jcc. The processor also uses the RIP register to support a new 
memory operand addressing mode, which is discussed later in this chapter. It is not 
possible for a task to directly access the RIP register.

Instruction Operands
Most x86-64 instructions use operands, which designate the specific values that are 
acted upon. Nearly all instructions require a single destination operand along with one 
or more source operands. Most instructions require explicit specification of the source 
and destination operands. However, a number of x86-64 instructions use implicit or 
forced operands. X86-64 mode supports the same three basic operand types as x86-32 
mode: immediate, register, and memory. Table 17-1 shows examples of instructions that 
illustrate the various operand types.
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Memory Addressing Modes
The x86-64 instruction set requires up to four separate components in order to specify the 
location of an operand in memory. The four components include a constant displacement 
value, a base register, an index register, and a scale factor. Using these components, the 
processor calculates an effective address for a memory operand as follows:
 
EffectiveAddress = BaseReg + IndexReg * ScaleFactor + Disp
 

When calculating an x86-64 effective address, the processor uses the four 
effective address components in a manner that’s similar to an x86-32 effective address 
calculation. The base register (BaseReg) can be any general-purpose register. The index 
register (IndexReg) can be any general-purpose register except RSP. Valid scale factors 
(ScaleFactor) include 1, 2, 4, and 8. Finally, the displacement (Disp) is a constant 
8-bit, 16-bit or 32-bit signed offset that’s encoded within the instruction. Table 17-2 
illustrates the various x86-64 memory addressing modes using different forms of the 
mov instruction. Note that it is not necessary to explicitly specify all of the components 
required for an effective address calculation. The final size of an effective address 
calculation is always 64 bits.

Table 17-1. Examples of Basic Operand Types

Type Example Equivalent C/C++ Statement

Immediate mov rax,42 rax = 42

imul r12,-47 r12 *= -47

shl r15,8 r15 <<= 8

xor ecx,80000000h ecx ^= 0x80000000

sub r9b,14 r9b -= 14

Register mov rax,rbx rax = rbx

add rbx,r10 rbx += r10

mul rbx rdx:rax = rax * rbx

and r8w,0ff00h r8w &= 0xff00

Memory mov rax,[r13] rax = *r13

or rcx,[rbx+rsi*8] rcx |= *(rbx+rsi*8)

mov qword ptr [r8],17 *(long long*)r8 = 17

shl word ptr [r12],2 *(short*)r12 <<= 2
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The x86-64 instruction set also uses a new addressing mode to compute the effective 
address of a static operand in memory. The mov rax,[Val] instruction that’s shown in 
the first row of Table 17-2 is an example of RIP-relative (or instruction pointer relative) 
addressing. With RIP-relative addressing, the processor calculates an effective address 
using the contents of the RIP register and a signed 32-bit displacement value that’s 
encoded within the instruction. Figure 17-3 illustrates this calculation in greater detail. 
RIP-relative addressing allows the processor to reference a static operand using a 32-bit 
displacement instead of a 64-bit displacement, which saves code space. It also facilitates 
position-independent code. (The little-endian byte ordering that’s shown in Figure 17-3 is 
discussed in Chapter 1 and illustrated in Figure 1-1.)

Table 17-2. X86-64 Memory Operand Addressing Forms

Addressing Form Example

RIP + Disp mov rax,[Val]

BaseReg mov rax,[rbx]

BaseReg + Disp mov rax,[rbx+16]

IndexReg * SF + Disp mov rax,[r15*8+48]

BaseReg + IndexReg mov rax,[rbx+r15]

BaseReg + IndexReg + Disp mov rax,[rbx+r15+32]

BaseReg + IndexReg * SF mov rax,[rbx+r15*8]

BaseReg + IndexReg * SF + Disp mov rax,[rbx+r15*8+64]

00007FF778A06490

00007FF778A06497

00007FF778A0649A

48 8B 05 F9 67 00 00

48 03 C1

48 2B C2

RIP

mov rax ,[Val ]

add rax ,rcx

sub rax,rdx

00007FF778A0CC90 88 13 00 00 00 00 00 00

+ 

Memory Address Machine Code Instruction

Val = 5000

Note: Machine code uses little-endian byte ordering for displacement 
of Val.

Figure 17-3. Illustration of RIP-relative effective address calculation
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The one limitation of RIP-relative addressing is that the target operand must reside 
within a ± 2GB address window of the RIP register. For most programs, this limitation 
is rarely a concern. The calculation of a RIP-relative displacement value is usually 
determined automatically by the assembler during code generation. This means that you 
can use instructions such as mov eax,[MyVal] without having to worry about the details 
of the displacement value calculation.

Differences Between X86-64 and X86-32
Most existing x86-32 instructions have an x86-64 equivalent instruction that enables 
a function to exploit 64-bit wide addresses and operands. An x86-64 function can also 
perform calculations using instructions that manipulate 8-bit, 16-bit, or 32-bit registers 
and operands. Except for the mov instruction, the maximum size of an x86-64 mode 
immediate value is 32 bits. If an instruction manipulates a 64-bit wide register or memory 
operand, any specified 32-bit immediate value is signed-extended to 64 bits prior to its use.

The immediate value size limitation warrants some extra discussion since it affects 
the instruction sequences that a program must use to carry out certain operations. 
Figure 17-4 contains a few examples of instructions that use a 64-bit register with 
an immediate operand. In the first example, the mov rax,100 instruction loads an 
immediate value into the RAX register. Note that the machine code uses only 32 bits to 
encode the immediate value 100. This value is signed-extended to 64 bits and saved in 
RAX. The add rax,200 instruction that follows also sign-extends its immediate value to 
64 bits prior to performing the addition. The next example opens with a mov rcx,-2000 
instruction that loads a negative immediate value into RCX. The machine code for this 
instruction also uses only 32 bits to encode the immediate value -2000, which is signed-
extended to 64 bits and saved in RCX. The subsequent add rcx,1000 instruction yields a 
64-bit result of -1000.
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The third example employs a mov rdx,0ffh instruction to initialize register 
RDX. This is followed by an or rdx,800000000h instruction that sign-extends the 
immediate value 0x80000000 to 0xFFFFFFFF80000000, and then performs a logical 
bitwise inclusive OR operation. The value that’s shown for RDX is almost certainly not 
the intended result. The final example illustrates how to carry out an operation that 
requires a 64-bit immediate value. A mov r8,80000000h instruction loads the 64-bit value 
0x0000000080000000 into R8. As mention earlier in this section, the mov instruction is the 
only instruction that supports 64-bit immediate operands. Execution of the ensuing or 
rdx,r8 instruction yields the correct value.

The 32-bit size limitation for immediate values also applies to jmp and call 
instructions that specify relative-displacement targets. In these cases, the target of a jmp 
or call instruction must reside within a ± 2GB address window of the current RIP register. 
Program transfer control targets whose relative displacements exceed this window can 
only be accessed using a jmp or call instruction that employs an indirect operand (for 
example, jmp qword ptr [FuncPtr] or call rax). Like RIP-relative addressing, the 
size limitations described in this paragraph are unlikely to present obstacles for most 
assembly language functions.

Another difference between x86-32 and x86-64 mode is the effect that some 
instructions have on the upper 32 bits of a 64-bit general-purpose register. When using 
instructions that manipulate 32-bit registers and operands, high-order 32 bits of the 
corresponding 64-bit general-purpose register are zeroed during execution. For example, 
assume that register RAX contains the value 0x8000000000000000. Execution of the 

mov rax,100 0000000000000064h48 C7 C0 64 00 00 00

Machine Code Instruction DesOp Result

48 05 C0 C8 00 00 00 add rax,200 000000000000012Ch

mov rcx,-2000 FFFFFFFFFFFFF830h48 C7 C1 30 F8 FF FF

48 81 C1 E8 03 00 00 add rcx,1000 FFFFFFFFFFFFFC18h

mov rdx,0ffh 00000000000000FFh48 C7 C2 FF 00 00 00

48 81 CA 00 00 00 80 or rdx,80000000h FFFFFFFF800000FFh

mov rdx,0ffh 00000000000000FFh48 C7 C2 FF 00 00 00

49 B8 00 00 00 80 00 00 00 00 mov r8,80000000h 0000000080000000h

49 0B D0 or rdx,r8 00000000800000FFh

Note: Machine code immediate values are underlined.

Figure 17-4. Examples of using 64-bit registers with immediate operands
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instruction add eax,10 generates a result of 0x000000000000000A in RAX. However, 
when working with 8-bit or 16-bit registers and operands, the upper 56 or 48 bits of 
the corresponding 64-bit general-purpose register are not modified. Assuming again 
that if RAX contains 0x8000000000000000, execution of the instructions add al,20 or 
add ax,40 would yield RAX values of 0x8000000000000014 or 0x8000000000000028, 
respectively.

The final x86-64 versus x86-32 difference worthy of mention involves the 8-bit 
registers AH, BH, CH, and DH. These registers cannot be used with instructions that 
also reference one of the new 8-bit registers (that is, SIL, DIL, BPL, SPL, and R8B-15B). 
Instructions that reference the original 8-bit registers such as mov ah,bl and add dh,bl 
can still be used by x86-64 programs. However, mov ah,r8b and add dh,r8b are invalid 
instructions.

Instruction Set Overview
The following section presents an overview of the x86-64 instruction set. It begins with 
a synopsis of basic instruction use. Next is a short summary of instructions that are 
no longer valid in x86-64 mode. This is followed by a quick review of instructions that 
are either new or whose operation is somewhat different in x86-64 mode. The section 
concludes with a discussion of deprecated x86-64 computational resources.

Basic Instruction Use
The x86-64 instruction set is a logical extension of the x86-32 instruction set. Most x86-32 
instructions have been promoted to support 64-bit operands. In addition, 64-bit assembly 
language functions can still use instructions with 8-bit, 16-bit, and 32-bit operands, as 
illustrated in Table 17-3. Note that the memory operands in these example instructions 
are referenced using 64-bit registers, which is required in order to access the entire 64-bit 
effective address space. While it is possible in x86-64 mode to reference a memory operand 
using a 32-bit register (for example, mov r10,[eax]), the location of the operand must 
reside in the low 4GB portion of the 64-bit effective address space. Using 32-bit registers 
to access memory operands in x86-64 mode is not recommended since it introduces 
unnecessary code obfuscations and complicates software testing and debugging.

Table 17-3. Examples of X86-64 Instructions Using Various Operand Sizes

8-Bit 16-Bit 32-Bit 64-Bit

add al,bl add ax,bx add eax,ebx add rax,rbx

cmp dl,[r15] cmp dx,[r15] cmp edx,[r15] cmp rdx,[r15]

mul r10b mul r10w mul r10d mul r10

or [r8+rdi],al or [r8+rdi*2],ax or [r8+rdi*4],eax or [r8+rdi*8],rax

shl r9b,cl shl r9w,cl shl r9d,cl shl r9,cl
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Except for a few differences that are discussed later in this section, most of the x86-32 
instruction descriptions presented in Chapter 1 also are applicable to x86-64 instruction 
use. Additional information regarding the x86-64 instruction set is available in the 
reference manuals published by Intel and AMD, which can be downloaded from their 
respective websites. Appendix C contains a list of these manuals.

Invalid Instructions
A handful of rarely used x86-32 instructions are invalid for use in x86-64 mode. 
Table 17-4 lists these instructions. Somewhat surprisingly, early-generation x86-64 
processors did not support the lahf (Load Status Flags into AH Register) and sahf 
(Store AH into Flags) instructions in x86-64 mode (they still worked in x86-32 mode). 
Fortunately, these instructions were reinstated and should be available in most AMD 
and Intel processors marketed since 2006. A program can confirm processor support 
for the lahf and sahf instructions in x86-64 mode by testing the cpuid feature flag 
LAHF/SAHF.

Table 17-4. X86-64 Mode Invalid Instructions

Mnemonic Name

aaa ASCII Adjust After Addition

aad ASCII Adjust Before Division

aam ASCII Adjust After Multiplication

aas ASCII Adjust After Subtraction

bound Check Array Index Against Bounds

daa Decimal Adjust After Addition

das Decimal Adjust After Subtraction

into Interrupt if EFLAGS.OF is 1

popa/popad Pop All General-Purpose Registers

pusha/pushad Push All General-Purpose Registers

New Instructions
The x86 instruction set includes a number of new instructions that carry out their 
operations using 64-bit wide operands. It also modifies the behavior of a few existing 
instructions. Table 17-5 summarizes these instructions and uses the acronym GPR for 
general-purpose register.
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Table 17-5. X86-64 New Instructions

Mnemonic Description

cdqe Sign-extends the doubleword value in EAX and saves the result to RAX.

cmpsb

cmpsw

cmpsd

cmpsq

Compares the values at the memory locations pointed to by registers 
RSI and RDI; sets the status flags to indicate the results.

cmpxchg16b Compares RDX:RAX with an 16-byte memory operand and performs 
an exchange based on the results.

cqo Sign-extends the contents of RAX to RDX:RAX.

jrcxz Performs a jump to the specified memory location if the condition  
RCX == 0 is true.

lodsb

lodsw

lodsd

lodsq

Loads the value at the memory location pointed to by register RSI into 
the Al, AX, EAX, or RAX register.

movsb

movsw

movsd

movsq

Copies the value of the memory location specified by register RSI to 
the memory location specified by register RDI.

movxsd Copies and sign-extends a doubleword value from the source operand 
and saves it to the destination operand.

pop Pops the top-most item from the stack. This instruction copies the 
contents of the memory location pointed to by RSP to the specified 
GPR or memory location; RSP is then automatically adjusted to reflect 
the pop. This instruction cannot be used with 32-bit wide operands.

popfq Pops the top-most quadword from the stack and saves the low-order 
doubleword to the low-order 32 bits of RFLAGS. The high-order 32 bits 
of RFLAGS are set to zero. This instruction does not modify reserved 
bits and certain control bits in RFLAGS.

push Pushes a GPR, memory location, or immediate value onto the stack; 
RSP is automatically adjusted to reflect the push. This instruction 
cannot be used with 32-bit wide operands.

pushfq Pushes RFLAGS onto the stack.

(continued)
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Deprecated Resources
Processors that support the x86-64 instruction set also include the computational 
resources of SSE2. This means that x86-64 programs can safely use the packed integer 
capabilities of SSE2 instead of MMX. It also means that x86-64 programs can use the 
scalar floating-point resources of SSE2 instead of the x87 FPU. Programs can still take 
advantage of the MMX and x87 FPU instruction sets in an x86-64 execution environment, 
and such use might be appropriate in a legacy code migration situation. For new 
software development, however, use of the MMX and x87 FPU instruction sets is not 
recommended.

Summary
In this chapter, you learned about the core architecture of the x86-64 platform, including 
its execution units, general-purpose registers, instruction operands, and memory-
addressing modes. You also acquired important knowledge about the differences 
between the x86-64 and x86-32 execution environments and their associated instruction 
sets. In Chapter 18, you’ll focus on learning the fundamentals of x86-64 assembly 
language programming using sample code that elucidates most of the topics presented in 
this chapter.

Table 17-5. (continued)

Mnemonic Description

rep

repe/repz

repne/repnz

Repeats the specified string instruction while RCX != 0 and the 
specified compare condition are true.

scasb

scasw

scasd

scasq

Compares the value of the memory location specified by register RDI 
with the value contained in register AL, AX, EAX, or RAX; sets the 
status flags based on the comparison results.

stosb

stosw

stosd

stosq

Stores the contents of register AL, AX, EAX, or RAX to the memory 
location specified by register RDI.
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Chapter 18

X86-64 Core Programming

In the previous chapter, you learned about the core architecture of the x86-64 platform, 
including its execution units, general-purpose registers, instruction operands, and 
memory-addressing modes. You also became versed regarding the differences between 
the x86-32 and x86-64 execution environments and their corresponding instruction sets. 
In this chapter, you focus on the basics of x86-64 assembly language programming.

The content of this chapter is organized as follows:

The first section explains the basics of x86-64 assembly language •	
programming, including how to perform integer arithmetic, use 
memory-addressing modes, and carry out scalar floating-point 
arithmetic.

The next section elucidates the calling conventions that must be •	
observed by an x86-64 assembly language function in order to be 
callable from a high-level language such as C++.

The last section demonstrates x86-64 programming techniques •	
using arrays and text strings.

All of the sample code in this chapter requires an x86-64 compatible processor and 
operating system.

X86-64 Programming Fundamentals
This section introduces the essentials of x86-64 assembly language programming. It begins 
with a brief overview of the calling convention that must be observed in order to call an 
x86-64 assembly language function from C++. This is followed by a sample program that 
illustrates how to perform basic integer arithmetic using the x86-64 instruction set. The 
second sample program exemplifies use of commonly-used memory-addressing modes. 
The final two sample programs elucidate use of integer operands and scalar floating-point 
arithmetic in an x86-64 function.

Like its 32-bit counterpart, the Visual C++ 64-bit run-time environment defines 
a calling convention that must be observed by an x86-64 assembly language function. 
The calling convention designates each processor general-purpose register as volatile or 
non-volatile. It also applies a volatile or non-volatile classification to each XMM register. 
An x86-64 assembly language function can modify the contents of any volatile register, 
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but it must preserve the contents of the non-volatile registers. Table 18-1 lists the 64-bit 
volatile and non-volatile registers. Other aspects of the Visual C++ calling convention are 
explained throughout this chapter. Appendix B also contains a complete summary of the 
calling convention.

Table 18-1. Visual C++ 64-bit Volatile and Non-Volatile Registers

Register Type Volatile Registers Non-Volatile Registers

General-purpose RAX, RCX, RDX, R8, R9,  
R10, R11

RBX, RSI, RDI, RBP, RSP,  
R12, R13, R14, R15

X86-SSE XMM XMM0-XMM5 XMM6-XMM15

On systems that support x86-AVX, the upper 128 bits of each YMM register are 
classified as volatile. Visual C++ 64-bit programs normally don’t use the x87 FPU.  
X86-64 assembly language functions that use this resource are not required to preserve 
the contents of the x87 FPU register stack, which means that the entire register stack 
should be considered volatile.

Compared to the 32-bit calling convention, the Visual C++ 64-bit calling convention 
imposes stricter programming requirements on assembly language functions. These 
requirements vary depending on whether the function is a leaf or non-leaf function.  
Leaf functions are functions that:

Do not call any other functions.•	

Do not modify the contents of the RSP register.•	

Do not allocate any local stack space.•	

Do not modify any of the non-volatile general-purpose or XMM •	
registers.

Do not use exception handling.•	

X86-64 assembly language leaf functions are easier to code, but they’re only suitable 
for relatively simple computational tasks. A non-leaf function can use the entire x86-64  
register set, create a stack frame, allocate local stack space, or call other functions provided 
it complies with the calling convention’s precise requirements for prologs and epilogs.  
The sample code in this section consists of leaf functions that illustrate the fundamentals 
of x86-64 assembly language programming. You learn how to create non-leaf functions 
later in this chapter.

Integer Arithmetic
The first sample program that you examine is called IntegerArithmetic, which 
demonstrates how to perform basic integer arithmetic using the x86-64 instruction set. 
This sample program also illustrates use of the fundamental conventions that specify 
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how argument values are passed from a C++ function to an x86-64 assembly language 
function. Listings 18-1 and 18-2 show the C++ and assembly language source code for 
sample program IntegerArithmetic.

Listing 18-1. IntegerArithmetic.cpp

#include "stdafx.h"
#include "MiscDefs.h"
 
extern "C" Int64 IntegerAdd_(Int64 a, Int64 b, Int64 c, Int64 d, Int64 e,
Int64 f);
extern "C" Int64 IntegerMul_(Int8 a, Int16 b, Int32 c, Int64 d, Int8 e,
Int16 f, Int32 g, Int64 h);
extern "C" void IntegerDiv_(Int64 a, Int64 b, Int64 quo_rem_ab[2], Int64 c,
Int64 d, Int64 quo_rem_cd[2]);
 
void IntegerAdd(void)
{
    Int64 a = 100;
    Int64 b = 200;
    Int64 c = -300;
    Int64 d = 400;
    Int64 e = -500;
    Int64 f = 600;
 
    // Calculate a + b + c + d + e + f
    Int64 sum = IntegerAdd_(a, b, c, d, e, f);
 
    printf("\nResults for IntegerAdd\n");
    printf("a: %5lld b: %5lld c: %5lld\n", a, b, c);
    printf("d: %5lld e: %5lld f: %5lld\n", d, e, f);
    printf("sum: %lld\n", sum);
}
 
void IntegerMul(void)
{
    Int8 a = 2;
    Int16 b = -3;
    Int32 c = 8;
    Int64 d = 4;
    Int8 e = 3;
    Int16 f = -7;
    Int32 g = -5;
    Int64 h = 10;
 
    // Calculate a * b * c * d * e * f * g * h
    Int64 result = IntegerMul_(a, b, c, d, e, f, g, h);
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    printf("\nResults for IntegerMul\n");
    printf("a: %5d b: %5d c: %5d d: %5lld\n", a, b, c, d);
    printf("e: %5d f: %5d g: %5d h: %5lld\n", e, f, g, h);
    printf("result: %5lld\n", result);
}
 
void IntegerDiv(void)
{
    Int64 a = 102;
    Int64 b = 7;
    Int64 quo_rem_ab[2];
    Int64 c = 61;
    Int64 d = 9;
    Int64 quo_rem_cd[2];
 
    // Calculate a / b  and c / d
    IntegerDiv_(a, b, quo_rem_ab, c, d, quo_rem_cd);
 
    printf("\nResults for IntegerDiv\n");
    printf("a:   %5lld b:   %5lld ", a, b);
    printf("quo: %5lld rem: %5lld\n", quo_rem_ab[0], quo_rem_ab[1]);
    printf("c:   %5lld d:   %5lld ", c, d);
    printf("quo: %5lld rem: %5lld\n", quo_rem_cd[0], quo_rem_cd[1]);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    IntegerAdd();
    IntegerMul();
    IntegerDiv();
    return 0;
} 

Listing 18-2. IntegerArithmetic_.asm 

        .code
 
; extern "C" Int64 IntegerAdd_(Int64 a, Int64 b, Int64 c, Int64 d, Int64 e,
Int64 f)
;
; Description:  The following function demonstrates 64-bit integer
;               addition.
 
IntegerAdd_ proc
 
; Calculate sum of argument values
        add rcx,rdx                         ;rcx = a + b
        add r8,r9                           ;r8 = c + d
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        mov rax,[rsp+40]                    ;rax = e
        add rax,[rsp+48]                    ;rax = e + f
 
        add rcx,r8                          ;rcx = a + b + c + d
        add rax,rcx                         ;rax = a + b + c + d + e + f
 
        ret
IntegerAdd_ endp
 
; extern "C" Int64 IntegerMul_(Int8 a, Int16 b, Int32 c, Int64 d, Int8 e,
Int16 f, Int32 g, Int64 h);
;
; Description:  The following function demonstrates 64-bit signed
;               integer multiplication.
 
IntegerMul_ proc
 
; Calculate a * b
        movsx r10,cl                        ;r10 = sign_extend(a)
        movsx r11,dx                        ;r11 = sign_extend(b)
        imul r10,r11                        ;r10 = a * b
 
;Calculate c * d
        movsxd rcx,r8d                      ;rcx = sign_extend(c)
        imul rcx,r9                         ;rcx = c * d
 
; Calculate e * f
        movsx r8,byte ptr [rsp+40]          ;r8 = sign_extend(e)
        movsx r9,word ptr [rsp+48]          ;r9 = sign_extend(f)
        imul r8,r9                          ;r8 = e * f
 
; Calculate g * h
        movsxd rax,dword ptr [rsp+56]       ;rax = sign_extend (g)
        imul rax,[rsp+64]                   ;rax = g * h
 
; Compute final result
        imul r10,rcx                        ;r10 = a * b * c * d
        imul rax,r8                         ;rax = e * f * g * h
        imul rax,r10                        ;rax = final product
 
        ret
IntegerMul_ endp
 
; extern "C" void IntegerDiv_(Int64 a, Int64 b, Int64 quo_rem_ab[2], 
Int64 c, Int64 d, Int64 quo_rem_cd[2]);
;
; Description:  The following function demonstrates 64-bit signed
;               integer division.
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IntegerDiv_ proc
 
; Calculate a / b, save quotient and remainder
        mov [rsp+16],rdx                    ;save b
        mov rax,rcx                         ;rax = a
        cqo                                 ;rdx:rax = sign_extend(a)
        idiv qword ptr [rsp+16]             ;rax = quo a/b, rdx = rem a/b
        mov [r8],rax                        ;save quotient
        mov [r8+8],rdx                      ;save remainder
 
; Calculate c / d, save quotient and remainder
        mov rax,r9                          ;rax = c
        cqo                                 ;rdx:rax = sign_extend(c)
        idiv qword ptr [rsp+40]             ;rax = quo c/d, rdx = rem c/d
        mov r10,[rsp+48]                    ;r10 = ptr to quo_rem_cd
        mov [r10],rax                       ;save quotient
        mov [r10+8],rdx                     ;save remainder
 
        ret
IntegerDiv_ endp
        end
 

The C++ file IntegerArithmetic.cpp (see Listing 18-1) includes the header file 
MiscDefs.h, which contains a series of typedef statements for sized integer types. This 
is the same header file that was used by the 32-bit C++ sample code. The remainder 
of IntegerArithmetic.cpp contains three simple functions that perform test variable 
initialization, assembly language function execution, and results presentation. The 
primary purpose of the assembly language functions is to illustrate 64-bit argument 
passing, the layout of the stack, and 64-bit integer arithmetic.

Listing 18-2 shows the x86-64 assembly language code for sample program 
IntegerArithmetic. Toward the top of the IntegerArithmetic_asm file is a .code 
directive, which defines the start of a code block. The .model directive that was used in 
the x86-32 assembly language source files is neither required nor supported by the  
64-bit version of MASM. The IntegerAdd_ proc statement defines the entry point for the 
assembly language function IntegerAdd_, and the end of this function’s code section is 
demarcated by the IntegerAdd_ endp statement.

The first four integer or pointer arguments of a 64-bit Visual C++ function are passed 
in registers RCX, RDX, R8, and R9. Any additional arguments are passed via the stack. 
The Visual C++ 64-bit calling convention requires the caller of a function to allocate 32 
bytes of stack space for use by the called function. This uninitialized stack space, which 
is called the home area (or space), is primarily intended as a temporary storage area for 
argument values that are passed in registers. The home space can also be used by a called 
function to store other transient values. It should be noted that the caller of a function 
must always allocate 32 bytes of home space regardless of the number of actual argument 
values. Figure 18-1 illustrates layout of the stack and the argument registers at entry to 
IntegerAdd_.
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The IntegerAdd_ function returns the sum of its six 64-bit signed integer argument 
values. The first two instructions of this function, add rcx,rdx and add r8,r9, compute 
the sums a + b and c + d, respectively. A mov rax,[rsp+40] instruction then loads 
argument value e into register RAX. This is followed by an add rax,[rsp+48] instruction, 
which computes e + f. The next two instructions, add rcx,r8 and add rax,rcx, compute 
the final sum. A 64-bit assembly language function must use the RAX register to return a 
64-bit integer value to its caller. Since RAX already contains the final result, no additional 
mov instructions are necessary. The final instruction of IntegerAdd_ is a ret instruction.

The next assembly language function, IntegerMul_, demonstrates how to perform 
integer multiplication. Figure 18-2 illustrates layout of the stack and argument registers at 
entry to IntegerMul_. Note that argument values shorter than 64 bits are right-justified, 
either in a register or on the stack, and the high-order bits are undefined.

Return Address RSP
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Memory
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RDX Home 

.

.

.
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+24
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c

d
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R8
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Figure 18-1. Stack layout and register contents at entry to function IntegerAdd_
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Figure 18-2. Stack layout and register contents at entry to function IntegerMul_
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The IntegerMul_ function computes the product of its eight signed integer argument 
values. It begins with a movsx r10,cl instruction, which loads a sign-extended copy of 
argument value a into R10. A movsx r11,dx instruction performs a similar operation 
using the argument value b. This is followed by an imul r10,r11 instruction that 
computes a * b. The next two instructions, movsxd rcx,r8d and imul rcx,r9 calculate 
the product c * d. Note that the x86-64 instruction set defines a distinct mnemonic 
(movsxd) to perform a sign-extended move of a 32-bit value into a 64-bit register. 
Calculation of the intermediate products e * f and g * h occurs next using a series of 
movsx, movsxd, and imul instructions. The argument values e, f, g, and h are located on 
the stack and referenced using constant offsets relative to the RSP register. The final three 
imul instructions compute the final 64-bit product.

The final assembly language function is named IntegerDiv_. This function 
demonstrates how to perform 64-bit signed integer division. Figure 18-3 shows the 
layout of the stack at entry to IntegerDiv_. The first instruction of IntegerDiv_, mov 
[rsp+16],rdx, saves the contents of register RDX (or argument value b) to its home 
area on the stack. The next instruction, mov rax,rcx, copies the dividend value a into 
register RAX. A cqo (Convert Quadword to Double Quadword) instruction sign extends 
the contents of RAX to register pair RDX:RAX. This is followed by an idiv qword ptr 
[rsp+16] instruction that divides register pair RDX:RAX by the contents of [rsp+16]  
(or a / b). Following execution of the idiv instruction, registers RAX and RDX contain 
the quotient and remainder, respectively. These values are saved to the result array 
pointed to by R8, which corresponds to the argument variable quo_rem_ab. The next 
block of instructions computes c / d using a similar sequence of instructions. Output 
18-1 shows the results of the sample program IntegerArithmetic.
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b
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c
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RDX
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Figure 18-3. Stack layout and register contents at entry to function IntegerDiv_
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Output 18-1. Sample Program IntegerArithmetic

Results for IntegerAdd
a:   100 b:   200 c:  -300
d:   400 e:  -500 f:   600
sum: 500
 
Results for IntegerMul
a:     2 b:    -3 c:     8 d:     4
e:     3 f:    -7 g:    -5 h:    10
result: -201600
 
Results for IntegerDiv
a:     102 b:       7 quo:    14 rem:     4
c:      61 d:       9 quo:     6 rem:     7

Memory Addressing
The next sample program is called MemoryAddressing, which exemplifies use of 
frequently-used x86-64 memory-addressing modes. This sample program is a 64-bit 
version of the 32-bit sample program that you examined in Chapter 2. Listings 18-3 and 
18-4 contain the source code for sample program MemoryAddressing.

Listing 18-3. MemoryAddressing.cpp

#include "stdafx.h"
 
extern "C" int NumFibVals_, FibValsSum_;
extern "C" int MemoryAddressing_(int i, int* v1, int* v2, int* v3, int* v4);
 
int _tmain(int argc, _TCHAR* argv[])
{
    FibValsSum_ = 0;
 
    for (int i = -1; i < NumFibVals_ + 1; i++)
    {
        int v1 = -1, v2 = -1, v3 = -1, v4 = -1;
        int rc = MemoryAddressing_(i, &v1, &v2, &v3, &v4);
 
        printf("i: %2d  rc: %2d - ", i, rc);
        printf("v1: %5d v2: %5d v3: %5d v4: %5d\n", v1, v2, v3, v4);
    }
 
    printf("FibValsSum_: %d\n", FibValsSum_);
    return 0;
}
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Listing 18-4. MemoryAddressing_.asm

; Simple lookup table (.const section data is read only)
 
            .const
FibVals     dword 0, 1, 1, 2, 3, 5, 8, 13
            dword 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597
NumFibVals_ dword ($ - FibVals) / sizeof dword
            public NumFibVals_
 
            .data
FibValsSum_ dword ?             ;value to demo RIP-relative addressing
            public FibValsSum_
 
           .code
 
; extern "C" int MemoryAddressing_(int i, int* v1, int* v2, int* v3, 
int* v4);
;
; Description:  This function demonstrates various addressing modes
;               that can be used to access operands in memory.
;
; Returns:      0 = error (invalid table index)
;               1 = success
 
MemoryAddressing_ proc
 
; Make sure 'i' is valid
        cmp ecx,0
        jl InvalidIndex                     ;jump if i < 0
        cmp ecx,[NumFibVals_]
        jge InvalidIndex                    ;jump if i >= NumFibVals_
 
; Sign extend i for use in address calculations
        movsxd rcx,ecx                      ;sign extend i
        mov [rsp+8],rcx                     ;save copy of i
 
; Example #1 - base register
        mov r11,offset FibVals              ;r11 = FibVals
        shl rcx,2                           ;rcx = i * 4
        add r11,rcx                         ;r11 = FibVals + i * 4
        mov eax,[r11]                       ;eax = FibVals[i]
        mov [rdx],eax                       ;Save to v1
 
; Example #2 - base register + index register
        mov r11,offset FibVals              ;r11 = FibVals
        mov rcx,[rsp+8]                     ;rcx = i
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        shl rcx,2                           ;rcx = i * 4
        mov eax,[r11+rcx]                   ;eax = FibVals[i]
        mov [r8],eax                        ;Save to v2
 
; Example #3 - base register + index register * scale factor
        mov r11,offset FibVals              ;r11 = FibVals
        mov rcx,[rsp+8]                     ;rcx = i
        mov eax,[r11+rcx*4]                 ;eax = FibVals[i]
        mov [r9],eax                        ;Save to v3
 
; Example #4 - base register + index register * scale factor + disp
        mov r11,offset FibVals-42           ;r11 = FibVals - 42
        mov rcx,[rsp+8]                     ;rcx = i
        mov eax,[r11+rcx*4+42]              ;eax = FibVals[i]
        mov r10,[rsp+40]                    ;r10 = ptr to v4
        mov [r10],eax                       ;Save to v4
 
; Example #5 - RIP relative
        add [FibValsSum_],eax               ;Update sum
 
        mov eax,1                           ;set success return code
        ret
 
InvalidIndex:
        xor eax,eax                         ;set error return code
        ret
 
MemoryAddressing_ endp
        end
 

In the source code file MemoryAddressing.cpp (see Listing 18-3), the _tmain 
function contains a simple loop that exercises the assembly language function 
MemoryAddresssing_. This function uses the index value i to select values from an array 
of 32-bit integers. Following each call to MemoryAddressing_, the integer variables v1, v2, 
v3, and v4 contain the results of accessing the array using different addressing modes. 
These values are then displayed using the printf function for comparison purposes.

Toward the top of the MemoryAddressing_.asm file (see Listing 18-4) is an array 
named FibVals. This array contains a set of 32-bit constant integer values that are 
accessed using different memory-addressing modes. Next is a .data section that 
contains a 32-bit integer named FibValsSum_, which is used to demonstrate RIP-relative 
addressing. The MemoryAddressing_ function begins its execution by validating the 
argument value i that’s contained in register ECX. A movsxd rcx,ecx instruction sign 
extends i from 32 bits to 64 bits since this value is used to calculate the address of an 
element in FibVals. It’s then saved to the RCX home area on the stack for later use.

The remaining instructions in the MemoryAddressing_ function illustrate how to 
access the specified element in FibVals using different memory-addressing modes. 
The addressing modes used here are essentially the same as those employed in the 
32-bit version of function MemoryAddressing_, except for the use of 64-bit address 
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registers. Note that the operand in each mov r11,offset FibVals instruction is a 64-bit 
immediate value. All other x86-64 instructions use 32-bit immediate values as discussed 
in Chapter 17. In the MemoryAddressing_ function, the cmp ecx,[NumFibvals_] and add 
[FibValsSum_],eax instructions are examples of RIP-relative addressing. Output 18-2 
shows the results of the sample program MemoryAddressing.

Output 18-2. Sample Program MemoryAddressing

i: -1  rc:  0 - v1:    -1 v2:    -1 v3:    -1 v4:    -1
i:  0  rc:  1 - v1:     0 v2:     0 v3:     0 v4:     0
i:  1  rc:  1 - v1:     1 v2:     1 v3:     1 v4:     1
i:  2  rc:  1 - v1:     1 v2:     1 v3:     1 v4:     1
i:  3  rc:  1 - v1:     2 v2:     2 v3:     2 v4:     2
i:  4  rc:  1 - v1:     3 v2:     3 v3:     3 v4:     3
i:  5  rc:  1 - v1:     5 v2:     5 v3:     5 v4:     5
i:  6  rc:  1 - v1:     8 v2:     8 v3:     8 v4:     8
i:  7  rc:  1 - v1:    13 v2:    13 v3:    13 v4:    13
i:  8  rc:  1 - v1:    21 v2:    21 v3:    21 v4:    21
i:  9  rc:  1 - v1:    34 v2:    34 v3:    34 v4:    34
i: 10  rc:  1 - v1:    55 v2:    55 v3:    55 v4:    55
i: 11  rc:  1 - v1:    89 v2:    89 v3:    89 v4:    89
i: 12  rc:  1 - v1:   144 v2:   144 v3:   144 v4:   144
i: 13  rc:  1 - v1:   233 v2:   233 v3:   233 v4:   233
i: 14  rc:  1 - v1:   377 v2:   377 v3:   377 v4:   377
i: 15  rc:  1 - v1:   610 v2:   610 v3:   610 v4:   610
i: 16  rc:  1 - v1:   987 v2:   987 v3:   987 v4:   987
i: 17  rc:  1 - v1:  1597 v2:  1597 v3:  1597 v4:  1597
i: 18  rc:  0 - v1:    -1 v2:    -1 v3:    -1 v4:    -1
FibValsSum_: 4180

Integer Operands
Most x86-64 instructions can be used with operands ranging in size from 8 bits to 64 
bits. The sample program IntegerOperands illustrates how to perform common bitwise 
logical operations using various sized integers. The C++ and assembly language source 
code for this sample program are shown in Listings 18-5 and 18-6. 

Listing 18-5. IntegerOperands.cpp

#include "stdafx.h"
#include "MiscDefs.h"
 
// The following structure must match the structure that's
// declared in IntegerOperands_.asm.
typedef struct
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{
    Uint8 a8;
    Uint16 a16;
    Uint32 a32;
    Uint64 a64;
    Uint8 b8;
    Uint16 b16;
    Uint32 b32;
    Uint64 b64;
} ClVal;
 
extern "C" void CalcLogical_(ClVal* cl_val, Uint8 c8[3], Uint16 c16[3],
Uint32 c32[3], Uint64 c64[3]);
 
int _tmain(int argc, _TCHAR* argv[])
{
    ClVal x;
    Uint8 c8[3];
    Uint16 c16[3];
    Uint32 c32[3];
    Uint64 c64[3];
 
    x.a8 = 0x81;                   x.b8 = 0x88;
    x.a16 = 0xF0F0;                x.b16 = 0x0FF0;
    x.a32 = 0x87654321;            x.b32 = 0xF000F000;
    x.a64 = 0x0000FFFF00000000;    x.b64 = 0x0000FFFF00008888;
 
    CalcLogical_(&x, c8, c16, c32, c64);
 
    printf("\nResults for CalcLogical()\n");
 
    printf("\n8-bit operations\n");
    printf("0x%02X & 0x%02X = 0x%02X\n", x.a8, x.b8, c8[0]);
    printf("0x%02X | 0x%02X = 0x%02X\n", x.a8, x.b8, c8[1]);
    printf("0x%02X ^ 0x%02X = 0x%02X\n", x.a8, x.b8, c8[2]);
 
    printf("\n16-bit operations\n");
    printf("0x%04X & 0x%04X = 0x%04X\n", x.a16, x.b16, c16[0]);
    printf("0x%04X | 0x%04X = 0x%04X\n", x.a16, x.b16, c16[1]);
    printf("0x%04X ^ 0x%04X = 0x%04X\n", x.a16, x.b16, c16[2]);
 
    printf("\n32-bit operations\n");
    printf("0x%08X & 0x%08X = 0x%08X\n", x.a32, x.b32, c32[0]);
    printf("0x%08X | 0x%08X = 0x%08X\n", x.a32, x.b32, c32[1]);
    printf("0x%08X ^ 0x%08X = 0x%08X\n", x.a32, x.b32, c32[2]);
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    printf("\n64-bit operations\n");
    printf("0x%016llX & 0x%016llX = 0x%016llX\n", x.a64, x.b64, c64[0]);
    printf("0x%016llX | 0x%016llX = 0x%016llX\n", x.a64, x.b64, c64[1]);
    printf("0x%016llX ^ 0x%016llX = 0x%016llX\n", x.a64, x.b64, c64[2]);
 
    return 0;
} 

Listing 18-6. IntegerOperands_.asm

; The following structure must match the structure that's
; declared in IntegerOperands.cpp. Note the version below
; includes "pad" bytes, which are needed to account for the
; member alignments performed by the C++ compiler.
ClVal   struct
a8      byte ?
pad1    byte ?
a16     word ?
a32     dword ?
a64     qword ?
b8      byte ?
pad2    byte ?
b16     word ?
b32     dword ?
b64     qword ?
ClVal   ends
 
        .code
 
; extern "C" void CalcLogical_(ClVal* cl_val, Uint8 c8[3], Uint16 c16[3],
Uint32 c32[3], Uint64 c64[3]);
;
; Description:  The following function demonstrates logical operations
;               using different sizes of integers.
 
CalcLogical_ proc
 
; 8-bit logical operations
        mov r10b,[rcx+ClVal.a8]             ;r10b = a8
        mov r11b,[rcx+ClVal.b8]             ;r11b = b8
        mov al,r10b
        and al,r11b                         ;calc a8 & b8
        mov [rdx],al
        mov al,r10b
        or al,r11b                          ;calc a8 | b8
        mov [rdx+1],al
        mov al,r10b
        xor al,r11b                         ;calc a8 ^ b8
        mov [rdx+2],al
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; 16-bit logical operations
        mov rdx,r8                          ;rdx = ptr to c16
        mov r10w,[rcx+ClVal.a16]            ;r10w = a16
        mov r11w,[rcx+ClVal.b16]            ;r11w = b16
        mov ax,r10w
        and ax,r11w                         ;calc a16 & b16
        mov [rdx],ax
        mov ax,r10w
        or ax,r11w                          ;calc a16 | b16
        mov [rdx+2],ax
        mov ax,r10w
        xor ax,r11w                         ;calc a16 ^ b16
        mov [rdx+4],ax
 
; 32-bit logical operations
        mov rdx,r9                          ;rdx = ptr to c32
        mov r10d,[rcx+ClVal.a32]            ;r10d = a32
        mov r11d,[rcx+ClVal.b32]            ;r11d = b32
        mov eax,r10d
        and eax,r11d                        ;calc a32 & b32
        mov [rdx],eax
        mov eax,r10d
        or eax,r11d                         ;calc a32 | b32
        mov [rdx+4],eax
        mov eax,r10d
        xor eax,r11d                        ;calc a32 ^ b32
        mov [rdx+8],eax
 
; 64-bit logical operations
        mov rdx,[rsp+40]                    ;rdx = ptr to c64
        mov r10,[rcx+ClVal.a64]             ;r10 = a64
        mov r11,[rcx+ClVal.b64]             ;r11 = b64
        mov rax,r10
        and rax,r11                         ;calc a64 & b64
        mov [rdx],rax
        mov rax,r10
        or rax,r11                          ;calc a64 | b64
        mov [rdx+8],rax
        mov rax,r10
        xor rax,r11                         ;calc a64 ^ b64
        mov [rdx+16],rax
 
        ret
CalcLogical_ endp
        end
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Toward the top of the IntegerOperands.cpp file (see Listing 18-5) is a structure 
declaration named ClVal that contains standard-sized integer members. This structure is 
used to pass source operands to the assembly language function CalcLogical_. The _tmain 
function initializes an instance of ClVal, calls CalcLogical_, and displays the results.

The assembly language version of structure ClVal is declared in the 
IntegerOperands_.asm file (see Listing 18-6). When declaring structures, it is important 
to keep in mind that most C++ compilers will, by default, pad a structure in order to 
ensure proper alignment of multi-byte values. In the current program, the Visual C++ 
compiler adds extra bytes to properly align structure members a16 and b16. Assembly 
language structure declarations, however, are not automatically padded for proper 
alignment. This accounts for the additional structure members pad1 and pad2 in the 
assembly language version of ClVal.

Inside the CalcLogical_ function are four independent code blocks that carry 
out bitwise logical operations using various sized integer operands. The result of each 
logical operation is saved to the corresponding result array. This function also illustrates 
proper use of the suffixes that must be used to reference the low-order byte, word, and 
doubleword of registers R8-R15. Output 18-3 shows the results of the sample program 
IntegerOperands.

Output 18-3. Sample Program IntegerOperands

Results for CalcLogical()
 
8-bit operations
0x81 & 0x88 = 0x80
0x81 | 0x88 = 0x89
0x81 ^ 0x88 = 0x09
 
16-bit operations
0xF0F0 & 0x0FF0 = 0x00F0
0xF0F0 | 0x0FF0 = 0xFFF0
0xF0F0 ^ 0x0FF0 = 0xFF00
 
32-bit operations
0x87654321 & 0xF000F000 = 0x80004000
0x87654321 | 0xF000F000 = 0xF765F321
0x87654321 ^ 0xF000F000 = 0x7765B321
 
64-bit operations
0x0000FFFF00000000 & 0x0000FFFF00008888 = 0x0000FFFF00000000
0x0000FFFF00000000 | 0x0000FFFF00008888 = 0x0000FFFF00008888
0x0000FFFF00000000 ^ 0x0000FFFF00008888 = 0x0000000000008888
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Floating-Point Arithmetic
In Chapter 17 you learned that all x86-64 compatible processors include the scalar 
floating-point resources of SSE2, which means that you can perform floating-point 
arithmetic using the XMM registers instead of the x87 FPU. The availability of SSE2 also 
facilitates use of the XMM registers for scalar floating-point function argument and 
return  values. The sample program in this section is called FloatingPointArithmetic 
and illustrates how to perform scalar floating-point arithmetic in an x86-64 assembly 
language function. Listings 18-7 and 18-8 show the source code for sample program 
FloatingPointArithmetic.

Listing 18-7. FloatingPointArithmetic.cpp

#include "stdafx.h"
 
extern "C" double CalcSum_(float a, double b, float c, double d, float e,
double f);
extern "C" double CalcDist_(int x1, double x2, long long y1, double y2,
float z1, short z2);
 
void CalcSum(void)
{
    float a = 10.0f;
    double b = 20.0;
    float c = 0.5f;
    double d = 0.0625;
    float e = 15.0f;
    double f = 0.125;
 
    double sum = CalcSum_(a, b, c, d, e, f);
 
    printf("\nResults for CalcSum()\n");
    printf("a: %10.4f  b: %10.4lf c: %10.4f\n", a, b, c);
    printf("d: %10.4lf  e: %10.4f f: %10.4lf\n", d, e, f);
    printf("\nsum: %10.4lf\n", sum);
}
 
void CalcDist(void)
{
    int x1 = 5;
    double x2 = 12.875;
    long long y1 = 17;
    double y2 = 23.1875;
    float z1 = -2.0625;
    short z2 = -6;
 
    double dist = CalcDist_(x1, x2, y1, y2, z1, z2);
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    printf("\nResults for CalcDist()\n");
    printf("x1: %10d  x2: %10.4lf\n", x1, x2);
    printf("y1: %10lld  y2: %10.4lf\n", y1, y2);
    printf("z1: %10.4f  z2: %10d\n", z1, z2);
    printf("\ndist: %12.6lf\n", dist);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    CalcSum();
    CalcDist();
    return 0;
} 

Listing 18-8. FloatingPointArithmetic_.asm

        .code
 
; extern "C" double CalcSum_(float a, double b, float c, double d, float e,
double f);
;
; Description:  The following function demonstrates how to access
;               floating-point argument values in an x86-64 function.
 
CalcSum_ proc
 
; Sum the argument values
        cvtss2sd xmm0,xmm0                  ;promote a to DPFP
        addsd xmm0,xmm1                     ;xmm0 = a + b
 
        cvtss2sd xmm2,xmm2                  ;promote c to DPFP
        addsd xmm0,xmm2                     ;xmm0 = a + b + c
        addsd xmm0,xmm3                     ;xmm0 = a + b + c + d
 
        cvtss2sd xmm4,real4 ptr [rsp+40]    ;promote e to DPFP
        addsd xmm0,xmm4                     ;xmm0 = a + b + c + d + e
 
        addsd xmm0,real8 ptr [rsp+48]       ;xmm0 =  a + b + c + d + e + f
 
        ret
CalcSum_ endp
 
; extern "C" double CalcDist_(int x1, double x2, long long y1, double y2,
float z1, short z2);
;
; Description:  The following function demonstrates how to access mixed
;               floating-point and integer arguments values in an
;               x86-64 function.
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CalcDist_ proc
 
; Calculate xd = (x2 - x1) * (x2 - x1)
        cvtsi2sd xmm4,ecx                   ;convert x1 to DPFP
        subsd xmm1,xmm4                     ;xmm1 = x2 - x1
        mulsd xmm1,xmm1                     ;xmm1 = xd
 
; Calculate yd = (y2 - y1) * (y2 - y1)
        cvtsi2sd xmm5,r8                    ;convert y1 to DPFP
        subsd xmm3,xmm5                     ;xmm3 = y2 - y1
        mulsd xmm3,xmm3                     ;xmm3 = yd
 
; Calculate zd = (z2 - z1) * (z2 - z1)
        movss xmm0,real4 ptr [rsp+40]       ;xmm=0  = z1
        cvtss2sd xmm0,xmm0                  ;convert z1 to DPFP
        movsx eax,word ptr [rsp+48]         ;eax = sign-extend z2
        cvtsi2sd xmm4,eax                   ;convert z2 to DPFP
        subsd xmm4,xmm0                     ;xmm4 = z2 - z1
        mulsd xmm4,xmm4                     ;xmm4 = zd
 
; Calculate final distance sqrt(xd + yd + zd)
        addsd xmm1,xmm3                     ;xmm1 = xd + yd
        addsd xmm4,xmm1                     ;xmm4 = xd + yd + zd
        sqrtsd xmm0,xmm4                    ;xmm0 = sqrt(xd + yd + zd)
 
        ret
CalcDist_ endp
        end
 

The FloatingPointArithmetic.cpp file (see Listing 18-7) contains two functions 
that set up test cases for the assembly language functions CalcSum_ and CalcDist_. Note 
that the former function’s declaration includes only floating-point values while the latter 
function specifies a combination of floating-point and integer values. The purpose of 
these functions is to illustrate how the Visual C++ calling convention handles different 
types of numerical values.

According to the Visual C++ calling convention, the first four floating-point 
arguments are passed to a function using registers XMM0-XMM3. Any additional 
floating-point arguments are passed via the stack. If a function requires a combination of 
integer and floating-point arguments, the first four values (integer or floating-point) are 
passed using either a general-purpose or XMM register; any remaining arguments are 
passed on the stack. The calling convention treats registers XMM0-XMM5 as volatile and 
registers XMM6-XMM15 as non-volatile. A function must use register XMM0 to return a 
floating-point value to its caller.

Listing 18-8 contains the x86-64 assembly language source code for function CalcSum_. 
This function computes the sum of its six floating-point arguments. Figure 18-4 shows the 
contents of the stack and argument registers at entry to CalcSum_. Registers XMM0-XMM4 
contain argument values a, b, c, and d, respectively (bits 127-64 of each XMM register are 
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undefined and not shown). Argument values e and f are passed on the stack. Note that 
general-purpose registers RCX, RDX, R8, and R9 are undefined since the function CalcSum_ 
does not specify any integer arguments. The code for function CalcSum_ is straightforward; 
a series of addsd instructions sums up the argument values. The cvtss2sd instruction 
is also employed to promote the single-precision floating-point arguments a, c, and e 
to double-precision. Since the calculated sum is already in register XMM0, a final movsd 
instruction is not necessary.
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Memory
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RDX Home 

.

.

.

R9 Home
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Low
Memory

+8

+40

+24
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RDX

R8

R9

Registers

e

f
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XMM1b

a

XMM2

XMM3d

c

063

Figure 18-4. Stack layout and register contents at entry to function CalcSum_

For functions that include both integer and floating-point arguments, the caller must 
use either a general-purpose register or an XMM register depending on the argument 
type and position. If a called function’s first argument is an integer (or pointer) type, the 
value is passed using register RCX. If the first argument is a floating-point value, register 
XMM0 must be used. The second function argument must be placed in register RDX or 
XMM1, depending on whether it’s an integer or floating-point type. The caller must copy 
the third and fourth arguments to registers R8/XMM2 and R9/XMM3, respectively. Any 
additional arguments are passed using the stack.

The CalcDist_ function computes the distance between two points in three-
dimensional space. The first four arguments of this function are located in either a 
general-purpose or XMM register, depending on the argument type. The remaining 
arguments are passed via the stack, as shown in Figure 18-5. The arithmetic calculations 
carried out by CalcDist_ are straightforward. Note that the cvtsi2sd and cvtss2sd 
instructions are used to convert integer and single-precision floating-point argument 
values to double-precision floating-point. Output 18-4 shows the results of the sample 
program FloatingPointArithmetic.
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Output 18-4. Sample Program FloatingPointArithmetic

Results for CalcSum()
a:    10.0000  b:    20.0000 c:     0.5000
d:     0.0625  e:    15.0000 f:     0.1250
 
sum:    45.6875
 
Results for CalcDist()
x1:          5  x2:    12.8750
y1:         17  y2:    23.1875
z1:    -2.0625  z2:         -6
 
dist:    10.761259

X86-64 Calling Convention
In this section, you learn how to code an x86-64 non-leaf function. As mentioned earlier 
in this chapter, the Visual C++ calling convention imposes some strict programming 
requirements for prologs and epilogs in non-leaf functions. The calling convention also 
mandates the use of additional assembler directives, which are used by the assembler 
to generate static data that the Visual C++ run-time environment needs to process 
exceptions. The benefits of creating non-leaf functions include complete use of all 
general-purpose and XMM registers, stack frame pointers, local stack variables, and the 
ability to call other functions.
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Figure 18-5. Stack layout and register contents at entry to function CalcDist_
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The first three sample programs in this section illustrate how to code x86-64  
non-leaf functions using explicit instructions and assembler directives. They also convey 
critical programming information regarding the organization of a non-leaf function 
stack. The fourth sample program exemplifies use of several prolog and epilog macros, 
which can be employed to automate most of the programming labor that’s associated 
with non-leaf functions.

Basic Stack Frames
The first sample program in this section is named CallingConvention1. This program 
demonstrates how to initialize a stack frame pointer in an x86-64 assembly language 
function, which can be used to reference argument values and local variables on the 
stack. It also illustrates some of the programming protocols that an x86-64 assembly 
language function prolog and epilog must observe. Listings 18-9 and 18-10 show the  
C++ and assembly language source code for CallingConvention1.

Listing 18-9. CallingConvention1.cpp

#include "stdafx.h"
#include "MiscDefs.h"
 
extern "C" Int64 Cc1_(Int8 a, Int16 b, Int32 c, Int64 d, Int8 e, Int16 f,
Int32 g, Int64 h);
 
int _tmain(int argc, _TCHAR* argv[])
{
    Int8 a = 10, e = -20;
    Int16 b = -200, f = 400;
    Int32 c = 300, g = -600;
    Int64 d = 4000, h = -8000;
 
    Int64 x = Cc1_(a, b, c, d, e, f, g, h);
 
    printf("\nResults for CallingConvention1\n");
    printf("  a, b, c, d:  %8d %8d %8d %8lld\n", a, b, c, d);
    printf("  e, f, g, h:  %8d %8d %8d %8lld\n", e, f, g, h);
    printf("  x:           %8lld\n", x);
    return 0;
} 
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Listing 18-10. CallingConvention1_.asm

        .code
 
; extern "C" Int64 Cc1_(Int8 a, Int16 b, Int32 c, Int64 d, Int8 e, Int16 f,
Int32 g, Int64 h);
;
; Description:  The following function illustrates how to create and
;               use a basic x86-64 stack frame pointer.
 
Cc1_ proc frame
 
; Function prolog
        push rbp                            ;save caller's rbp register
        .pushreg rbp
 
        sub rsp,16                          ;allocate local stack space
        .allocstack 16
 
        mov rbp,rsp                         ;set frame pointer
        .setframe rbp,0
 
RBP_RA = 24                                 ;offset from rbp to ret addr
        .endprolog                          ;mark end of prolog
 
; Save argument registers to home area (optional)
        mov [rbp+RBP_RA+8],rcx
        mov [rbp+RBP_RA+16],rdx
        mov [rbp+RBP_RA+24],r8
        mov [rbp+RBP_RA+32],r9
 
; Sum the argument values a, b, c, and d
        movsx rcx,cl                        ;rcx = a
        movsx rdx,dx                        ;rdx = b
        movsxd r8,r8d                       ;r8 = c;
        add rcx,rdx                         ;rcx = a + b
        add r8,r9                           ;r8 = c + d
        add r8,rcx                          ;r8 = a + b + c + d
        mov [rbp],r8                        ;save a + b + c + d
 
; Sum the argument values e, f, g, and h
        movsx rcx,byte ptr [rbp+RBP_RA+40]  ;rcx = e
        movsx rdx,word ptr [rbp+RBP_RA+48]  ;rdx = f
        movsxd r8,dword ptr [rbp+RBP_RA+56] ;r8 = g
        add rcx,rdx                         ;rcx = e + f
        add r8,qword ptr [rbp+RBP_RA+64]    ;r8 = g + h
        add r8,rcx                          ;r8 = e + f + g + h
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; Compute the final sum
        mov rax,[rbp]                       ;rax = a + b + c + d
        add rax,r8                          ;rax = final sum
 
; Function epilog
        add rsp,16                          ;release local stack space
        pop rbp                             ;restore caller's rbp register
        ret
Cc1_    endp
        end
 

The purpose of the code in the CallingConvention1.cpp file (see Listing 18-9) is to 
initialize a test case for the assembly language function Cc1_. This function calculates 
and returns the sum of its eight signed-integer argument values. The results are then 
displayed using a series of calls to printf.

The Cc1_ function is located in the CallingConvention1_.asm file (see Listing 
18-10). Following the .code directive is the Cc1_ proc fame statement. The proc 
statement marks the beginning of the function’s prolog and the frame attribute notifies 
the assembler that the function Cc1_ uses a stack frame pointer. It also instructs the 
assembler to generate static table data that the Visual C++ run-time environment uses to 
process exceptions. The ensuing push rbp instruction saves the caller’s RBP register on 
the stack since the Cc1_ function uses this register as its stack frame pointer. The .pushreg 
rbp statement that follows is an assembler directive that saves offset information about 
the push rbp instruction in the exception handling tables. Keep in mind that assembler 
directives are not executable instructions; they are directions to the assembler on how to 
perform specific actions during assembly of the source code.

A sub rsp,16 instruction allocates 16 bytes of stack space for local variables. The 
Cc1_ function only uses eight bytes of this space, but the x86-64 calling convention 
requires non-leaf functions to maintain 16-byte alignment of the stack pointer outside 
of the prolog. You learn more about stack pointer alignment requirements later in this 
section. The next statement, .allocstack 16, is an assembler directive that saves local 
stack size allocation information in the run-time exception handling tables.

The mov rbp,rsp instruction initializes register RBP as the stack frame pointer, and 
the .setframe rbp,0 directive notifies the assembler of this action. The offset value 0 
that’s included in the .setframe directive is the difference in bytes between RSP and RBP. 
In function Cc1_, registers RSP and RBP are the same so the offset value is zero. Later in 
this section, you learn more about the .setframe directive. It should be noted that x86-64 
assembly language functions can use any non-volatile register as a stack frame pointer. 
Using RBP provides consistency between x86-32 and x86-64 functions. The final assembler 
directive, .endprolog, signifies the end of the prolog for function Cc1_. Figure 18-6 shows 
the stack layout and argument registers following completion of the prolog.
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The next block of instructions saves registers RCX, RDX, R8, and R9 to their 
respective home areas on this stack. This action is optional and included in Cc1_ for 
illustrative purposes. Note that the offset of each mov instruction includes the RBP_RA 
symbol, which equals 24 and represents the extra offset bytes (compared to a standard 
leaf function) needed to correctly reference the home area of Cc1_. Another option 
allowed by the Visual C++ calling convention is to save an argument register to its 
corresponding home area prior to the push rbp instruction using RSP as a base register 
(e.g., mov [rsp+8],rcx, mov [rsp+16],rdx, and so on). Also keep in mind that a function 
can use its home area to store other temporary values. When used for alternative storage 
purposes, the home area should not be referenced by an assembly language instruction 
until after the .endprologdirective.

Following the argument register save operation, the function Cc1_ sums argument 
values a, b, c, and d. It then saves this intermediate sum to LocalVar1 on the stack using 
a mov [rbp],r8 instruction. Note that the summation calculation sign-extends argument 
values a, b, and c using a movsx or movsxd instruction. A similar sequence of instructions 
is used to sum argument values e, f, g, and h, which are located on the stack and 
referenced using the stack frame pointer RBP and a constant offset. The RBP_RA symbol is 
also used here to account for the extra stack space needed to reference argument values 
on the stack. The two intermediate sums are then added to produce the final result in 
register RAX.
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Figure 18-6. Stack layout and register contents at the end of the prolog for function Cc1_
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An x86-64 function epilog must release any local stack storage space that was 
allocated in the prolog, restore any non-volatile registers that were saved on the stack, and 
execute a function return. The add rsp,16 instruction releases the 16 bytes of stack space 
that Cc1_ allocated in its prolog. This is followed by a pop rbp instruction, which restores 
the caller’s RBP register. The obligatory ret instruction is next. Output 18-5 shows the 
results of the sample program CallingConvention1.

Output 18-5. Sample Program CallingConvention1

Results for CallingConvention1
  a, b, c, d:        10     -200      300     4000
  e, f, g, h:       -20      400     -600    -8000
  x:              -4110

Using Non-Volatile Registers
The next sample program, which is named CallingConvention2, demonstrates how 
to use the non-volatile general-purpose registers in an x86-64 function. It also provides 
additional programming details regarding the stack frame and use of local variables. The 
C++ and assembly language source code for sample program CallingConvention2 are 
shown in Listings 18-11 and 18-12.

Listing 18-11. CallingConvention2.cpp

#include "stdafx.h"
#include "MiscDefs.h"
 
extern "C" bool Cc2_(const Int64* a, const Int64* b, Int32 n, Int64 * sum_a,
Int64* sum_b, Int64* prod_a, Int64* prod_b);
 
int _tmain(int argc, _TCHAR* argv[])
{
    const __int32 n = 6;
    Int64 a[n] = { 2, -2, -6, 7, 12, 5 };
    Int64 b[n] = { 3, 5, -7, 8, 4, 9 };
    Int64 sum_a, sum_b;
    Int64 prod_a, prod_b;
 
    printf("\nResults for CallingConvention2\n");
    bool rc = Cc2_(a, b, n, &sum_a, &sum_b, &prod_a, &prod_b);
     
    if (!rc)
        printf("Invalid return code from Cc2_()\n");
    else
    {
        for (int i = 0; i < n; i++)
            printf("%7lld %7lld\n", a[i], b[i]);
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        printf("\n");
        printf("sum_a:  %7lld sum_b:  %7lld\n", sum_a, sum_b);
        printf("prod_a: %7lld prod_b: %7lld\n", prod_a, prod_b);
    }
 
    return 0;
} 

Listing 18-12. CallingConvention2_.asm

        .code
 
; extern "C" void Cc2_(const Int64* a, const Int64* b, Int32 n, Int64*
sum_a, Int64* sum_b, Int64* prod_a, Int64* prod_b);
;
; Description:  The following function illustrates how to initialize and
;               use a stack frame pointer.  It also demonstrates use
;               of several non-volatile general-purpose registers.
 
; Named expressions for constant values.
;
; NUM_PUSHREG   = number of prolog non-volatile register pushes
; STK_LOCAL1    = size in bytes of STK_LOCAL1 area (see figure in text)
; STK_LOCAL2    = size in bytes of STK_LOCAL2 area (see figure in text)
; STK_PAD       = extra bytes (0 or 8) needed to 16-byte align RSP
; STK_TOTAL     = total size in bytes of local stack
; RBP_RA        = number of bytes between RBP and ret addr on stack
 
NUM_PUSHREG     = 4
STK_LOCAL1      = 32
STK_LOCAL2      = 16
STK_PAD         = ((NUM_PUSHREG AND 1) XOR 1) * 8
STK_TOTAL       = STK_LOCAL1 + STK_LOCAL2 + STK_PAD
RBP_RA          = NUM_PUSHREG * 8 + STK_LOCAL1 + STK_PAD
 
Cc2_    proc frame
 
; Save non-volatile registers on the stack
        push rbp
        .pushreg rbp
        push rbx
        .pushreg rbx
        push r12
        .pushreg r12
        push r13
        .pushreg r13
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; Allocate local stack space and set frame pointer
        sub rsp,STK_TOTAL                   ;allocate local stack space
        .allocstack STK_TOTAL
 
        lea rbp,[rsp+STK_LOCAL2]            ;set frame pointer
        .setframe rbp,STK_LOCAL2
 
        .endprolog                          ;end of prolog
 
; Initialize local variables on the stack (demonstration only)
        pxor xmm5,xmm5
        movdqa [rbp-16],xmm5                ;save xmm5 to LocalVar2A/2B
        mov qword ptr [rbp],0aah            ;save 0xaa to LocalVar1A
        mov qword ptr [rbp+8],0bbh          ;save 0xbb to LocalVar1B
        mov qword ptr [rbp+16],0cch         ;save 0xcc to LocalVar1C
        mov qword ptr [rbp+24],0ddh         ;save 0xdd to LocalVar1D
 
; Save argument values to home area (optional)
        mov qword ptr [rbp+RBP_RA+8],rcx
        mov qword ptr [rbp+RBP_RA+16],rdx
        mov qword ptr [rbp+RBP_RA+24],r8
        mov qword ptr [rbp+RBP_RA+32],r9
 
; Perform required initializations for processing loop
        test r8d,r8d                        ;is n <= 0?
        jle Error                           ;jump if n <= 0
 
        xor rbx,rbx                         ;rbx = current element offset
        xor r10,r10                         ;r10 = sum_a
        xor r11,r11                         ;r11 = sum_b
        mov r12,1                           ;r12 = prod_a
        mov r13,1                           ;r13 = prod_b
 
; Compute the array sums and products
@@:     mov rax,[rcx+rbx]                   ;rax = a[i]
        add r10,rax                         ;update sum_a
        imul r12,rax                        ;update prod_a
        mov rax,[rdx+rbx]                   ;rax = b[i]
        add r11,rax                         ;update sum_b
        imul r13,rax                        ;update prod_b
 
        add rbx,8                           ;set ebx to next element
        dec r8d                             ;adjust count
        jnz @B                              ;repeat until done
 
; Save the final results
        mov [r9],r10                        ;save sum_a
        mov rax,[rbp+RBP_RA+40]             ;rax = ptr to sum_b
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        mov [rax],r11                       ;save sum_b
        mov rax,[rbp+RBP_RA+48]             ;rax = ptr to prod_a
        mov [rax],r12                       ;save prod_a
        mov rax,[rbp+RBP_RA+56]             ;rax = ptr to prod_b
        mov [rax],r13                       ;save prod_b
        mov eax,1                           ;set return code to true
 
; Function epilog
Done:   lea rsp,[rbp+STK_LOCAL1+STK_PAD]    ;restore rsp
        pop r13                             ;restore NV registers
        pop r12
        pop rbx
        pop rbp
        ret
 
Error:  xor eax,eax                         ;set return code to false
        jmp Done
Cc2_    endp
        end
 

The purpose of the code C++ in the CallingConvention2.cpp file (see Listing 18-11) 
is to set up a simple test case in order to exercise the assembly language function Cc2_. 
In this sample program, the function Cc2_ calculates the sums and products of two 64-bit 
signed integer arrays. The results are then displayed using a series of printf statements.

Toward the top of the assembly language file CallingConvention2_.asm  
(see Listing 18-12) is a series of named constants that control how much stack space is 
allocated in the prolog of function Cc2_. Like the previous sample program, the function 
Cc2_ includes the frame attribute as part of its proc statement to indicate that it uses a 
stack frame pointer. A series of push instructions saves non-volatile registers RBP, RBX, 
R12, and R13 on the stack. Note that a .pushreg directive is used following each push 
instruction, which instructs the assembler to add information about each push operation 
to the Visual C++ run-time exception handling tables.

A sub rsp,STK_TOTAL instruction allocates space on the stack for local variables, 
and the required .allocstack STK_TOTAL directive follows next. Register RBP is then 
initialized as the function’s stack frame pointer using an lea rbp,[rsp+STK_LOCAL2] 
instruction, which sets RBP equal to rsp + STK_LOCAL2. Figure 18-7 illustrates the layout 
of the stack following execution of the lea instruction. Positioning RBP so that it “splits” 
the local stack area into two sections enables the assembler to generate machine code 
that's slightly more efficient since a larger portion of the local stack area can be referenced 
using 8-bit instead of 32-bit displacements. It also simplifies saving and restoring of 
the non-volatile XMM registers, which is discussed later in this section. Following the 
lea instruction is a .setframe rbp,STK_LOCAL2 directive that enables the assembler to 
properly configure the run-time exception handling tables. Note that the size parameter 
of this directive must be an even multiple of 16 and less than or equal to 240. The 
.endprolog directive signifies the end of the prolog for function Cc2_.
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The next code block contains instructions that initialize the local variables on the 
stack. These instructions are for demonstration purposes only. Note that this block includes 
a movdqa [rbp-16],xmm5 instruction, which requires its destination operand to be aligned 
on a 16-byte boundary. This is another reason why the calling convention mandates 
16-byte alignment of the RSP register. Following initialization of the local variables, the 
argument registers are saved to their home locations, also for demonstration purposes.

The logic of the main processing loop is straightforward. Following validation of 
argument value n, the function Cc2_ initializes the intermediate values sum_a (R10) and 
sum_b (R11) to zero and prod_a (R12) and prod_b ( R13) to one. It then calculates the 
sum and product of the input arrays a and b. The final results are saved to the memory 
locations specified by the caller. Note that the pointers for sum_b, prod_a, and prod_b are 
located on the stack.
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Figure 18-7. Stack layout and register contents following execution of the  
lea rbp,[rsp+STK_LOCAL2] instruction in function Cc2_
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The function’s epilog begins with a lea rsp,[rbp+STK_LOCAL1+STK_PAD] 
instruction, which restores register RSP to the value it had just after the push r13 
instruction in the prolog. When restoring RSP in an epilog, the Visual C++ calling 
convention specifies that either a lea rsp,[rfp+X] or add rsp,X instruction must be 
used, where rfp denotes the frame pointer register and X is a constant value. This limits 
the number of instruction patterns that the run-time exception handler must identify. 
The subsequent pop instructions restore the non-volatile general-purpose registers prior 
to execution of the ret instruction. According to the Visual C++ calling convention, 
function epilogs must be void of any processing logic, including the setting of a return 
value. Output 18-6 shows the results of the sample program CallingConvention2.

Output 18-6. Sample Program CallingConvention2

Results for CallingConvention2
      2       3
     -2       5
     -6      -7
      7       8
     12       4
      5       9
 
sum_a:       18 sum_b:       22
prod_a:   10080 prod_b:  -30240

Using Non-Volatile XMM Registers
Earlier in this chapter, you learned how to use the volatile XMM registers to perform 
scalar floating-point arithmetic. The sample program in this section, which is named 
CallingConvention3, illustrates the prolog and epilog conventions that must be observed 
in order to use the non-volatile XMM registers. The C++ and assembly language source 
code for sample program CallingConvention3 are shown in Listings 18-13 and 18-14.

Listing 18-13. CallingConvention3.cpp

#include "stdafx.h"
#define _USE_MATH_DEFINES
#include <math.h>
 
extern "C" void Cc3_(const double* r, const double* h, int n, double*
sa_cone, double* vol_cone);
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 6;
    double r[n] = { 1, 1, 2, 2, 3, 3 };
    double h[n] = { 1, 2, 3, 4, 5, 10 };
    double sa_cone1[n], sa_cone2[n];
    double vol_cone1[n], vol_cone2[n];
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    // Calculate surface area and volume of right-circular cones
    for (int i = 0; i < n; i++)
    {
         sa_cone1[i] = M_PI * r[i] * (r[i] + sqrt(r[i] * r[i] + h[i] * h[i]));
        vol_cone1[i] = M_PI * r[i] * r[i] * h[i] / 3.0;
    }
 
    Cc3_(r, h, n, sa_cone2, vol_cone2);
 
    printf("\nResults for CallingConvention3\n");
    for (int i = 0; i < n; i++)
    {
        printf("  r/h: %14.2lf %14.2lf\n", r[i], h[i]);
        printf("  sa:  %14.6lf %14.6lf\n", sa_cone1[i], sa_cone2[i]);
        printf("  vol: %14.6lf %14.6lf\n", vol_cone1[i], vol_cone2[i]);
        printf("\n");
    }
 
    return 0;
} 

Listing 18-14. CallingConvention4_.asm

            .const
r8_3p0      real8 3.0
r8_pi       real8 3.14159265358979323846
            .code
 
; extern "C" bool Cc3_(const double* r, const double* h, int n, double*
sa_cone, double* vol_cone);
;
; Description:  The following function illustrates how to initialize and
;               use a stack frame pointer.  It also demonstrates use
;               of non-volatile general-purpose and XMM registers.
 
; Named expressions for constant values.
;
; NUM_PUSHREG   = number of prolog non-volatile register pushes
; STK_LOCAL1    = size in bytes of STK_LOCAL1 area (see figure in text)
; STK_LOCAL2    = size in bytes of STK_LOCAL2 area (see figure in text)
; STK_PAD       = extra bytes (0 or 8) needed to 16-byte align RSP
; STK_TOTAL     = total size in bytes of local stack
; RBP_RA        = number of bytes between RBP and ret addr on stack
 
NUM_PUSHREG     = 7
STK_LOCAL1      = 16
STK_LOCAL2      = 64
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STK_PAD         = ((NUM_PUSHREG AND 1) XOR 1) * 8
STK_TOTAL       = STK_LOCAL1 + STK_LOCAL2 + STK_PAD
RBP_RA          = NUM_PUSHREG * 8 + STK_LOCAL1 + STK_PAD
 
Cc3_    proc frame
 
; Save non-volatile registers on the stack.
        push rbp
        .pushreg rbp
        push rbx
        .pushreg rbx
        push rsi
        .pushreg rsi
        push r12
        .pushreg r12
        push r13
        .pushreg r13
        push r14
        .pushreg r14
        push r15
        .pushreg r15
 
; Allocate local stack space and initialize frame pointer
        sub rsp,STK_TOTAL                   ;allocate local stack space
        .allocstack STK_TOTAL
        lea rbp,[rsp+STK_LOCAL2]            ;rbp = stack frame pointer
        .setframe rbp,STK_LOCAL2
 
; Save non-volatile registers XMM12 - XMM15.  Note that STK_LOCAL2 must
; be greater than or equal to the number of XMM register saves times 16.
        movdqa xmmword ptr [rbp-STK_LOCAL2+48],xmm12
       .savexmm128 xmm12,48
        movdqa xmmword ptr [rbp-STK_LOCAL2+32],xmm13
       .savexmm128 xmm13,32
        movdqa xmmword ptr [rbp-STK_LOCAL2+16],xmm14
       .savexmm128 xmm14,16
        movdqa xmmword ptr [rbp-STK_LOCAL2],xmm15
       .savexmm128 xmm15,0
        .endprolog
 
; Access local variables on the stack (demonstration only)
        mov qword ptr [rbp],-1              ;LocalVar1A = -1
        mov qword ptr [rbp+8],-2            ;LocalVar1B = -2
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; Initialize the processing loop variables. Note that many of the
; register initializations below are performed merely to illustrate
; use of the non-volatile GP and XMM registers.
        movsxd rsi,r8d                      ;rsi = n
        test rsi,rsi                        ;is n <= 0?
        jle Error                           ;jump if n <= 0
 
        xor rbx,rbx                         ;rbx = array element offset
        mov r12,rcx                         ;r12 = ptr to r
        mov r13,rdx                         ;r13 = ptr to h
        mov r14,r9                          ;r14 = ptr to sa_cone
        mov r15,[rbp+RBP_RA+40]             ;r15 = ptr to vol_cone
        movsd xmm14,[r8_pi]                 ;xmm14 = pi
        movsd xmm15,[r8_3p0]                ;xmm15 = 3.0
 
; Calculate cone surface areas and volumes
; sa = pi * r * (r + sqrt(r * r + h * h))
; vol = pi * r * r * h / 3
@@:     movsd xmm0,real8 ptr [r12+rbx]      ;xmm0 = r
        movsd xmm1,real8 ptr [r13+rbx]      ;xmm1 = h
        movsd xmm12,xmm0                    ;xmm12 = r
        movsd xmm13,xmm1                    ;xmm13 = h
 
        mulsd xmm0,xmm0         ;xmm0 = r * r
        mulsd xmm1,xmm1         ;xmm1 = h * h
        addsd xmm0,xmm1         ;xmm0 = r * r + h * h
 
        sqrtsd xmm0,xmm0        ;xmm0 = sqrt(r * r + h * h)
        addsd xmm0,xmm12        ;xmm0 = r + sqrt(r * r + h * h)
        mulsd xmm0,xmm12        ;xmm0 = r * (r + sqrt(r * r + h * h))
        mulsd xmm0,xmm14        ;xmm0 = pi * r * (r + sqrt(r * r + h * h))
 
        mulsd xmm12,xmm12       ;xmm12 = r * r
        mulsd xmm13,xmm14       ;xmm13 = h * pi
        mulsd xmm13,xmm12       ;xmm13 = pi * r * r * h
        divsd xmm13,xmm15       ;xmm13 = pi * r * r * h / 3
 
        movsd real8 ptr [r14+rbx],xmm0      ;save surface area
        movsd real8 ptr [r15+rbx],xmm13     ;save volume
 
        add rbx,8                           ;set rbx to next element
        dec rsi                             ;update counter
        jnz @B                              ;repeat until done
        mov eax,1                           ;set success return code
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; Restore non-volatile XMM registers
Done:   movdqa xmm12,xmmword ptr [rbp-STK_LOCAL2+48]
        movdqa xmm13,xmmword ptr [rbp-STK_LOCAL2+32]
        movdqa xmm14,xmmword ptr [rbp-STK_LOCAL2+16]
        movdqa xmm15,xmmword ptr [rbp-STK_LOCAL2]
 
; Function epilog
        lea rsp,[rbp+STK_LOCAL1+STK_PAD]    ;restore rsp
        pop r15                             ;restore NV GP registers
        pop r14
        pop r13
        pop r12
        pop rsi
        pop rbx
        pop rbp
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp Done
Cc3_    endp
        end
 

The _tmain function (see Listing 18-13) contains code that calculates the surface 
area and volume of right-circular cones. It also exercises an x86-64 assembly language 
function named Cc3_, which performs the same surface area and volume calculations. 
The following formulas are used to calculate a cone’s surface area and volume:

sa r r r h vol r h= + +( ) =p p2 2 2 3/

The Cc3_ function (see Listing 18-14) begins by saving the non-volatile general-purpose 
registers that it uses on the stack. It then allocates the specified amount of local stack 
space and initializes RBP as the stack frame pointer. The next code block saves  
non-volatile registers XMM12-XMM15 on the stack using a series of movdqa instructions. 
A .savexmm128 directive must be used after each movdqa instruction. Like the other 
prolog directives, the .savexmm128 directive instructs the assembler to store information 
regarding an XMM register save operation in its exception handling tables. The offset 
argument of a .savexmm128 directive represents the displacement of the saved XMM 
register on the stack relative to the RSP register. Note that the size of STK_LOCAL2 must be 
greater than or equal to the number of saved XMM registers multiplied by 16. Figure 18-8 
illustrates the layout of the stack following execution of the movdqa xmmword ptr  
[rbp-STK_LOCAL2],xmm15 instruction.
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Figure 18-8. Stack layout and register contents following execution of the movdqa xmmword 
ptr [rbp-STK_LOCAL2],xmm15 instruction in function Cc3_
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Following the prolog, the local variables LocalVar1A and LocalVar1B are accessed 
for demonstration purposes only. Initialization of the registers used by the main 
processing loop occurs next. Note that many of these initializations are superfluous; they 
are performed merely to elucidate use of the non-volatile general-purpose and XMM 
registers. Calculation of the cone surface areas and volumes is then carried out using 
SSE2 double-precision floating-point arithmetic.

Subsequent to the completion of the processing loop, the non-volatile XMM registers 
are restored using a series of movdqa instructions. The function Cc3_ then releases its local 
stack space and restores the previously saved non-volatile general-purpose registers that it 
used. The results of the sample program CallingConvention3 are shown in Output 18-7.

Output 18-7. Sample Program CallingConvention3

Results for CallingConvention3
  r/h:           1.00           1.00
  sa:        7.584476       7.584476
  vol:       1.047198       1.047198
 
  r/h:           1.00           2.00
  sa:       10.166407      10.166407
  vol:       2.094395       2.094395
 
  r/h:           2.00           3.00
  sa:       35.220717      35.220717
  vol:      12.566371      12.566371
 
  r/h:           2.00           4.00
  sa:       40.665630      40.665630
  vol:      16.755161      16.755161
 
  r/h:           3.00           5.00
  sa:       83.229761      83.229761
  vol:      47.123890      47.123890
 
  r/h:           3.00          10.00
  sa:      126.671905     126.671905
  vol:      94.247780      94.247780 

Macros for Prologs and Epilogs
The purpose of the previous three sample programs was to elucidate use of the Visual 
C++ calling convention for 64-bit non-leaf functions. The calling convention’s rigid 
requirements for function prologs and epilogs are somewhat lengthy and a potential 
source of programming errors. It is important to reconginze that the stack layout of a  
64-bit non-leaf function is primarily determined by the number of non-volatile  
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(both general-purpose and XMM) registers that must be preserved and the amount of 
local stack storage space that’s needed. A method is needed to automate most of the 
coding drudgery associated with the calling convention.

The sample program in this section exemplifies the use of several macros that the 
author has written to simplify stack frame creation and preservation of non-volatile 
registers in a 64-bit non-leaf function. Listings 18-15 and 18-16 contain the C++ and 
assembly language source code for sample program CallingConvention4.

Listing 18-15. CallingConvention4.cpp

#include "stdafx.h"
#include <math.h>
 
extern "C" bool Cc4_(const double* ht, const double* wt, int n, double*
bsa1, double* bsa2, double* bsa3);
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 6;
    const double ht[n] = { 150, 160, 170, 180, 190, 200 };
    const double wt[n] = { 50.0, 60.0, 70.0, 80.0, 90.0, 100.0 };
    double bsa1_a[n], bsa1_b[n];
    double bsa2_a[n], bsa2_b[n];
    double bsa3_a[n], bsa3_b[n];
 
    for (int i = 0; i < n; i++)
    {
        bsa1_a[i] = 0.007184 * pow(ht[i], 0.725) * pow(wt[i], 0.425);
        bsa2_a[i] = 0.0235 * pow(ht[i], 0.42246) * pow(wt[i], 0.51456);
        bsa3_a[i] = sqrt(ht[i] * wt[i]) / 60.0;
    }
 
    Cc4_(ht, wt, n, bsa1_b, bsa2_b, bsa3_b);
 
    printf("Results for CallingConvention4\n\n");
 
    for (int i = 0; i < n; i++)
    {
        printf("height: %6.1lf cm\n", ht[i]);
        printf("weight: %6.1lf kg\n", wt[i]);
         printf("BSA (C++): %10.6lf %10.6lf %10.6lf (sq. m)\n", bsa1_a[i], 

bsa2_a[i], bsa3_a[i]);
         printf("BSA (X86-64): %10.6lf %10.6lf %10.6lf (sq. m)\n", bsa1_b[i], 

bsa2_b[i], bsa3_b[i]);
        printf("\n");
    }
    return 0;
}
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Listing 18-16. CallingConvention4_.asm

        include <MacrosX86-64.inc>
 
; Floating-point constants for BSA equations
                .const
r8_0p007184     real8 0.007184
r8_0p725        real8 0.725
r8_0p425        real8 0.425
r8_0p0235       real8 0.0235
r8_0p42246      real8 0.42246
r8_0p51456      real8 0.51456
r8_60p0         real8 60.0
 
        .code
        extern pow:proc
 
; extern "C" bool Cc4_(const double* ht, const double* wt, int n, double*
bsa1, double* bsa2, double* bsa3);
;
; Description:  The following function demonstrates use of the macros
;               _CreateFrame, _DeleteFrame, _EndProlog, _SaveXmmRegs,
;               and _RestoreXmmRegs.
 
Cc4_    proc frame
        _CreateFrame Cc4_,16,64,rbx,rsi,r12,r13,r14,r15
        _SaveXmmRegs xmm6,xmm7,xmm8,xmm9
        _EndProlog
 
; Save argument registers to home area (optional). Note that the home
; area can also be used to store other transient data values.
        mov qword ptr [rbp+Cc4_OffsetHomeRCX],rcx
        mov qword ptr [rbp+Cc4_OffsetHomeRDX],rdx
        mov qword ptr [rbp+Cc4_OffsetHomeR8],r8
        mov qword ptr [rbp+Cc4_OffsetHomeR9],r9
 
; Initialize processing loop pointers.  Note that the pointers are
; maintained in non-volatile registers, which eliminates reloads
; after calls to pow().
        test r8d,r8d                            ;is n <= 0?
        jle Error                               ;jump if n <= 0
        mov [rbp],r8d                           ;save n to local var
 
        mov r12,rcx                             ;r12 = ptr to ht
        mov r13,rdx                             ;r13 = ptr to wt
        mov r14,r9                              ;r14 = ptr to bsa1
        mov r15,[rbp+Cc4_OffsetStackArgs]       ;r15 = ptr to bsa2
        mov rbx,[rbp+Cc4_OffsetStackArgs+8]     ;rbx = ptr to bsa3
        xor rsi,rsi                             ;array element offset
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; Allocate home space on stack for use by pow()
        sub rsp,32
 
; Calculate bsa1 = 0.007184 * pow(ht, 0.725) * pow(wt, 0.425);
@@:     movsd xmm0,real8 ptr [r12+rsi]          ;xmm0 = height
        movsd xmm8,xmm0
        movsd xmm1,real8 ptr [r8_0p725]
        call pow                                ;xmm0 = pow(ht,0.725)
        movsd xmm6,xmm0
 
        movsd xmm0,real8 ptr [r13+rsi]          ;xmm0 = weight
        movsd xmm9,xmm0
        movsd xmm1,real8 ptr [r8_0p425]
        call pow                                ;xmm0 = pow(wt,0.425)
        mulsd xmm6,real8 ptr [r8_0p007184]
        mulsd xmm6,xmm0                         ;xmm6 = bsa1
 
; Calculate bsa2 = 0.0235 * pow(ht, 0.42246) * pow(wt, 0.51456);
        movsd xmm0,xmm8                         ;xmm0 = height
        movsd xmm1,real8 ptr [r8_0p42246]
        call pow                                ;xmm0 = pow(ht,0.42246)
        movsd xmm7,xmm0
 
        movsd xmm0,xmm9                         ;xmm0 = weight
        movsd xmm1,real8 ptr [r8_0p51456]
        call pow                                ;xmm0 = pow(wt,0.51456)
        mulsd xmm7,real8 ptr [r8_0p0235]
        mulsd xmm7,xmm0                         ;xmm7 = bsa2
 
; Calculate bsa3 = sqrt(ht * wt) / 60.0;
        mulsd xmm8,xmm9
        sqrtsd xmm8,xmm8
        divsd xmm8,real8 ptr [r8_60p0]          ;xmm8 = bsa3
 
; Save BSA results
        movsd real8 ptr [r14+rsi],xmm6          ;save bsa1 result
        movsd real8 ptr [r15+rsi],xmm7          ;save bsa2 result
        movsd real8 ptr [rbx+rsi],xmm8          ;save bsa3 result
 
        add rsi,8                               ;update array offset
        dec dword ptr [rbp]                     ;n = n - 1
        jnz @B
        mov eax,1                               ;set success return code
 
; Restore all used non-volatile XMM and GP registers.  Note that the
; _DeleteFrame macro restores rsp from rbp, which means that it is not
; necessary to include an explicit add rsp,32 instruction to "free"

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 18 ■ X86-64 Core programming

543

; the pow() home area.
Done:   _RestoreXmmRegs xmm6,xmm7,xmm8,xmm9
        _DeleteFrame rbx,rsi,r12,r13,r14,r15
        ret
 
Error:  xor eax,eax                             ;set error return code
        jmp Done
Cc4_    endp
        end
 

Similar to the previous sample programs in this section, the primary goal of the code 
in _tmain (see Listing 18-15) is to exercise x86-64 assembly language function Cc4_.  
This function calculates estimates of human body surface areas (BSA) using several  
well-known equations, which are defined in Table 18-2. Each equation in this table uses 
the symbol H for height in centimeters, W for weight in kilograms, and BSA for body 
surface area in square meters.

Table 18-2. Body Surface Area Equations

Formula Equation

DuBois and DuBois BSA = 0.007184 × H 0.725 × W 0.425

Gehan and George BSA = 0.0235 × H 0.42246 × W 0.51456

Mosteller BSA H W= ´ 3600

The assembly language file CallingConvention4_.asm (see Listing 18-16) begins 
with an include statement that incorporates the contents of the MacrosX86-64.
inc file (source code not shown). This file, which is located in a subfolder named 
CommonFiles, contains the macro definitions that are used by the sample program 
CallingConvention4. These macros are also used in subsequent sample programs. 
Following the include statement is a .const section that contains definitions for the 
various floating-point constant values used in the BSA equations.

Figure 18-9 contains a generic stack layout diagram of an x86-64 non-leaf function. 
Note the similarities between this figure and the more detailed stack layouts of 
Figures 18-7 and 18-8. The macros that are defined in the file MacrosX86-64.inc assume 
that a function’s basic stack layout will conform to what’s shown in Figure 18-9. They 
enable a function to tailor its own detailed stack frame by specifying the amount of 
local stack space that’s needed and which non-volatile registers must be preserved. The 
macros also perform most of the required stack offset calculations, which reduces the risk 
of a programming error in the prolog or epilog.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 18 ■ X86-64 Core programming

544

Following the Cc4_ proc frame statement, the macro _CreateFrame is used to 
generate the code that initializes the function’s stack frame. It also saves the specified 
non-volatile general-purpose registers on the stack. The macro requires a number of 
additional parameters, including a prefix string and the size in bytes of StkSizeLocal1 
and StkSizeLocal2 (see Figure 18-9). The macro _CreateFrame uses the specified prefix 
string to create symbolic names that can be used to reference items on the stack. It’s 
somewhat convenient to use the name of the function as the prefix string but any unique 
text string can be used. Both StkSizeLocal1 and StkSizeLocal2 must be evenly divisible 
by 16. StkSizeLocal2 must also be less than or equal to 240, and greater than or equal to 
the number of saved XMM registers multiplied by 16.

The next statement employs the _SaveXmmRegs macro to save the specified  
non-volatile XMM registers to the XMM save area on the stack. This is followed by the 
_EndProlog macro, which signifies the end of the function’s prolog. Subsequent to the 
completion of the prolog, register RBP is configured as the function’s stack frame pointer. 

RBP

RSP

Return Address

High
Memory

RCX Home

RDX Home 

.

.

.

R9 Home

R8 Home

Low
Memory

RCX

RDX

R8

R9

Register Arguments

Stack Arguments
XMM0

XMM1

XMM2

XMM3
063

Old RBP

Local1 Variables StkSizeLocal1

StkSizeLocal2

StkSizeTotal

Saved Non-Volatile General-
Purpose Registers

Stack Pad (if necessary)

Local2 Variables (optional)

Saved Non-Volatile XMM 
Registers

Figure 18-9. Generic stack layout of an x86-64 non-leaf function
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It is also safe to use any of the saved non-volatile general-purpose or XMM registers 
subsequent to the _EndProlog macro.

The block of instructions that follows _EndProlog saves the argument registers to 
their home locations on the stack. Note that each mov instruction includes a symbolic 
name that equates to the offset of the register’s home area on the stack relative to the RBP 
register. The symbolic names and the corresponding offset values were automatically 
generated by the _CreateFrame macro. The home area can also be used to store 
temporary data instead of the argument registers, as mentioned earlier in this chapter.

Initialization of the processing loop variables occurs next. The value n in register 
R8D is checked for validity and saved on the stack as a local variable. Several non-volatile 
registers are then initialized as pointer registers. Non-volatile registers are used in order to 
avoid register reloads following each call to the library function pow. Note that the pointer 
to array bsa2 is loaded from the stack using a mov r15,[rbp+Cc4_OffsetStackArgs] 
instruction. The symbolic constant Cc4_OffsetStackArgs also was automatically 
generated by the macro _CreateFrame and equates to the offset of the first stack argument 
relative to the RBP register. A mov rbx,[rbp+Cc4_OffsetStackArgs+8] instruction 
loads argument bsa3 into register RBX; the constant +8 is included as part of the source 
operand displacement since bsa3 is the second argument passed via the stack.

The Visual C++ calling convention requires the caller of a function to allocate the 
home area of any called function. The sub rsp,32 instruction performs this operation. 
The ensuing block of code calculates the BSA values using the equations shown in 
Table 18-2. Note that registers XMM0 and XMM1 are loaded with the necessary argument 
values prior to each call to pow. Also note that some of the return values from pow are 
preserved in non-volatile XMM registers prior to their actual use.

Following completion of the BSA processing loop is the function epilog. Before 
execution of the ret instruction, the Cc4_ function must restore all non-volatile XMM 
and general-purpose registers that it saved in the prolog. The stack frame must also be 
properly deleted. The _RestoreXmmRegs macro restores the non-volatile XMM registers. 
Note that this macro requires the order of the registers in its argument list to match 
the register list that was used with the _SaveXmmRegs macro. Stack frame cleanup and 
general-purpose register restores are handled by the _DeleteFrame macro. The order 
of the registers specified in this macro’s argument list must be identical to the prolog’s 
_CreateFrame macro. Note that the _DeleteFrame macro restores register RSP from RBP, 
which means that it’s not necessary to include an explicit add rsp,32 instruction to 
release the pow function home area. Output 18-8 shows the results of the sample program 
CallingConvention4.

Output 18-8. Sample Program CallingConvention4

Results for CallingConvention4
 
height:  150.0 cm
weight:   50.0 kg
BSA (C++):      1.432500   1.460836   1.443376 (sq. m)
BSA (X86-64):   1.432500   1.460836   1.443376 (sq. m)
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height:  160.0 cm
weight:   60.0 kg
BSA (C++):      1.622063   1.648868   1.632993 (sq. m)
BSA (X86-64):   1.622063   1.648868   1.632993 (sq. m)
 
height:  170.0 cm
weight:   70.0 kg
BSA (C++):      1.809708   1.831289   1.818119 (sq. m)
BSA (X86-64):   1.809708   1.831289   1.818119 (sq. m)
 
height:  180.0 cm
weight:   80.0 kg
BSA (C++):      1.996421   2.009483   2.000000 (sq. m)
BSA (X86-64):   1.996421   2.009483   2.000000 (sq. m)
 
height:  190.0 cm
weight:   90.0 kg
BSA (C++):      2.182809   2.184365   2.179449 (sq. m)
BSA (X86-64):   2.182809   2.184365   2.179449 (sq. m)
 
height:  200.0 cm
weight:  100.0 kg
BSA (C++):      2.369262   2.356574   2.357023 (sq. m)
BSA (X86-64):   2.369262   2.356574   2.357023 (sq. m)

X86-64 Arrays and Strings
The sample programs in this section illustrate how to use the x86-64 instruction set to 
manipulate common programming constructs. The first program demonstrates using 
64-bit pointer arithmetic to process the elements of a two-dimensional array. The 
second sample program exemplifies use of several x86 string instructions. Both of these 
sample programs exploit the calling convention macros that you learned about in the 
previous section.

Two-Dimensional Arrays
In Chapter 2, you learned how to implement a two-dimensional array or matrix using 
a contiguous block of memory and simple pointer arithmetic. The sample program in 
this section uses the same pointer arithmetic techniques to implement an x86-64 matrix 
multiplication function. Listings 18-17 and 18-18 show the C++ and assembly language 
source code for sample program MatrixMul.
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Listing 18-17. MatrixMul.cpp

#include "stdafx.h"
#include <stdlib.h>
 
extern "C" double* MatrixMul_(const double* m1, int nr1, int nc1, const
 double* m2, int nr2, int nc2);
 
void MatrixPrint(const double* m, int nr, int nc, const char* s)
{
    printf("%s\n", s);
 
    if (m != NULL)
    {
        for (int i = 0; i < nr; i++)
        {
            for (int j = 0; j < nc; j++)
            {
                double m_val = m[i * nc + j];
                printf("%8.1lf ", m_val);
            }
            printf("\n");
        }
    }
    else
        printf("NULL pointer\n");
}
 
double* MatrixMulCpp(const double* m1, int nr1, int nc1, const double* m2,
int nr2, int nc2)
{
    if ((nr1 < 0) || (nc1 < 0) || (nr2 < 0) || (nc2 < 0))
        return NULL;
    if (nc1 != nr2)
        return NULL;
 
    double* m3 = (double*)malloc(nr1 * nc2 * sizeof(double));
 
    for (int i = 0; i < nr1; i++)
    {
        for (int j = 0; j < nc2; j++)
        {
            double sum = 0;
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            for (int k = 0; k < nc1; k++)
            {
                double m1_val = m1[i * nc1 + k];
                double m2_val = m2[k * nc2 + j];
                sum += m1_val * m2_val;
            }
            m3[i * nc2 + j] = sum;
        }
    }
 
    return m3;
}
 
void MatrixMul1(void)
{
    const int nr1 = 3;
    const int nc1 = 2;
    const int nr2 = 2;
    const int nc2 = 3;
    double m1[nr1 * nc1] = { 6, 2, 4, 3, -5, -2 };
    double m2[nr2 * nc2] = { -2, 3, 4, -3, 6, 7 };
    double* m3_a = MatrixMulCpp(m1, nr1, nc1, m2, nr2, nc2);
    double* m3_b = MatrixMul_(m1, nr1, nc1, m2, nr2, nc2);
 
    printf("\nResults for MatrixMul1()\n");
    MatrixPrint(m1, nr1, nc1, "Matrix m1");
    MatrixPrint(m2, nr2, nc2, "Matrix m2");
    MatrixPrint(m3_a, nr1, nc2, "Matrix m3_a");
    MatrixPrint(m3_b, nr1, nc2, "Matrix m3_b");
    free(m3_a);
    free(m3_b);
}
 
void MatrixMul2(void)
{
    const int nr1 = 2;
    const int nc1 = 3;
    const int nr2 = 3;
    const int nc2 = 4;
    double m1[nr1 * nc1] = { 5, -3, 2, -2, 5, 4 };
    double m2[nr2 * nc2] = { 7, -4, 3, 3, 2, 6, -2, 5, 4, 9, 3, 5 };
    double* m3_a = MatrixMulCpp(m1, nr1, nc1, m2, nr2, nc2);
    double* m3_b = MatrixMul_(m1, nr1, nc1, m2, nr2, nc2);
 
    printf("\nResults for MatrixMul2()\n");
    MatrixPrint(m1, nr1, nc1, "Matrix m1");
    MatrixPrint(m2, nr2, nc2, "Matrix m2");
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    MatrixPrint(m3_a, nr1, nc2, "Matrix m3_a");
    MatrixPrint(m3_b, nr1, nc2, "Matrix m3_b");
    free(m3_a);
    free(m3_b);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    MatrixMul1();
    MatrixMul2();
    return 0;
} 

Listing 18-18. MatrixMul_.asm

        include <MacrosX86-64.inc>
        .code
        extern malloc:proc
 
; extern "C" double* MatrixMul_(const double* m1, int nr1, int nc1, const
double* m2, int nr2, int nc2);
;
; Description:  The following function computes the product of two
;               matrices.
 
MatrixMul_ proc frame
        _CreateFrame MatMul_,0,0,rbx,r12,r13,r14,r15
        _EndProlog
 
; Verify the matrix size values.
        movsxd r12,edx                              ;r12 = nr1
        test r12,r12
        jle Error                                   ;jump if nr1 <= 0
 
        movsxd r13,r8d                              ;r13 = nc1
        test r13,r13
        jle Error                                   ;jump if nc1 <= 0
 
        movsxd r14,dword ptr [rbp+MatMul_OffsetStackArgs]     ;r14 = nr2
        test r14,r14
        jle Error                                   ;jump if nr2 <= 0
 
        movsxd r15,dword ptr [rbp+MatMul_OffsetStackArgs+8]   ;r15 = nc2
        test r15,r15
        jle Error                                   ;jump if nc2 <= 0
 
        cmp r13,r14
        jne Error                                   ;jump if nc1 != nr2
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; Allocate storage
        mov [rbp+MatMul_OffsetHomeRCX],rcx  ;save m1
        mov [rbp+MatMul_OffsetHomeR9],r9    ;save m2
        mov rcx,r12                         ;rcx = nr1
        imul rcx,r15                        ;rcx = nr1 * nc2
        shl rcx,3                           ;rcx = nr1 * nc2 * size real8
        sub rsp,32                          ;allocate home space
        call malloc
        mov rbx,rax                         ;rbx = ptr to m3
 
; Initialize source matrix pointers and row index i
        mov rcx,[rbp+MatMul_OffsetHomeRCX]  ;rcx = ptr to m1
        mov rdx,[rbp+MatMul_OffsetHomeR9]   ;rdx = ptr to m2
        xor r8,r8                           ;i = 0
 
; Initialize column index j
Lp1:    xor r9,r9                           ;j = 0
 
; Initialize sum and index k
Lp2:    xorpd xmm4,xmm4                     ;sum = 0;
        xor r10,r10                         ;k = 0;
 
; Calculate sum += m1[i * nc1 + k] * m2[k * nc2 + j]
Lp3:    mov rax,r8                          ;rax = i
        imul rax,r13                        ;rax = i * nc1
        add rax,r10                         ;rax = i * nc1 + k
        movsd xmm0,real8 ptr [rcx+rax*8]    ;xmm0 = m1[i * nc1 + k]
 
        mov r11,r10                         ;r11 = k;
        imul r11,r15                        ;r11 = k * nc2
        add r11,r9                          ;r11 = k * nc2 + j
        movsd xmm1,real8 ptr [rdx+r11*8]    ;xmm1 = m2[k * nc2 + j]
 
        mulsd xmm0,xmm1         ;xmm0 = m1[i * nc1 + k] * m2[k * nc2 + j]
        addsd xmm4,xmm0         ;update sum
 
        inc r10                             ;k++
        cmp r10,r13
        jl Lp3                              ;jump if k < nc1
 
; Save sum to m3[i * nc2 + j]
        mov rax,r8                          ;rax = i
        imul rax,r15                        ;rax = i * nc2
        add rax,r9                          ;rax = i * nc2 + j
        movsd real8 ptr [rbx+rax*8],xmm4    ;m3[i * nc2 + j] = sum
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; Update loop counters and repeat until done
        inc r9                              ;j++
        cmp r9,r15
        jl Lp2                              ;jump if j < nc2
        inc r8                              ;i++
        cmp r8,r12
        jl Lp1                              ;jump if i < nr1
 
        mov rax,rbx                         ;rax = ptr to m3
 
Done:   _DeleteFrame rbx,r12,r13,r14,r15
        ret
 
Error:  xor rax,rax                         ;return NULL
        jmp Done
MatrixMul_ endp
        end
 

The product of two matrices is defined as follows. Let A be a matrix of m rows and 
n columns, and B a matrix of n rows and p columns. The elements of the matrix C = AB, 
where C is a matrix of m rows and p columns, are computed as follows:

c a b i m j pi j i k k j
k

n

= = - = -
=

-

å
0

1

0 1 0 1, , , , , 

The source code file MatrixMul.cpp (see Listing 18-17) contains a function named 
MatrixMulCpp that computes the product of two matrices. Following validation of the 
matrix sizes, the function MatrixMulCpp calls malloc to dynamically allocate a block of 
memory for the product matrix. It then multiplies the two sources matrices using the 
previously defined equation. The remaining code in MatrixMul.cpp establishes a couple 
of matrix multiplication test cases and prints the results for comparison purposes.

Listing 18-18 contains the x86-64 assembly language code for the MatrixMul_ 
function. Immediately after the MatrixMul_ proc frame statement, the _CreateFrame 
macro is employed to save the appropriate non-volatile general-purpose registers and 
initialize a stack frame pointer. Note that both stack size parameters of the _CreateFrame 
macro are zero since the MatrixMul_ function does not require any local variable space 
and there is no need to preserve any of the non-volatile XMM registers. The matrix size 
arguments nr1, nc1, nr2, nc2, are then loaded into registers R12, R13, R14, and R15, 
respectively. Note that nr1 and nc1 were passed to MatrixMul_ in registers EDX and R8D 
while the latter two were passed via the stack.

The storage space for the destination matrix is then allocated using the standard 
library function malloc. Prior to calling malloc, the source matrix pointers m1 and m2 are 
saved to their respective home areas on the stack since they were passed to MatrixMul_ 
using volatile registers RCX and R9, respectively. Also note that a sub rsp,32 instruction 
is employed just before the call malloc instruction, which allocates the obligatory home 
area for malloc.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 18 ■ X86-64 Core programming

552

Following allocation of the destination matrix memory block, the source matrix 
pointers m1 and m2 are loaded into registers RCX and RDX, respectively. The function then 
calculates the matrix product using the same three-loop construct as its C++ counterpart. 
All double-precision floating-point arithmetic is carried out using volatile XMM registers. 
Upon completion of the matrix multiplication processing loop, the _DeleteFrame macro 
is used to restore the previously-saved non-volatile general-purpose registers. The results 
of sample program MatrixMul are shown in Output 18-9.

Output 18-9. Sample Program MatrixMul

Results for MatrixMul1()
Matrix m1
     6.0      2.0
     4.0      3.0
    -5.0     -2.0
Matrix m2
    -2.0      3.0      4.0
    -3.0      6.0      7.0
Matrix m3_a
   -18.0     30.0     38.0
   -17.0     30.0     37.0
    16.0    -27.0    -34.0
Matrix m3_b
   -18.0     30.0     38.0
   -17.0     30.0     37.0
    16.0    -27.0    -34.0
 
Results for MatrixMul2()
Matrix m1
     5.0     -3.0      2.0
    -2.0      5.0      4.0
Matrix m2
     7.0     -4.0      3.0      3.0
     2.0      6.0     -2.0      5.0
     4.0      9.0      3.0      5.0
Matrix m3_a
    37.0    -20.0     27.0     10.0
    12.0     74.0     -4.0     39.0
Matrix m3_b
    37.0    -20.0     27.0     10.0
    12.0     74.0     -4.0     39.0
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Strings
The final sample program in this section and chapter is named ConcatStrings. This 
sample program is an x86-64 implementation of the x86-32 string concatenation 
program that you studied in Chapter 2, which illustrated how to use the scasw and movsw 
instructions to concatenate multiple strings. Listings 18-19 and 18-20 contain the C++ 
and assembly language source code for sample program ConcatStrings.

Listing 18-19. ConcatStrings.cpp

#include "stdafx.h"
 
extern "C" int ConcatStrings_(wchar_t* des, int des_size, const wchar_t*
const* src, int src_n);
 
int _tmain(int argc, _TCHAR* argv[])
{
    printf("\nResults for ConcatStrings\n");
 
    // Destination buffer large enough
    wchar_t* src1[] = { L"One ", L"Two ", L"Three ", L"Four" };
    int src1_n = sizeof(src1) / sizeof(wchar_t*);
    const int des1_size = 64;
    wchar_t des1[des1_size];
 
    int des1_len = ConcatStrings_(des1, des1_size, src1, src1_n);
    wchar_t* des1_temp = (*des1 != '\0') ? des1 : L"<empty>";
     wprintf(L"  des_len: %d (%d) des: %s \n", des1_len, wcslen(des1_temp), 

des1_temp);
 
    // Destination buffer too small
    wchar_t* src2[] = { L"Red ", L"Green ", L"Blue ", L"Yellow " };
    int src2_n = sizeof(src2) / sizeof(wchar_t*);
    const int des2_size = 16;
    wchar_t des2[des2_size];
 
    int des2_len = ConcatStrings_(des2, des2_size, src2, src2_n);
    wchar_t* des2_temp = (*des2 != '\0') ? des2 : L"<empty>";
     wprintf(L"  des_len: %d (%d) des: %s \n", des2_len, wcslen(des2_temp), 

des2_temp);
 
    // Empty string test
    wchar_t* src3[] = { L"Airplane ", L"Car ", L"", L"Truck ", L"Boat " };
    int src3_n = sizeof(src3) / sizeof(wchar_t*);
    const int des3_size = 128;
    wchar_t des3[des3_size];
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    int des3_len = ConcatStrings_(des3, des3_size, src3, src3_n);
    wchar_t* des3_temp = (*des3 != '\0') ? des3 : L"<empty>";
     wprintf(L"  des_len: %d (%d) des: %s \n", des3_len, wcslen(des3_temp), 

des3_temp);
 
    return 0;
} 

Listing 18-20. ConcatStrings_.asm

        include <MacrosX86-64.inc>
        .code
 
; extern "C" int ConcatStrings_(wchar_t* des, int des_size, const wchar_t* 
const* src, int src_n)
;
; Description:  This function performs string concatenation using
;               multiple input strings.
;
; Returns:      -1          Invalid des_size or src_n
;               n >= 0      Length of concatenated string
 
ConcatStrings_ proc frame
        _CreateFrame ConcatStrings_,0,0,rbx,rsi,rdi
        _EndProlog
 
; Make sure des_size and src_n are  greater than zero
        movsxd rdx,edx                      ;rdx = des_size
        test rdx,rdx
        jle Error                           ;jump if des_size <= 0
        movsxd r9,r9d                       ;r9 = src_n
        test r9,r9
        jle Error                           ;jump if src_n <= 0
 
; Perform required initializations
        mov rbx,rcx                         ;rbx = des
        xor r10,r10                         ;des_index = 0
        xor r11,r11                         ;i = 0
        mov word ptr [rbx],r10w             ;*des = '\0';
 
; Repeat loop until concatenation is finished
Lp1:    mov rdi,[r8+r11*8]                  ;rdi = src[i]
        mov rsi,rdi                         ;rsi = src[i]
 
; Compute length of s[i]
        xor rax,rax
        mov rcx,-1
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        repne scasw                         ;find '\0'
        not rcx
        dec rcx                             ;rcx = len(src[i])
 
; Compute des_index + src_len
        mov rax,r10                         ;rax= des_index
        add rax,rcx                         ;rax = des_index + len(src[i])
 
; Is des_index + src_len >= des_size?
        cmp rax,rdx
        jge Done
 
; Copy src[i] to &des[des_index] (rsi already contains src[i])
        inc rcx                             ;rcx = len(src[i]) + 1
        lea rdi,[rbx+r10*2]                 ;rdi = &des[des_index]
        rep movsw                           ;perform string move
 
; Update des_index
        mov r10,rax                         ;des_index += len(src[i])
 
; Update i and repeat if not done
        inc r11                             ;i += 1
        cmp r11,r9                          ;is i >= src_n?
        jl Lp1                              ;jump if i < src_n
 
; Return length of concatenated string
Done:   mov eax,r10d                        ;eax = trunc(des_index)
       _DeleteFrame rbx,rsi,rdi
        ret
 
; Return error code
Error:  mov eax,-1                          ;eax = error code
       _DeleteFrame rbx,rsi,rdi
        ret
 
ConcatStrings_ endp
        end
 

The source code file ConcatStrings.cpp (see Listing 18-19) is identical to the 
one that was used in Chapter 2. It simply sets up a couple of test cases to exercise the 
assembly language function ConcatStrings_ and displays the results. Listing 18-20 shows 
the x86-64 code for ConcatStrings_. Since this function doesn’t require any local storage, 
the _CreateFrame macro is used solely to save the contents of non-volatile registers RBX, 
RSI, and RDI. The function then validates the size arguments des_size (RDX) and src_n 
(R9). Note that these values are sign-extended to 64 bits prior to validation in order to 
simplify the compare operations in the main processing loop.
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A mov rbx,rcx instruction copies the argument des into register RBX since RCX 
must be used as the count register by scasw and movsw. The main processing loop 
commences with a mov rdi,[r8+r11*8] instruction that loads src[i] into register RDI. 
A scale factor of eight is used since each string address in src[i] is eight bytes wide. Next, 
the length of string src[i] is calculated using the scasw instruction. The function then 
verifies that sufficient space is available in des to accommodate the new string. If enough 
space is available, a movsw instruction concatenates the string src[i] to the existing string 
in des; otherwise the processing loop terminates. The processing loop is then repeated 
until all strings in src have been processed or sufficient space is no longer available.

The ConcatStrings_ function contains two epilogs. While this approach is 
inconsequential in ConcatStrings_, the use of multiple epilogs may improve the 
performance of some functions compared to the execution of additional jmp instructions. 
Note that both epilogs use the _DeleteFrame macro to restore the previously-saved  
non-volatile registers. Output 18-10 shows the results of the sample program 
ConcatStrings.

Output 18-10. Sample Program ConcatStrings

Results for ConcatStrings
  des_len: 18 (18) des: One Two Three Four
  des_len: 15 (15) des: Red Green Blue
  des_len: 24 (24) des: Airplane Car Truck Boat

Summary
This chapter focused on x86-64 core architecture assembly language programming.  
You learned about the fundamentals of x86-assembly language programming, including 
integer arithmetic and operands, memory addressing, and scalar floating-point 
arithmetic. You also acquired practical knowledge and experience regarding the calling 
convention and its requirements. In the next two chapters, you continue your exploration 
of the x86-64 platform with an examination of its SIMD components.
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Chapter 19

X86-64 SIMD Architecture

The previous two chapters focused on the fundamentals of the x86-64 platform and its 
core architecture. In this chapter, exploration of the x86-64 platform continues with an 
examination of its SIMD architecture, which includes the computational resources of 
x86-SSE and x86-AVX. In the first section, you learn about the 64-bit x86-SSE execution 
environment, including its register set, supported data types, and instruction sets.  
The second section contains a similarly-ordered discussion that focuses on the 64-bit 
x86-AVX execution environment.

The content of this chapter assumes that you have a basic understanding of the 
material presented earlier in this book regarding x86-SSE and x86-AVX. This chapter is 
intentionally brief given the high degree of similarity between the SIMD architectures 
on the x86-32 and x86-64 platforms. In the discussions that follow, a “-32” or “-64” suffix 
is appended to the terms x86-SSE and x86-AVX when necessary in order to differentiate 
between the 32-bit and 64-bit SIMD architectures.

X86-SSE-64 Execution Environment
The following section discusses the execution environment of x86-SSE-64, including its 
register set and supported data types. From the perspective of an application program, 
most of the differences between the x86-SSE-64 and x86-SSE-32 execution environments 
are minor. Both environments use the same instructions, operands, and packed data types.

As mentioned in Chapter 17, all x86-64 compatible processors include the 
computational resources of SSE2. X86-64 processor support for extensions subsequent 
to SSE2 (SSE3, SSSE3, SSE4.1, and SSE4.2) varies depending on the particular 
microarchitecture. An application program should use the cpuid instruction to test 
whether a specific post-SSE2 extension is available for use.

X86-SSE-64 Register Set
The x86-SSE-64 register set includes 16 128-bit registers, which are named XMM0-XMM15. 
These are illustrated in Figure 19-1. The XMM registers support SIMD operations using 
packed integer operands. They also can be used to perform scalar and packed floating-
point calculations using single-precision and double-precision values.
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An x86-64 assembly language function can use the X86-SSE control-status register 
MXCSR to select SIMD floating-point configuration options. The status bits in MXCSR 
can also be tested to detect SIMD floating-point error conditions. The purpose and 
operation of each control flag and status bit in MXCSR is the same in both the x86-64 and 
x86-32 execution environments, and are explained in Chapter 7, particularly in Figure 7-3 
and Table 7-2. Chapter 8 contains an example program that illustrates use of the MXCSR.
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XMM4

XMM3

XMM2

0127
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XMM9

XMM13

XMM14

XMM15

XMM12

XMM11

XMM10

Figure 19-1. X86-SSE-64 register set
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X86-SSE-64 Data Types
X86-SSE-64 supports the same data types as its 32-bit counterpart. This includes pack 
integers (8-, 16-, 32-, and 64-bit), scalar floating-point (32-bit single-precision and 64-bit 
double-precision), and packed floating-point (32-bit single-precision and 64-bit double-
precision). Figure 7-2 illustrates the X86-SSE data types. Except for a small subset of 
instructions, all 128-bit wide packed integer and floating-point operands in memory must 
be properly aligned on a 16-byte boundary. Alignment of scalar floating-point operands 
is not required but strongly recommended for performance reasons. Chapter 7 contains 
additional information regarding x86-SSE data types.

X86-SSE-64 Instruction Set Overview
The x86-SSE-64 instruction set is essentially the same as its 32-bit analogue, except for a 
small subset of instructions that require general-purpose register operands. All X86-SSE 
instructions that employ general-purpose register operands have been extended to support 
the 64-bit general-purpose register set. Table 19-1 lists the X86-SSE instructions that can 
be used with a 64-bit general-purpose register operand. The table descriptions use the 
acronyms DPFP and SPFP to represent double-precision floating-point and single-precision 
floating-point, respectively.

Table 19-1. X86-SSE 64-Bit General-Purpose Register Instructions

Mnemonic Description

cvtsd2si Convert scalar DPFP to signed integer

cvtsi2sd Convert signed integer to scalar DPFP

cvtsi2ss Convert signed integer to scalar SPFP

cvtss2si Convert scalar SPFP to signed integer

cvttsd2si Convert with truncation scalar DPFP to signed integer

cvttss2si Convert with truncation scalar SPFP to signed integer

movmskpd Extract packed DPFP sign mask

movmskps Extract packed SPFP sign mask

movq Move quadword

pextrq Extract quadword

pinsrq Insert quadword

pmovmskb Move byte mask
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Execution of x86-SSE instructions is the same in both 64-bit and 32-bit processor 
operating modes. When operating in 64-bit mode, some of the x86-SSE packed text string 
instructions use 64-bit instead of 32-bit implicit register operands. For example, the string 
fragment lengths required by the pcmpestri and pcmpestrm instructions must be loaded 
into registers RAX and RDX instead of EAX and EDX. Also, the pcmpestri and pcmpistri 
instructions store the calculated character index in RCX instead of ECX.

X86-AVX Execution Environment
The following section discusses the execution environment of x86-AVX-64, including its 
register set and supported data types. Similar to x86-SSE, most of the differences between 
the X86-AVX-64 and X86-AVX-32 execution environments are relatively minor. It should 
be noted that not all x86-64 compatible processors support x86-AVX. An application 
program should use the cpuid instruction to test whether the host processor supports 
AVX, AVX2, or any of the x86-AVX concomitant feature set extensions such as FMA.

X86-AVX-64 Register Set
The x86-AVX-64 register set contains 16 256-bit registers, which are named YMM0-
YMM15. These registers can be used to manipulate a variety of data types including 
packed integer, packed floating-point, and scalar floating-point values. The low-order 
128-bits of each YMM register are aliased with the corresponding XMM register, as 
illustrated in Figure 19-2. Most x86-AVX-64 instructions can use any of the XMM or YMM 
registers as operands.
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X86-AVX-64 Data Types
X86-AVX-64 supports the same data types as x86-AVX-32, including packed integers, 
scalar floating-point, and packed floating-point. Chapter 12 discusses these data types 
in greater detail; they’re also illustrated in Figure 12-2. Most x86-AVX instructions can 
manipulate 128-bit or 256-bit wide packed operands using either an XMM or YMM 
register, respectively. The relaxed memory alignment requirements discussed in 
Chapter 12 also apply to x86-AVX-64 operands in memory. To reiterate, except for data 
transfer instructions that explicitly reference an aligned 128-bit or 256-bit wide operand 
in memory, proper alignment of an x86-AVX operand is not required but strongly 
recommended for best possible performance.
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Figure 19-2. X86-AVX-64 register set
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X86-AVX-64 Instruction Set Overview
Excluding the instructions that require a general-purpose register operand, the x86-
AVX-64 instruction set is basically the same as its 32-bit counterpart. The x86-AVX forms 
of the instructions listed in Table 19-1 are permitted to use 64-bit general-purpose 
register operands. Instructions that use VSIB memory addressing (such as vgatherdpd, 
vgatherdps, and so on) can also specify a 64-bit general-purpose register as the base 
register operand.

Execution of x86-AVX instructions does not vary between 64-bit and 32-bit 
operating modes. This includes the zeroing of a YMM register’s upper 128 bits when the 
corresponding XMM register is used as an operand, and the processing rules that affect 
the unused bits of an x86-AVX scalar floating-point operand. X86-64 assembly language 
functions should also use the vzeroupper or vzeroall instructions to avoid potential 
state transition delays that can occur when switching between x86-AVX and x86-SSE 
instructions. Chapter 12 discusses these and other x86-AVX instruction set programming 
issues in greater detail.

Summary
In this chapter, you learned about the x86-SSE-64 and x86-AVX-64 architectures. You 
also discovered that these 64-bit SIMD architectures are very similar to their 32-bit 
counterparts. The larger register sets afforded by x86-SSE-64 and x86-AVX-64 offer a 
number of benefits, including simplified assembly language coding and opportunities for 
increased performance. In the next chapter, you examine a variety of sample programs 
that expound on the material presented in this chapter.
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Chapter 20

X86-64 SIMD Programming

This chapter explains how to code x86-64 assembly language functions that exploit the 
computational resources of x86-SSE and x86-AVX. The first section includes sample 
code that focuses on use of the x86-SSE instruction set. The second section exemplifies 
operation of the x86-AVX instruction set. Most of the x86-SSE and x86-AVX instructions 
exercised by the sample code in this chapter have already been examined in previous 
chapters. This allows the ensuing discussions to place more emphasis on algorithmic 
techniques and 64-bit processing methods instead of instruction execution minutiae.

X86-SSE-64 Programming
In Chapters 9 and 10, you learned how to use the x86-SSE instruction set to write 
functions that process packed floating-point and integer data. In this section, you 
discover how to exploit the resources of x86-SSE in a 64-bit assembly language function. 
The first sample program is a 64-bit implementation of the image histogram construction 
algorithm that was discussed in Chapter 10. The next two sample programs illustrate use 
of the x86-SSE instruction set with packed floating-point data. All of the sample programs 
in this section accentuate application of the additional computing resources that are 
available in an x86-64 execution environment.

Image Histogram
In Chapter 10, you learned how to construct a histogram for an 8-bit grayscale image 
using the x86-SSE instruction set. In this section, you examine a 64-bit implementation 
of the same image-histogram processing algorithm. Listings 20-1 and 20-2 show the C++ 
and assembly language source code for sample program Sse64ImageHistogram.
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Listing 20-1. Sse64ImageHistogram.cpp

#include "stdafx.h"
#include "Sse64ImageHistogram.h"
#include <string.h>
#include <malloc.h>
 
extern "C" Uint32 NUM_PIXELS_MAX = 16777216;
 
bool Sse64ImageHistogramCpp(Uint32* histo, const Uint8* pixel_buff, Uint32
num_pixels)
{
    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels > NUM_PIXELS_MAX))
        return false;
    if (num_pixels % 32 != 0)
        return false;
 
    // Make sure histo is aligned to a 16-byte boundary
    if (((uintptr_t)histo & 0xf) != 0)
        return false;
 
    // Make sure pixel_buff is aligned to a 16-byte boundary
    if (((uintptr_t)pixel_buff & 0xf) != 0)
        return false;
 
    // Build the histogram
    memset(histo, 0, 256 * sizeof(Uint32));
 
    for (Uint32 i = 0; i < num_pixels; i++)
        histo[pixel_buff[i]]++;
 
    return true;
}
 
void Sse64ImageHistogram(void)
{
    const wchar_t* image_fn = L"..\\..\\..\\DataFiles\\TestImage1.bmp";
    const char* csv_fn = "__TestImage1_Histograms.csv";
 
    ImageBuffer ib(image_fn);
    Uint32 num_pixels = ib.GetNumPixels();
    Uint8* pixel_buff = (Uint8*)ib.GetPixelBuffer();
    Uint32* histo1 = (Uint32*)_aligned_malloc(256 * sizeof(Uint32), 16);
    Uint32* histo2 = (Uint32*)_aligned_malloc(256 * sizeof(Uint32), 16);
    bool rc1, rc2;
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    rc1 = Sse64ImageHistogramCpp(histo1, pixel_buff, num_pixels);
    rc2 = Sse64ImageHistogram_(histo2, pixel_buff, num_pixels);
 
    printf("Results for Sse64ImageHistogram()\n");
 
    if (!rc1 || !rc2)
    {
        printf("  Bad return code: rc1=%d, rc2=%d\n", rc1, rc2);
        return;
    }
 
    FILE* fp;
    bool compare_error = false;
 
    if (fopen_s(&fp, csv_fn, "wt") != 0)
        printf("  File open error: %s\n", csv_fn);
    else
    {
        for (Uint32 i = 0; i < 256; i++)
        {
            fprintf(fp, "%u, %u, %u\n", i, histo1[i], histo2[i]);
 
            if (histo1[i] != histo2[i])
            {
                printf("  Histogram compare error at index %u\n", i);
                printf("    counts: [%u, %u]\n", histo1[i], histo2[i]);
                compare_error = true;
            }
        }
 
        if (!compare_error)
            printf("  Histograms are identical\n");
 
        fclose(fp);
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    try
    {
        Sse64ImageHistogram();
        Sse64ImageHistogramTimed();
    }
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    catch (...)
    {
        printf("Unexpected exception has occurred!\n");
        printf("File: %s (_tmain)\n", __FILE__);
    }
 
    return 0;
}
 

Listing 20-2. Sse64ImageHistogram_.asm

        include <MacrosX86-64.inc>
        .code
        extern NUM_PIXELS_MAX:dword
 
; extern bool Sse64ImageHistogram_(Uint32* histo, const Uint8* pixel_buff,
Uint32 num_pixels);
;
; Description:  The following function builds an image histogram.
;
; Returns:      0 = invalid argument value
;               1 = success
;
; Requires:     X86-64, SSE4.1
 
Sse64ImageHistogram_ proc frame
        _CreateFrame Sse64Ih_,1024,0,rbx,rsi,rdi
        _EndProlog
 
; Make sure num_pixels is valid
        test r8d,r8d
        jz Error                            ;jump if num_pixels is zero
        cmp r8d,[NUM_PIXELS_MAX]
        ja Error                            ;jump if num_pixels too big
        test r8d,1fh
        jnz Error                           ;jump if num_pixels % 32 != 0
 
; Make sure histo & pixel_buff are properly aligned
        mov rsi,rcx                         ;rsi = ptr to histo
        test rsi,0fh
        jnz Error                           ;jump if histo misaligned
        mov r9,rdx
        test r9,0fh
        jnz Error                           ;jump if pixel_buff misaligned
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; Initialize local histogram buffers (set all entries to zero)
        xor rax,rax
        mov rdi,rsi                         ;rdi = ptr to histo
        mov rcx,128                         ;rcx = size in qwords
        rep stosq                           ;zero histo
        mov rdi,rbp                         ;rdi = ptr to histo2
        mov rcx,128                         ;rcx = size in qwords
        rep stosq                           ;zero histo2
 
; Perform processing loop initializations
        shr r8d,5                           ;r8d = number of pixel blocks
        mov rdi,rbp                         ;rdi = ptr to histo2
 
; Build the histograms
        align 16                            ;align jump target
@@:     movdqa xmm0,[r9]                    ;load pixel block
        movdqa xmm2,[r9+16]                 ;load pixel block
        movdqa xmm1,xmm0
        movdqa xmm3,xmm2
 
; Process pixels 0 - 3
        pextrb rax,xmm0,0
        add dword ptr [rsi+rax*4],1         ;count pixel 0
        pextrb rbx,xmm1,1
        add dword ptr [rdi+rbx*4],1         ;count pixel 1
        pextrb rcx,xmm0,2
        add dword ptr [rsi+rcx*4],1         ;count pixel 2
        pextrb rdx,xmm1,3
        add dword ptr [rdi+rdx*4],1         ;count pixel 3
 
; Process pixels 4 - 7
        pextrb rax,xmm0,4
        add dword ptr [rsi+rax*4],1         ;count pixel 4
        pextrb rbx,xmm1,5
        add dword ptr [rdi+rbx*4],1         ;count pixel 5
        pextrb rcx,xmm0,6
        add dword ptr [rsi+rcx*4],1         ;count pixel 6
        pextrb rdx,xmm1,7
        add dword ptr [rdi+rdx*4],1         ;count pixel 7
 
; Process pixels 8 - 11
        pextrb rax,xmm0,8
        add dword ptr [rsi+rax*4],1         ;count pixel 8
        pextrb rbx,xmm1,9
        add dword ptr [rdi+rbx*4],1         ;count pixel 9
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        pextrb rcx,xmm0,10
        add dword ptr [rsi+rcx*4],1         ;count pixel 10
        pextrb rdx,xmm1,11
        add dword ptr [rdi+rdx*4],1         ;count pixel 11
 
; Process pixels 12 - 15
        pextrb rax,xmm0,12
        add dword ptr [rsi+rax*4],1         ;count pixel 12
        pextrb rbx,xmm1,13
        add dword ptr [rdi+rbx*4],1         ;count pixel 13
        pextrb rcx,xmm0,14
        add dword ptr [rsi+rcx*4],1         ;count pixel 14
        pextrb rdx,xmm1,15
        add dword ptr [rdi+rdx*4],1         ;count pixel 15
 
; Process pixels 16 - 19
        pextrb rax,xmm2,0
        add dword ptr [rsi+rax*4],1         ;count pixel 16
        pextrb rbx,xmm3,1
        add dword ptr [rdi+rbx*4],1         ;count pixel 17
        pextrb rcx,xmm2,2
        add dword ptr [rsi+rcx*4],1         ;count pixel 18
        pextrb rdx,xmm3,3
        add dword ptr [rdi+rdx*4],1         ;count pixel 19
 
; Process pixels 20 - 23
        pextrb rax,xmm2,4
        add dword ptr [rsi+rax*4],1         ;count pixel 20
        pextrb rbx,xmm3,5
        add dword ptr [rdi+rbx*4],1         ;count pixel 21
        pextrb rcx,xmm2,6
        add dword ptr [rsi+rcx*4],1         ;count pixel 22
        pextrb rdx,xmm3,7
        add dword ptr [rdi+rdx*4],1         ;count pixel 23
 
; Process pixels 24 - 27
        pextrb rax,xmm2,8
        add dword ptr [rsi+rax*4],1         ;count pixel 24
        pextrb rbx,xmm3,9
        add dword ptr [rdi+rbx*4],1         ;count pixel 25
        pextrb rcx,xmm2,10
        add dword ptr [rsi+rcx*4],1         ;count pixel 26
        pextrb rdx,xmm3,11
        add dword ptr [rdi+rdx*4],1         ;count pixel 27
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; Process pixels 28 - 31
        pextrb rax,xmm2,12
        add dword ptr [rsi+rax*4],1         ;count pixel 28
        pextrb rbx,xmm3,13
        add dword ptr [rdi+rbx*4],1         ;count pixel 29
        pextrb rcx,xmm2,14
        add dword ptr [rsi+rcx*4],1         ;count pixel 30
        pextrb rdx,xmm3,15
        add dword ptr [rdi+rdx*4],1         ;count pixel 31
 
        add r9,32                           ;r9  = next pixel block
        sub r8d,1
        jnz @B                              ;repeat loop if not done
 
; Merge intermediate histograms into final histogram
        mov ecx,32                          ;ecx = num iterations
        xor rax,rax                         ;rax = common offset
 
@@:     movdqa xmm0,xmmword ptr [rsi+rax]       ;load histo counts
        movdqa xmm1,xmmword ptr [rsi+rax+16]
        paddd xmm0,xmmword ptr [rdi+rax]        ;add counts from histo2
        paddd xmm1,xmmword ptr [rdi+rax+16]
        movdqa xmmword ptr [rsi+rax],xmm0       ;save final result
        movdqa xmmword ptr [rsi+rax+16],xmm1
 
        add rax,32
        sub ecx,1
        jnz @B
        mov eax,1                           ;set success return code
 
Done:  _DeleteFrame rbx,rsi,rdi
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp Done
Sse64ImageHistogram_ endp
        end
 

The C++ source code for sample program Sse64ImageHistogram (Listing 20-1) is 
almost identical to the code that you studied in Chapter 10. Toward the top of the listing 
is a function named Sse64ImageHistogramCpp that constructs an image histogram using 
a simple for loop. The function Sse64ImageHistogram contains code that loads an 8-bit 
grayscale test image, invokes the image-histogram processing functions, and compares 
the results for any discrepancies. It also saves a copy of the histogram pixel counts to a 
CSV file for subsequent processing or plotting using a spreadsheet program.

The file Sse64ImageHistogram_.asm (Listing 20-2) contains a function named 
Sse64ImageHistogram_, which constructs an image histogram using the x86-64 
instruction set and SSE4.1. Similar to the earlier histogram sample program in  
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Chapter 10, this function builds two intermediate histograms and merges them into a 
final histogram. The Sse64ImageHistogram_ function starts by creating a stack frame 
using the _CreateFrame macro. Note that the stack frame includes 1024 bytes of local 
storage, which is used as storage space for one of the intermediate histogram buffers. 
The caller-provided buffer histo is used to store the second intermediate and final 
histograms. Following the _EndProlog macro, function arguments histo and pixel_buff 
are validated for proper alignment, and num_pixels is validated for proper size. The count 
values in the two intermediate histogram buffers are then initialized to zero using the 
stosq instruction.

The main processing loop of the Sse64ImageHistogram_ function is slightly different 
than its 32-bit counterparts since it uses additional general-purpose registers. At the top 
of the loop, two movdqa instructions load the next block of 32 pixels into registers XMM0/
XMM1 and XMM2/XMM3. A pextrb rax,xmm0,0 instruction extracts pixel number 0 
from XMM0 and copies it to register RAX (the high-order bits of RAX are set to zero). An 
add dword ptr [rsi+rax*4],1 instruction updates the appropriate pixel count entry in 
the first intermediate histogram. The next two instructions,—pextrb rbx,xmm1,1 and 
add dword ptr [rdi+rbx*4],1—process pixel number 1 in the same manner using the 
second intermediate histogram. This pixel-processing technique is then repeated for the 
remaining pixels in the current block.

Following completion of the main processing loop, the pixel count values in 
the two intermediate histograms are summed to create the final image histogram. 
The _DeleteFrame macro is then used to release the local stack frame and restore the 
previously-saved non-volatile general-purpose registers. Output 20-1 shows the results 
for sample program Sse64ImageHistogram.

Output 20-1. Sample Program Sse64ImageHistogram

Results for Sse64ImageHistogram()
  Histograms are identical
 
Benchmark times saved to file __Sse64ImageHistogramTimed.csv
 

Table 20-1 contains some benchmark timing measurements for sample program 
Sse64ImageHistogram. The timing measurements shown in this table are essentially 
the same as those shown in Table 10-1 for the 32-bit version of the image-histogram 
generation algorithm. This is an expected result since the algorithm used to construct 
the histogram is access constrained; only one pixel count entry in each intermediate 
histogram is updated per add instruction.

Table 20-1. Mean Execution Times (in Microseconds) for the Histogram Functions  
in the Sse64ImageHistogram Sample Program using TestImage1.bmp

CPU C++ x86-SSE-64

Intel Core i7-4770 300 234

Intel Core i7-4600U 354 278

Intel Core i3-2310M 679 485
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Image Conversion
In order to implement certain image-processing algorithms, it is often necessary to 
convert the pixels of an 8-bit grayscale image from unsigned integer to single-precision 
floating-point values and vice versa. The sample program in this section illustrates how 
to do this using the x86-SSE instruction set. Listings 20-3 and 20-4 show the C++ and 
assembly language source code for sample program Sse64ImageConvert.

Listing 20-3. Sse64ImageConvert.cpp

#include "stdafx.h"
#include "MiscDefs.h"
#include <malloc.h>
#include <stdlib.h>
 
extern "C" Uint32 NUM_PIXELS_MAX = 16777216;
extern "C" bool ImageUint8ToFloat_(float* des, const Uint8* src, Uint32
num_pixels);
extern "C" bool ImageFloatToUint8_(Uint8* des, const float* src, Uint32
num_pixels);
 
bool ImageUnit8ToFloatCpp(float* des, const Uint8* src, Uint32 num_pixels)
{
    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels > NUM_PIXELS_MAX))
        return false;
    if (num_pixels % 32 != 0)
        return false;
 
    // Make sure src and des are aligned to a 16-byte boundary
    if (((uintptr_t)src & 0xf) != 0)
        return false;
    if (((uintptr_t)des & 0xf) != 0)
        return false;
 
    // Convert the image
    for (Uint32 i = 0; i < num_pixels; i++)
        des[i] = src[i] / 255.0f;
 
    return true;
}
 
bool ImageFloatToUint8Cpp(Uint8* des, const float* src, Uint32 num_pixels)
{
    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels > NUM_PIXELS_MAX))
        return false;
    if (num_pixels % 32 != 0)
        return false;
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    // Make sure src and des are aligned to a 16-byte boundary
    if (((uintptr_t)src & 0xf) != 0)
        return false;
    if (((uintptr_t)des & 0xf) != 0)
        return false;
 
    for (Uint32 i = 0; i < num_pixels; i++)
    {
        if (src[i] > 1.0f)
            des[i] = 255;
        else if (src[i] < 0.0)
            des[i] = 0;
        else
            des[i] = (Uint8)(src[i] * 255.0f);
    }
 
    return true;
}
 
Uint32 ImageCompareFloat(const float* src1, const float* src2, Uint32
num_pixels)
{
    Uint32 num_diff = 0;
    for (Uint32 i = 0; i < num_pixels; i++)
    {
        if (src1[i] != src2[i])
            num_diff++;
    }
    return num_diff;
}
 
Uint32 ImageCompareUint8(const Uint8* src1, const Uint8* src2, Uint32
num_pixels)
{
    Uint32 num_diff = 0;
    for (Uint32 i = 0; i < num_pixels; i++)
    {
        // Pixels values are allowed to differ by 1 to account for
        // slight variations in FP arithmetic
        if (abs((int)src1[i] - (int)src2[i]) > 1)
            num_diff++;
    }
    return num_diff;
}
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void ImageUint8ToFloat(void)
{
    const Uint32 num_pixels = 1024;
    Uint8* src = (Uint8*)_aligned_malloc(num_pixels * sizeof(Uint8), 16);
    float* des1 = (float*)_aligned_malloc(num_pixels * sizeof(float), 16);
    float* des2 = (float*)_aligned_malloc(num_pixels * sizeof(float), 16);
 
    srand(12);
 
    for (Uint32 i = 0; i < num_pixels; i++)
        src[i] = (Uint8)(rand() % 256);
 
    bool rc1 = ImageUnit8ToFloatCpp(des1, src, num_pixels);
    bool rc2 = ImageUint8ToFloat_(des2, src, num_pixels);
 
    if (!rc1 || !rc2)
    {
        printf("Invalid return code - [%d, %d]\n", rc1, rc2);
        return;
    }
 
    Uint32 num_diff = ImageCompareFloat(des1, des2, num_pixels);
    printf("\nResults for ImageUint8ToFloat\n");
    printf("  num_diff = %u\n", num_diff);
 
    _aligned_free(src);
    _aligned_free(des1);
    _aligned_free(des2);
}
 
void ImageFloatToUint8(void)
{
    const Uint32 num_pixels = 1024;
    float* src = (float*)_aligned_malloc(num_pixels * sizeof(float), 16);
    Uint8* des1 = (Uint8*)_aligned_malloc(num_pixels * sizeof(Uint8), 16);
    Uint8* des2 = (Uint8*)_aligned_malloc(num_pixels * sizeof(Uint8), 16);
 
    // Initialize the src pixel buffer.  The first few entries in src
    // are set to known values for test purposes.
    src[0] = 0.125f;        src[8] = 0.01f;
    src[1] = 0.75f;         src[9] = 0.99f;
    src[2] = -4.0f;         src[10] = 1.1f;
    src[3] = 3.0f;          src[11] = -1.1f;
    src[4] = 0.0f;          src[12] = 0.99999f;
    src[5] = 1.0f;          src[13] = 0.5f;
    src[6] = -0.01f;        src[14] = -0.0;
    src[7] = +1.01f;        src[15] = .333333f;
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    srand(20);
    for (Uint32 i = 16; i < num_pixels; i++)
        src[i] = (float)rand() / RAND_MAX;
 
    bool rc1 = ImageFloatToUint8Cpp(des1, src, num_pixels);
    bool rc2 = ImageFloatToUint8_(des2, src, num_pixels);
 
    if (!rc1 || !rc2)
    {
        printf("Invalid return code - [%d, %d]\n", rc1, rc2);
        return;
    }
 
    Uint32 num_diff = ImageCompareUint8(des1, des2, num_pixels);
    printf("\nResults for ImageFloatToUint8\n");
    printf("  num_diff = %u\n", num_diff);
 
    _aligned_free(src);
    _aligned_free(des1);
    _aligned_free(des2);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    ImageUint8ToFloat();
    ImageFloatToUint8();
    return 0;
} 

Listing 20-4. Sse64ImageConvert_.asm

        include <MacrosX86-64.inc>
        extern NUM_PIXELS_MAX:dword
 
        .const
; All of these values must be aligned to a 16-byte boundary
Uint8ToFloat        real4 255.0, 255.0, 255.0, 255.0
FloatToUint8Min     real4 0.0, 0.0, 0.0, 0.0
FloatToUint8Max     real4 1.0, 1.0, 1.0, 1.0
FloatToUint8Scale   real4 255.0, 255.0, 255.0, 255.0
        .code
 
; extern "C" bool ImageUint8ToFloat_(float* des, const Uint8* src, Uint32
num_pixels);
;
; Description:  The following function converts the values in a Uint8
;               pixel buffer to normalized [0.0, 1.0] SPFP.
;
; Requires:     X86-64, SSE2
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ImageUint8ToFloat_ proc frame
        _CreateFrame U2F_,0,64
        _SaveXmmRegs xmm10,xmm11,xmm12,xmm13
        _EndProlog
 
; Make sure num_pixels is valid and pixel buffers are properly aligned
        test r8d,r8d
        jz Error                            ;jump if num_pixels
        cmp r8d,[NUM_PIXELS_MAX]
        ja Error                            ;jump if num_pixels too big
        test r8d,1fh
        jnz Error                           ;jump if num_pixels % 32 != 0
        test rcx,0fh
        jnz Error                           ;jump if des not aligned
        test rdx,0fh
        jnz Error                           ;jump if src not aligned
 
; Initialize processing loop registers
        shr r8d,5                               ;number of pixel blocks
        movaps xmm4,xmmword ptr [Uint8ToFloat]  ;xmm4 = packed 255.0f
        pxor xmm5,xmm5                          ;xmm5 = packed 0
        align 16
 
; Load the next block of 32 pixels
@@:     movdqa xmm0,xmmword ptr [rdx]               ;xmm0 = pixel block
        movdqa xmm10,xmmword ptr [rdx+16]           ;xmm10 = pixel block
 
; Promote the pixel values in xmm0 from unsigned bytes to unsigned dwords
        movdqa xmm2,xmm0
        punpcklbw xmm0,xmm5
        punpckhbw xmm2,xmm5                 ;xmm2 & xmm0 = 8 word pixels
        movdqa xmm1,xmm0
        movdqa xmm3,xmm2
        punpcklwd xmm0,xmm5
        punpckhwd xmm1,xmm5
        punpcklwd xmm2,xmm5
        punpckhwd xmm3,xmm5                 ;xmm3:xmm0 = 16 dword pixels
 
; Promote the pixel values in xmm10 from unsigned bytes to unsigned dwords
        movdqa xmm12,xmm10
        punpcklbw xmm10,xmm5
        punpckhbw xmm12,xmm5                ;xmm12 & xmm10 = 8 word pixels
        movdqa xmm11,xmm10
        movdqa xmm13,xmm12
        punpcklwd xmm10,xmm5
        punpckhwd xmm11,xmm5
        punpcklwd xmm12,xmm5
        punpckhwd xmm13,xmm5                ;xmm13:xmm10 = 16 dword pixels
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; Convert pixel values from dwords to SPFP
        cvtdq2ps xmm0,xmm0
        cvtdq2ps xmm1,xmm1
        cvtdq2ps xmm2,xmm2
        cvtdq2ps xmm3,xmm3                  ;xmm3:xmm0 = 16 SPFP pixels
        cvtdq2ps xmm10,xmm10
        cvtdq2ps xmm11,xmm11
        cvtdq2ps xmm12,xmm12
        cvtdq2ps xmm13,xmm13                ;xmm13:xmm10 = 16 SPFP pixels
 
; Normalize all pixel values to [0.0, 1.0] and save the results
        divps xmm0,xmm4
        movaps xmmword ptr [rcx],xmm0       ;save pixels 0 - 3
        divps xmm1,xmm4
        movaps xmmword ptr [rcx+16],xmm1    ;save pixels 4 - 7
        divps xmm2,xmm4
        movaps xmmword ptr [rcx+32],xmm2    ;save pixels 8 - 11
        divps xmm3,xmm4
        movaps xmmword ptr [rcx+48],xmm3    ;save pixels 12 - 15
 
        divps xmm10,xmm4
        movaps xmmword ptr [rcx+64],xmm10   ;save pixels 16 - 19
        divps xmm11,xmm4
        movaps xmmword ptr [rcx+80],xmm11   ;save pixels 20 - 23
        divps xmm12,xmm4
        movaps xmmword ptr [rcx+96],xmm12   ;save pixels 24 - 27
        divps xmm13,xmm4
        movaps xmmword ptr [rcx+112],xmm13  ;save pixels 28 - 31
 
        add rdx,32                          ;update src ptr
        add rcx,128                         ;update des ptr
        sub r8d,1
        jnz @B                              ;repeat until done
        mov eax,1                           ;set success return code
 
Done:   _RestoreXmmRegs xmm10,xmm11,xmm12,xmm13
        _DeleteFrame
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp done
ImageUint8ToFloat_ endp
 
; extern "C" bool ImageFloatToUint8_(Uint8* des, const float* src, Uint32
num_pixels);
;
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; Description:  The following function converts a normalized [0.0, 1.0]
;               SPFP pixel buffer to Uint8
;
; Requires      X86-64, SSE4.1
 
ImageFloatToUint8_ proc frame
        _CreateFrame F2U_,0,32
        _SaveXmmRegs xmm6,xmm7
        _EndProlog
 
; Make sure num_pixels is valid and pixel buffers are properly aligned
        test r8d,r8d
        jz Error                            ;jump if num_pixels
        cmp r8d,[NUM_PIXELS_MAX]
        ja Error                            ;jump if num_pixels too big
        test r8d,1fh
        jnz Error                           ;jump if num_pixels % 32 != 0
        test rcx,0fh
        jnz Error                           ;jump if des not aligned
        test rdx,0fh
        jnz Error                           ;jump if src not aligned
 
; Load required packed constants into registers
        movaps xmm5,xmmword ptr [FloatToUint8Scale] ;xmm5 = packed 255.0
        movaps xmm6,xmmword ptr [FloatToUint8Min]   ;xmm6 = packed 0.0
        movaps xmm7,xmmword ptr [FloatToUint8Max]   ;xmm7 = packed 1.0
 
        shr r8d,4                           ;number of pixel blocks
LP1:    mov r9d,4                           ;num pixel quartets per block
 
; Convert 16 float pixels to Uint8
LP2:    movaps xmm0,xmmword ptr [rdx]       ;xmm0 = pixel quartet
        movaps xmm1,xmm0
        cmpltps xmm1,xmm6                   ;compare pixels to 0.0
        andnps xmm1,xmm0                    ;clip pixels < 0.0 to 0.0
        movaps xmm0,xmm1                    ;save result
 
        cmpnleps xmm1,xmm7                  ;compare pixels to 1.0
        movaps xmm2,xmm1
        andps xmm1,xmm7                     ;clip pixels > 1.0 to 1.0
        andnps xmm2,xmm0                    ;xmm2 = pixels <= 1.0
        orps xmm2,xmm1                      ;xmm2 = final clipped pixels
        mulps xmm2,xmm5                     ;xmm2 = FP pixels [0.0, 255.0]
 
        cvtps2dq xmm1,xmm2                  ;xmm1 = dword pixels [0, 255]
        packusdw xmm1,xmm1                  ;xmm1[63:0] = word pixels
        packuswb xmm1,xmm1                  ;xmm1[31:0] = bytes pixels
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; Save the current byte pixel quartet
        pextrd eax,xmm1,0                   ;eax = new pixel quartet
        psrldq xmm3,4                       ;adjust xmm3 for new quartet
        pinsrd xmm3,eax,3                   ;xmm3[127:96] = new quartet
 
        add rdx,16                          ;update src ptr
        sub r9d,1
        jnz LP2                             ;repeat until done
 
; Save the current byte pixel block (16 pixels)
        movdqa xmmword ptr [rcx],xmm3       ;save current pixel block
        add rcx,16                          ;update des ptr
        sub r8d,1
        jnz LP1                             ;repeat until done
        mov eax,1                           ;set success return code
 
Done:   _RestoreXmmRegs xmm6,xmm7
        _DeleteFrame
        ret
 
Error:  mov eax,eax                         ;set error return code
        jmp Done
ImageFloatToUint8_ endp
        end
 

Toward the top of the file Sse64ImageConvert.cpp (Listing 20-3) is a function named 
ImageUint8ToFloatCpp, which converts all of the pixels in the buffer src from Uint8 
[0, 255] to single-precision floating-point [0.0, 1.0]. This function contains a simple for 
loop that calculates des[i] = src[i] / 255.0f for each pixel in src. The next function, 
ImageFloatToUint8Cpp, performs the inverse operation. Note that this function clips any 
floating-point pixels values greater than 1.0 and less than 0.0. The next two functions—
ImageCompareFloat and ImageCompareUint8—are used to compare two single-precision 
floating-point or two Uint8 pixel buffers for equality following a conversion operation. 
Note that the latter function allows Uint8 pixel values to differ by a count of one, 
which accounts for minor variations in floating-point arithmetic between the C++ and 
assembly language pixel conversion functions (recall that floating-point arithmetic is not 
necessarily associative, as explained in Chapter 3).

The ImageUint8ToFloat function sets up a test case that exercises the C++ and 
assembly language Uint8 to floating-point conversion functions. A similar function 
named ImageFloatToUint8 tests the corresponding floating-point to Uint8 conversion 
routines. Note that this function initializes the first few values of the src pixel buffer to 
known values in order to test the aforementioned pixel clipping requirement. Following 
each test case conversion operation, the number of detected pixel differences is displayed.

The assembly language conversion function ImageUnit8ToFloat_ is shown 
in Listing 20-4. Each iteration of the main processing loop converts 32 pixels from 
Uint8 to single-precision floating-point. The pixel conversion technique begins with 
the promotion of image pixel values from unsigned bytes to unsigned doublewords 
using a series of x86-SSE unpack instructions (punpcklbw, punpckhbw, punpcklwd, and 
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punpckhwd). The doubleword values are then converted to single-precision floating-point 
using the cvtdq2ps instruction. The resultant floating-point values are then normalized 
to [0.0, 1.0] and saved to the destination buffer.

Listing 20-4 also contains the assembly language code for the ImageFloatToUint8_ 
function. The inner loop of this conversion function uses the cmpltps and cmpnleps 
instructions along with some Boolean logic to clip any floating-point pixel values that are 
outside the range [0.0, 1.0]. Figure 20-1 illustrates this technique. The clipped floating-
point pixel values are then converted to unsigned bytes using the instructions cvtps2dq, 
packusdw, and packuswb. The resultant byte quartet is then saved in XMM3[127:96] using 
the pextrd, psrldq, and pinsrd instructions. This process is repeated three more times. 
Following completion of the inner loop, XMM3 contains 16 converted pixels. This block 
of pixels is then saved to the destination buffer using a movdqa instruction. Output 20-2 
shows the results for sample program Sse64ImageConvert.

xmm5

xmm6

movaps xmm0, xmmword ptr [rdx]

xmm7

Packed constants

255.0255.0255.0255.0

0.00.00.00.0

1.01.01.01.0

0.1250.75-4.03.0 xmm0

movaps xmm1, xmm0

0.1250.75-4.03.0 xmm1

cmpltps xmm1, xmm6

00000000h00000000hFFFFFFFFh00000000h xmm1

andnps xmm1, xmm0

0.1250.750.03.0 xmm1

movaps xmm0, xmm1

0.1250.750.03.0 xmm0

cmpnleps xmm1, xmm7

00000000h00000000h00000000hFFFFFFFFh xmm1

movaps xmm2, xmm1

00000000h00000000h00000000hFFFFFFFFh xmm2

andps xmm1, xmm7

0.00.00.01.0 xmm1

andnps xmm2, xmm0

0.1250.750.00.0 xmm2

orps xmm2, xmm1

0.1250.750.01.0 xmm2

mulps xmm2, xmm5

31.875191.250.0255.0 xmm2

Figure 20-1. Illustration of floating-point pixel clipping technique used in function 
ImageFloatToUint8_
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Output 20-2. Sample Program Sse64ImageConvert

 Results for ImageUint8ToFloat
  num_diff = 0
 
Results for ImageFloatToUint8
  num_diff = 0

Vector Arrays
The x86-SSE and x86-AVX instruction sets are often used to accelerate the performance 
of algorithms that carry out computations using large vector arrays. The sample program 
of this section, which is named Sse64VectorArrays, illustrates how to calculate cross 
products using vectors stored in an array. It also exemplifies the use of two different data 
storage methods and their effect on performance. Listings 20-5, 20-6, and 20-7 show the 
source code for sample program Sse64VectorArrays.

Listing 20-5. Sse64VectorArrays.h

// Simple vector structure
typedef struct
{
    float X;        // Vector X component
    float Y;        // Vector Y component
    float Z;        // Vector Z component
    float Pad;      // Pad for 16 byte structure size
} Vector;
 
// Vector structure of arrays
typedef struct
{
    float* X;       // Pointer to X components
    float* Y;       // Pointer to Y copmonents
    float* Z;       // Pointer to Z components
} VectorSoA;
 

Listing 20-6. Sse64VectorArrays.cpp

#include "stdafx.h"
#include "Sse64VectorArrays.h"
#include <stdlib.h>
 
void Sse64VectorCrossProd(void)
{
    const Uint32 num_vectors = 8;
    const size_t vsize1 = num_vectors * sizeof(Vector);
    const size_t vsize2 = num_vectors * sizeof(float);
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    Vector* a1 = (Vector*)_aligned_malloc(vsize1, 16);
    Vector* b1 = (Vector*)_aligned_malloc(vsize1, 16);
    Vector* c1 = (Vector*)_aligned_malloc(vsize1, 16);
    VectorSoA a2, b2, c2;
 
    a2.X = (float*)_aligned_malloc(vsize2, 16);
    a2.Y = (float*)_aligned_malloc(vsize2, 16);
    a2.Z = (float*)_aligned_malloc(vsize2, 16);
    b2.X = (float*)_aligned_malloc(vsize2, 16);
    b2.Y = (float*)_aligned_malloc(vsize2, 16);
    b2.Z = (float*)_aligned_malloc(vsize2, 16);
    c2.X = (float*)_aligned_malloc(vsize2, 16);
    c2.Y = (float*)_aligned_malloc(vsize2, 16);
    c2.Z = (float*)_aligned_malloc(vsize2, 16);
 
    srand(103);
    for (Uint32 i = 0; i < num_vectors; i++)
    {
        float a_x = (float)(rand() % 100);
        float a_y = (float)(rand() % 100);
        float a_z = (float)(rand() % 100);
        float b_x = (float)(rand() % 100);
        float b_y = (float)(rand() % 100);
        float b_z = (float)(rand() % 100);
 
        a1[i].X = a2.X[i] = a_x;
        a1[i].Y = a2.Y[i] = a_y;
        a1[i].Z = a2.Z[i] = a_z;
        b1[i].X = b2.X[i] = b_x;
        b1[i].Y = b2.Y[i] = b_y;
        b1[i].Z = b2.Z[i] = b_z;
        a1[i].Pad = b1[i].Pad = 0;
    }
 
    Sse64VectorCrossProd1_(c1, a1, b1, num_vectors);
    Sse64VectorCrossProd2_(&c2, &a2, &b2, num_vectors);
 
    bool error = false;
    printf("Results for Sse64VectorCrossProd()\n\n");
 
    for (Uint32 i = 0; i < num_vectors && !error; i++)
    {
        const char* fs = "[%8.1f %8.1f %8.1f]\n";
 
        printf("Vector cross product %d\n", i);
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        printf("  a1/a2: ");
        printf(fs, a1[i].X, a1[i].Y, a1[i].Z);
        printf("  b1/b2: ");
        printf(fs, b1[i].X, b1[i].Y, b1[i].Z);
        printf("  c1:    ");
        printf(fs, c1[i].X, c1[i].Y, c1[i].Z);
        printf("  c2:    ");
        printf(fs, c2.X[i], c2.Y[i], c2.Z[i]);
        printf("\n");
 
        bool error_x = c1[i].X != c2.X[i];
        bool error_y = c1[i].Y != c2.Y[i];
        bool error_z = c1[i].Z != c2.Z[i];
 
        if (error_x || error_y || error_z)
        {
            printf("Compare error at index %d\n", i);
            printf("  %d, %d, %d\n", error_x, error_y, error_z);
            error = true;
        }
    }
 
    _aligned_free(a1);   _aligned_free(b1);   _aligned_free(c1);
    _aligned_free(a2.X); _aligned_free(a2.Y); _aligned_free(a2.Z);
    _aligned_free(b2.X); _aligned_free(b2.Y); _aligned_free(b2.Z);
    _aligned_free(c2.X); _aligned_free(c2.Y); _aligned_free(c2.Z);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    Sse64VectorCrossProd();
    Sse64VectorCrossProdTimed();
}
 

Listing 20-7. Sse64VectorArrays_.asm

        include <MacrosX86-64.inc>
        .code
 
; This structure must match the VectorSoA structure that's
; defined in Sse64VectorArray.h
VectorSoA struct
X       qword ?     ;pointer to vector X components
Y       qword ?     ;pointer to vector Y components
Z       qword ?     ;pointer to vector Z components
VectorSoA ends
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; extern "C" bool Sse64VectorCrossProd1_(Vector* c, const Vector* a, const
Vector* b, Uint32 num_vectors);
;
; Description:  The following function computes the cross product of two
;               3D vectors.
 
Sse64VectorCrossProd1_ proc frame
        _CreateFrame Vcp1_,0, 32, r12, r13
        _SaveXmmRegs xmm6,xmm7
        _EndProlog
 
; Perform required argument validations
        test r9d,r9d
        jz Error                            ;jump if num_vectors == 0
        test r9d,3
        jnz Error                           ;jump if num_vectors % 4 != 0
 
        test rcx,0fh
        jnz Error                           ;jump if a is misaligned
        test rdx,0fh
        jnz Error                           ;jump if b is misaligned
        test r8,0fh
        jnz Error                           ;jump if c is misaligned
        xor rax,rax                         ;rax = common array offset
 
        align 16
; Load the next two vectors from a and b
@@:     movaps xmm0,[rdx+rax]               ;a[i]
        movaps xmm1,[r8+rax]                ;b[i]
        movaps xmm2,xmm0
        movaps xmm3,xmm1
        movaps xmm4,[rdx+rax+16]            ;a[i+1]
        movaps xmm5,[r8+rax+16]             ;b[i+1]
        movaps xmm6,xmm4
        movaps xmm7,xmm5
 
; Calculate the cross products and save the results (# = don't care)
        shufps xmm0,xmm0,11001001b          ;xmm0 = # | ax | az | ay
        shufps xmm1,xmm1,11010010b          ;xmm1 = # | by | bx | bz
        mulps xmm0,xmm1
        shufps xmm2,xmm2,11010010b          ;xmm2 = # | ay | ax | az
        shufps xmm3,xmm3,11001001b          ;xmm3 = # | bx | bz | by
        mulps xmm2,xmm3
        subps xmm0,xmm2                     ;xmm0 = # | cz | cy | cx
        movaps [rcx+rax],xmm0               ;save c[i]
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        shufps xmm4,xmm4,11001001b          ;xmm4 = # | ax | az | ay
        shufps xmm5,xmm5,11010010b          ;xmm5 = # | by | bx | bz
        mulps xmm4,xmm5
        shufps xmm6,xmm6,11010010b          ;xmm6 = # | ay | ax | az
        shufps xmm7,xmm7,11001001b          ;xmm7 = # | bx | bz | by
        mulps xmm6,xmm7
        subps xmm4,xmm6                     ;xmm4 = # | cz | cy | cx
        movaps [rcx+rax+16],xmm4            ;save c[i+1]
 
        add rax,32                          ;update array offset
        sub r9d,2
        jnz @B                              ;repeat until done
        mov eax,1                           ;set success return code
 
Done:   _RestoreXmmRegs xmm6,xmm7
        _DeleteFrame r12, r13
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp Done
Sse64VectorCrossProd1_ endp
 
; extern "C" bool Sse64VectorCrossProd2_(VectorSoA* c, const VectorSoA* a,
const VectorSoA* b, Uint32 num_vectors);
;
; Description:  The following function computes the cross products
;               of the vectors in two VectorSoA instances.
 
Sse64VectorCrossProd2_ proc frame
        _CreateFrame Vcp2_,0,32,rbx,rsi,rdi,r12,r13,r14,r15
        _SaveXmmRegs xmm6,xmm7
        _EndProlog
 
; Make sure num_vectors is valid
        test r9d,r9d
        jz Error                            ;jump if num_vectors == 0
        test r9d,3
        jnz Error                           ;jump if num_vectors % 4 != 0
        shr r9d,2
 
; Initialize vector component array pointers
        xor rax,rax                         ;misaligned pointer test value
 
        mov rbx,[rcx+VectorSoA.X]           ;rbx = ptr to c.X
        or rax,rbx
        mov rsi,[rcx+VectorSoA.Y]           ;rsi = ptr to c.Y
        or rax,rsi
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        mov rdi,[rcx+VectorSoA.Z]           ;rdi = ptr to c.Z
        or rax,rdi
 
        mov r10,[rdx+VectorSoA.X]           ;r10 = ptr to a.X
        or rax,r10
        mov r11,[rdx+VectorSoA.Y]           ;r11 = ptr to a.Y
        or rax,r11
        mov r12,[rdx+VectorSoA.Z]           ;r12 = ptr to a.Z
        or rax,r12
 
        mov r13,[r8+VectorSoA.X]            ;r13 = ptr to b.X
        or rax,r13
        mov r14,[r8+VectorSoA.Y]            ;r14 = ptr to b.Y
        or rax,r14
        mov r15,[r8+VectorSoA.Z]            ;r15 = ptr to b.C
        or rax,r15
 
        and rax,0fh                         ;is a pointer misaligned?
        jnz Error                           ;jump if yes
 
        xor rax,rax                         ;rax = common array offset
        align 16
 
; Load the next block of four vectors
@@:     movaps xmm0,xmmword ptr [r10+rax]   ;xmm0 = a.X components
        movaps xmm1,xmmword ptr [r11+rax]   ;xmm1 = a.Y components
        movaps xmm2,xmmword ptr [r12+rax]   ;xmm2 = a.Z components
        movaps xmm6,xmm1
        movaps xmm7,xmm2
        movaps xmm3,xmmword ptr [r13+rax]   ;xmm3 = b.X components
        movaps xmm4,xmmword ptr [r14+rax]   ;xmm4 = b.Y components
        movaps xmm5,xmmword ptr [r15+rax]   ;xmm5 = b.Z components
 
; Compute four vector cross products
; c.X[i] = a.Y[i] * b.Z[i] - a.Z[i] * b.Y[i]
; c.Y[i] = a.Z[i] * b.X[i] - a.X[i] * b.Z[i]
; c.Z[i] = a.X[i] * b.Y[i] - a.Y[i] * b.X[i]
        mulps xmm6,xmm5                     ;xmm6 = a.Y * b.Z
        mulps xmm7,xmm4                     ;xmm7 = a.Z * b.Y
        subps xmm6,xmm7                     ;xmm6 = c.X components
 
        mulps xmm2,xmm3                     ;xmm2 = a.Z * b.X
        mulps xmm5,xmm0                     ;xmm5 = a.X * b.Z
        subps xmm2,xmm5                     ;xmm2 = c.Y components
 
        mulps xmm0,xmm4                     ;xmm0 = a.X * b.Y
        mulps xmm1,xmm3                     ;xmm1 = a.Y * b.X
        subps xmm0,xmm1                     ;xmm0 = c.Z components
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        movaps [rdi+rax],xmm0               ;save c.Z
        movaps [rsi+rax],xmm2               ;save c.Y
        movaps [rbx+rax],xmm6               ;save c.X
 
        add rax,16                          ;update array offset
        sub r9d,1
        jnz @B                              ;repeat until done
        mov eax,1                           ;set success return code
 
Done:   _RestoreXmmRegs xmm6,xmm7
        _DeleteFrame rbx,rsi,rdi,r12,r13,r14,r15
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp Done
Sse64VectorCrossProd2_ endp
        end
 

The cross product of two three-dimensional vectors a and b is a third vector called c 
that is perpendicular to both a and b. The x, y, and z components of c can be calculated 
using the following equations:

c a b a b c a b a b c a b a bx y z z y y z x x z z x y y x= - = - = -

The sample program Sse64VectorArrays manages its vector data using two different 
storage methods. The first technique employs an array of structures (AOS) using a 
structure named Vector, which is declared in the C++ header file Sse64VectorArrays.h 
(Listing 20-5). This structure includes declarations for the vector component values X, Y,  
and Z. The structure Vector also includes an extra Pad element that rounds up its size 
to 16 bytes. The second data storage method uses three separate floating-point arrays 
to maintain the vector component values. A structure named VectorSoA, which is also 
declared in the C++ header file Sse64VectorArrays.h, implements this structure of 
arrays (SOA) technique. The sample program Sse64VectorArrays includes assembly 
language functions that carry out vector cross product calculations using both AOS and 
SOA storage techniques in order to exemplify instructional and performance differences 
between the two approaches.

Listing 20-6 shows the C++ source code for sample program Sse64VectorArrays. 
A function named Sse64VectorCrossProd carries out the requisite vector data storage 
allocations and initializations. It also invokes two assembly language functions that 
perform cross product calculations using an AOS (Sse64VectorCrossProd1_) and a SOA 
(Sse64VectorCrossProd2_). The vector cross product results from both methods are then 
compared for equality.

The assembly language file Sse64VectorArrays_.asm (Listing 20-7) contains 
two vector cross product calculating functions. The first function, which is named 
Sse64VectorCrossProd1_, computes cross products using arrays of the structure Vector. 
At the top of the main processing loop, vectors a[i], b[i], a[i+1] and b[i+1] are loaded 
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into registers XMM0-XMM7. Next, the vector cross product c[i] = a[i] × b[i] is 
calculated using a series of shufps, mulps, and subps instructions. Figure 20-2 illustrates 
this technique in greater detail. This same sequence of instructions is then used to 
calculate the vector cross product c[i+1] = a[i+1] × b[i+1]. Note that vector calculating 
instructions ignore the high-order floating-point element of each XMM register (bits 
127:96), which means that the processor’s SIMD resources are not fully exploited.

xmm0

xmm1

xmm2

Vectors a (xmm0, xmm2) and b (xmm1, xmm3)

74.093.040.0#

58.080.034.0#

74.093.040.0#

58.080.034.0# xmm3

shufps xmm0, xmm0, 11001001b

93.040.074.0# xmm0

shufps xmm1, xmm1, 11010010b

34.058.080.0# xmm1

mulps xmm0, xmm1

3162.02320.05920 .0# xmm0

shufps xmm2, xmm2, 11010010b

40.074.093.0# xmm2

shufps xmm3, xmm3, 11001001b

80.034.058.0# xmm3

mulaps xmm2, xmm3

3200.02516.05394 .0# xmm2

subps xmm0, xmm2

-38.0-196.0526.0# xmm0

XYZ

# = Don’t Care

Figure 20-2. Vector cross product calculation method used in the Sse64VectorCrossProd1_ 
function

The second cross product function Sse64VectorCrossProd2_ computes its cross 
products using instances of VectorSoA. In this particular example, the application of a 
SOA to organize the vector component data eliminates the need to perform data shuffle 
operations. It also facilitates the computation of four vector cross products in parallel. At 
the top of the main processing loop, the function Sse64vectorCrossProd2_ loads each 
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XMM register with four X, Y, or Z components. Calculation of four vector cross products 
is performed next using six mulps and three subps instructions, as shown in Figure 20-3. 
The results are then saved to the VectorSoA buffer named c.

xmm0

xmm1/6

xmm2/7

xmm0 = a.X, xmm1 = a.Y,xmm2 = a.Z    xmm3 = b.X, xmm4 = b.Y, xmm5 = b.Z

74.068.055.021.0

93.088.016.089.0

40.08.070.025.0

58.053.072.095.0 xmm3

mulps xmm6, xmm5

3162.03256.0624.01246 .0 xmm6

mulps xmm7, xmm4

3200.0696.06020 .02150 .0 xmm7

subps xmm6, xmm7    ;xmm6 = c.X components (4 vectors)

-38.02560.0-5396 .0-904.0 xmm6

80.087.086.086.0 xmm4

34.037.039.014.0 xmm5

mulps xmm2, xmm3

2320.0424.05040 .02375 .0 xmm2

mulps xmm5, xmm0

2516.02516.02145 .0294.0 xmm5

subps xmm2, xmm5    ;xmm2 = c.Y components (4 vectors)

-196.0-2092.02895 .02081 .0 xmm2

mulps xmm0, xmm4

5920.05916.04730 .01806 .0 xmm0

mulps xmm1, xmm3

5394.04664.01152 .08455 .0 xmm1

subps xmm0, xmm1    ;xmm0 = c.Z components (4 vectors)

526.01252.03578 .0-6649.0 xmm0

Figure 20-3. Vector cross product calculation method used in the Sse64VectorCrossProd2_ 
function
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Output 20-3 shows the results for sample program Sse64VectorArrays. 
Table 20-2 shows some timing measurements for the vector cross product functions 
Sse64VectorCrossProd1_ and Sse64VectorCrossProd2_. For this sample program, the 
SOA approach is noticeably faster than the AOS technique.

Output 20-3. Sample Program Sse64VectorArrays

Results for Sse64VectorCrossProd()
 
Vector cross product 0
  a1/a2: [    74.0     93.0     40.0]
  b1/b2: [    58.0     80.0     34.0]
  c1:    [   -38.0   -196.0    526.0]
  c2:    [   -38.0   -196.0    526.0]
 
Vector cross product 1
  a1/a2: [    68.0     88.0      8.0]
  b1/b2: [    53.0     87.0     37.0]
  c1:    [  2560.0  -2092.0   1252.0]
  c2:    [  2560.0  -2092.0   1252.0]
 
Vector cross product 2
  a1/a2: [    55.0     16.0     70.0]
  b1/b2: [    72.0     86.0     39.0]
  c1:    [ -5396.0   2895.0   3578.0]
  c2:    [ -5396.0   2895.0   3578.0]
 
Vector cross product 3
  a1/a2: [    21.0     89.0     25.0]
  b1/b2: [    95.0     86.0     14.0]
  c1:    [  -904.0   2081.0  -6649.0]
  c2:    [  -904.0   2081.0  -6649.0]
 
Vector cross product 4
  a1/a2: [    36.0     65.0      5.0]
  b1/b2: [    68.0     92.0     20.0]
  c1:    [   840.0   -380.0  -1108.0]
  c2:    [   840.0   -380.0  -1108.0]
 
Vector cross product 5
  a1/a2: [    31.0     86.0     13.0]
  b1/b2: [    47.0     97.0     94.0]
  c1:    [  6823.0  -2303.0  -1035.0]
  c2:    [  6823.0  -2303.0  -1035.0]
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Vector cross product 6
  a1/a2: [    78.0     58.0     43.0]
  b1/b2: [    47.0     48.0     42.0]
  c1:    [   372.0  -1255.0   1018.0]
  c2:    [   372.0  -1255.0   1018.0]
 
Vector cross product 7
  a1/a2: [    23.0     64.0     86.0]
  b1/b2: [    10.0     42.0     71.0]
  c1:    [   932.0   -773.0    326.0]
  c2:    [   932.0   -773.0    326.0]
 
Benchmark times saved to file __Sse64VectorCrossProdTimed.csv 

Table 20-2. Mean Execution Times (in Microseconds) for Vector Cross Product Functions 
in Sample Program Sse64VectorArrays (num_vectors = 50,000)

CPU Sse64VectorCrossProd1_ (SOA) Sse64VectorCrossProd2_ (AOS)

Intel Core i7-4770 67 50

Intel Core i7-4600U 106 74

Intel Core i3-2310M 165 126

X86-AVX-64 Programming
The sample code in this section demonstrates how to exploit the computational resources 
of x86-AVX in a 64-bit assembly language function. This includes the scalar floating-point, 
packed integer, and packed floating-point instructions of x86-AVX. The sample code also 
exemplifies use of C++ library functions and additional macro-processing techniques.

Ellipsoid Calculations
This section examines a sample program that calculates the volume and surface area 
of an ellipsoid using the scalar floating-point capabilities of x86-AVX. It also illustrates 
how to call a standard C++ library function from a 64-bit function that uses x86-AVX 
instructions. Listings 20-8 and 20-9 show the C++ and assembly language source code for 
sample program Avx64CalcEllipsoid.

Listing 20-8. Avx64CalcEllipoid.cpp

#include "stdafx.h"
#define _USE_MATH_DEFINES
#include <math.h>
 
extern "C" bool Avx64CalcEllipsoid_(const double* a, const double* b, const 
double* c, int n, double p, double* sa, double* vol);
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bool Avx64CalcEllipsoidCpp(const double* a, const double* b, const double*
c, int n, double p, double* sa, double* vol)
{
    if (n <= 0)
        return false;
 
    for (int i = 0; i < n; i++)
    {
        double a_p = pow(a[i], p);
        double b_p = pow(b[i], p);
        double c_p = pow(c[i], p);
 
        double temp1 = (a_p * b_p + a_p * c_p + b_p * c_p) / 3;
 
        sa[i] = 4 * M_PI * pow(temp1, 1.0 / p);
        vol[i] = 4 * M_PI * a[i] * b[i] * c[i] / 3;
    }
 
    return true;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const int n = 8;
    const double p = 1.6075;
    const double a[n] = { 1, 2, 6, 3, 4,  5, 5, 2};
    const double b[n] = { 1, 2, 1, 7, 2,  6, 5, 7};
    const double c[n] = { 1, 2, 7, 4, 3, 11, 5, 9};
    double sa1[n], vol1[n];
    double sa2[n], vol2[n];
 
    Avx64CalcEllipsoidCpp(a, b, c, n, p, sa1, vol1);
    Avx64CalcEllipsoid_(a, b, c, n, p, sa2, vol2);
 
    printf("Results for Avx64CalcEllipsoid\n\n");
 
    for (int i = 0; i < n; i++)
    {
        printf("\na, b, c: %6.2lf %6.2lf %6.2lf\n", a[i], b[i], c[i]);
        printf("  sa1, vol1: %14.8lf %14.8lf\n", sa1[i], vol1[i]);
        printf("  sa2, vol2: %14.8lf %14.8lf\n", sa2[i], vol2[i]);
    }
 
    return 0;
}
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Listing 20-9. Avx64CalcEllipsoid_.asm

        include <MacrosX86-64.inc>
        extern pow:proc
 
        .const
r8_1p0   real8 1.0
r8_3p0   real8 3.0
r8_4p0   real8 4.0
r8_pi    real8 3.14159265358979323846
        .code
 
; extern "C" bool Avx64CalcEllipsoid_(const double* a, const double* b,
const double* c, int n, double p, double* sa, double* vol);
;
; Description:  The following function calculates the surface area
;               and volume of an ellipsoid
;
; Requires:     x86-64, AVX
 
Avx64CalcEllipsoid_ proc frame
        _CreateFrame Ce_,0,144,rbx,rsi,rdi,r12,r13,r14,r15
        _SaveXmmRegs xmm6,xmm7,xmm8,xmm9,xmm10,xmm12,xmm13,xmm14,xmm15
        _EndProlog
 
; Perform required register initializations. Note that non-volatile
; registers are used since this function calls the function pow().
        test r9d,r9d                        ;is n <= 0?
        jle Error                           ;jump if yes
        mov r12,rcx                         ;r12 = a ptr
        mov r13,rdx                         ;r13 = b ptr
        mov r14,r8                          ;r14 = c ptr
        mov r15d,r9d                        ;r15 = n
 
        vmovsd xmm12,real8 ptr [rbp+Ce_OffsetStackArgs]   ;xmm12 = p
        vmovsd xmm0,real8 ptr [r8_1p0]
        vdivsd xmm13,xmm0,xmm12             ;xmm13 = 1 / p
        vmovsd xmm1,real8 ptr [r8_4p0]
        vmulsd xmm14,xmm1,[r8_pi]           ;xmm14 = 4 * pi
        vmovsd xmm15,[r8_3p0]               ;xmm15 = 3
 
        mov rsi,[rbp+Ce_OffsetStackArgs+8]  ;rsi = sa ptr
        mov rdi,[rbp+Ce_OffsetStackArgs+16] ;rdi = vol ptr
        xor rbx,rbx                         ;rbx = common array offset
        sub rsp,32                          ;allocate home area for pow()
 
@@:     vmovsd xmm6,real8 ptr [r12+rbx]     ;xmm6 = a
        vmovsd xmm7,real8 ptr [r13+rbx]     ;xmm7 = b
        vmovsd xmm8,real8 ptr [r14+rbx]     ;xmm8 = c
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; Calculate the ellipsoid's volume
        vmulsd xmm0,xmm14,xmm6              ;xmm0 = 4 * pi * a
        vmulsd xmm1,xmm7,xmm8               ;xmm1 = b * c;
        vmulsd xmm0,xmm0,xmm1               ;xmm0 = 4 * pi * a * b * c
        vdivsd xmm0,xmm0,xmm15              ;xmm0 = 4 * pi * a * b * c / 3
        vmovsd real8 ptr [rdi+rbx],xmm0     ;save ellipsoid volume
 
; Calculate the ellipsoid's surface area (see text for equation)
        vmovsd xmm0,xmm0,xmm6               ;xmm0 = a
        vmovsd xmm1,xmm1,xmm12              ;xmm1 = p
        call pow
        vmovsd xmm9,xmm9,xmm0               ;xmm9 = pow(a,p)
 
        vmovsd xmm0,xmm0,xmm7               ;xmm0 = b
        vmovsd xmm1,xmm1,xmm12              ;xmm1 = p
        call pow
        vmovsd xmm10,xmm10,xmm0             ;xmm10 = pow(b,p)
 
        vmovsd xmm0,xmm0,xmm8               ;xmm0 = c
        vmovsd xmm1,xmm1,xmm12              ;xmm1 = p
        call pow                            ;xmm0 = pow(c,p)
 
        vmulsd xmm1,xmm9,xmm10              ;xmm1 = pow(a,p) * pow(b,p)
        vmulsd xmm2,xmm9,xmm0               ;xmm2 = pow(a,p) * pow(c,p)
        vmulsd xmm3,xmm10,xmm0              ;xmm3 = pow(b,p) * pow(c,p)
 
        vaddsd xmm0,xmm1,xmm2
        vaddsd xmm0,xmm0,xmm3
        vdivsd xmm0,xmm0,xmm15              ;xmm0 = bracket sub expression
        vmovsd xmm1,xmm1,xmm13              ;xmm1 = 1 / p
        call pow                            ;xmm0 = pow(subexpr,1/p)
        vmulsd xmm0,xmm0,xmm14              ;xmm0 = final surface area
        vmovsd real8 ptr [rsi+rbx],xmm0     ;save surface area
 
; Update the counter and offset value, repeat if not finished
        add rbx,8
        sub r15,1
        jnz @B
        mov eax,1                           ;set success return code
 
Done:   _RestoreXmmRegs xmm6,xmm7,xmm8,xmm9,xmm10,xmm12,xmm13,xmm14,xmm15
        _DeleteFrame rbx,rsi,rdi,r12,r13,r14,r15
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp done
Avx64CalcEllipsoid_ endp
        end
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An ellipsoid is a three-dimensional solid figure whose plane cross sections are 
ellipses. The size of an ellipsoid is determined by the lengths of its three semi-axes a, b, 
and c. The internal volume of an ellipsoid is easily computed using these lengths. Precise 
calculation of an ellipsoid’s surface area, however, requires multipart calculations using 
elliptic integrals. Fortunately, the much simpler Knud Thomsen approximation (see 
Appendix C for references) is an acceptable alternative for many applications. Here are 
the equations that sample program Avx64CalcEllipsoid uses to calculate the volume 
and surface area of an ellipsoid:
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The C++ file for sample program Avx64CalcEllipsoid (Listing 20-8) contains two 
straightforward functions. The first function, named Avx64CalcEllipsoidCpp, calculates 
the volumes and surface areas of the ellipsoids specified by the semi-axis arrays a, b, 
and c. The other function, _tmain, includes code that initializes test cases for the C++ 
function Avx64CalcEllipsoidCpp and the corresponding assembly language function 
Avx64CalcEllipsoid_.

Listing 20-9 shows the assembly language source code for the function 
Avx64CalcEllipsoid_. Immediately following the function prolog, argument values a, b, 
c, and n are copied to registers R12-R15, respectively. These registers are used since their 
values are preserved by the C++ library function pow. The next block of instructions loads 
the necessary double-precision floating-point constant values into registers XMM12-
XMM15. Several miscellaneous initializations are then performed, including result array 
pointer registers and allocation of the stack home area for the function pow.

The main processing loop starts by loading semi-axis values a[i], b[i], and c[i] 
into registers XMM6-XMM8, respectively. The function then calculates the volume of 
the ellipsoid using the vmulsd and vdivsd instructions. The ellipsoid’s surface area is 
calculated next using the previously defined approximation equation. Note that the 
required argument values are copied to registers XMM0 and XMM1 prior to each call 
pow instruction. Also note that the function Avx64CalcEllispoid_ saves the return value 
from pow in a non-volatile register prior to the next call. Output 20-4 shows the results for 
sample program Avx64CalcEllipsoid.

Output 20-4. Sample Program Avx64CalcEllipsoid

Results for Avx64CalcEllipsoid
 
a, b, c:   1.00   1.00   1.00
  sa1, vol1:    12.56637061     4.18879020
  sa2, vol2:    12.56637061     4.18879020
 
a, b, c:   2.00   2.00   2.00
  sa1, vol1:    50.26548246    33.51032164
  sa2, vol2:    50.26548246    33.51032164
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a, b, c:   6.00   1.00   7.00
  sa1, vol1:   282.73569300   175.92918860
  sa2, vol2:   282.73569300   175.92918860
 
a, b, c:   3.00   7.00   4.00
  sa1, vol1:   263.60352668   351.85837720
  sa2, vol2:   263.60352668   351.85837720
 
a, b, c:   4.00   2.00   3.00
  sa1, vol1:   111.60403108   100.53096491
  sa2, vol2:   111.60403108   100.53096491
 
a, b, c:   5.00   6.00  11.00
  sa1, vol1:   649.98183211  1382.30076758
  sa2, vol2:   649.98183211  1382.30076758
 
a, b, c:   5.00   5.00   5.00
  sa1, vol1:   314.15926536   523.59877560
  sa2, vol2:   314.15926536   523.59877560
 
a, b, c:   2.00   7.00   9.00
  sa1, vol1:   452.93733288   527.78756580
  sa2, vol2:   452.93733288   527.78756580

RGB Image Processing
The next sample program is called Avx64CalcRgbMinMax, and it illustrates how to 
calculate the minimum and maximum red, green, and blue pixel values of an RGB image. 
It also demonstrates use of some additional macro processing techniques. The C++ and 
assembly language source code for sample program Avx64CalcRgbMinMax are shown in 
Listings 20-10 and 20-11.

Listing 20-10. Avx64CalcRgbMinMax.cpp

#include "stdafx.h"
#include "MiscDefs.h"
#include <stdlib.h>
#include <malloc.h>
 
extern "C" bool Avx64CalcRgbMinMax_(Uint8* rgb[3], Uint32 num_pixels, Uint8
min_vals[3], Uint8 max_vals[3]);
 
bool Avx64CalcRgbMinMaxCpp(Uint8* rgb[3], Uint32 num_pixels, Uint8
min_vals[3], Uint8 max_vals[3])
{
    // Make sure num_pixels is valid
    if ((num_pixels == 0) || (num_pixels % 32 != 0))
        return false;
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    // Make sure the color planes are properly aligned
    for (Uint32 i = 0; i < 3; i++)
    {
        if (((uintptr_t)rgb[i] & 0x1f) != 0)
            return false;
    }
 
    // Find the min and max of each color plane
    for (Uint32 i = 0; i < 3; i++)
    {
        min_vals[i] = 255;   max_vals[i] = 0;
 
        for (Uint32 j = 0; j < num_pixels; j++)
        {
            if (rgb[i][j] < min_vals[i])
                min_vals[i] = rgb[i][j];
            else if (rgb[i][j] > max_vals[i])
                max_vals[i] = rgb[i][j];
        }
    }
 
    return true;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    const Uint32 n = 1024;
    Uint8* rgb[3];
 
    rgb[0] = (Uint8*)_aligned_malloc(n * sizeof(Uint8), 32);
    rgb[1] = (Uint8*)_aligned_malloc(n * sizeof(Uint8), 32);
    rgb[2] = (Uint8*)_aligned_malloc(n * sizeof(Uint8), 32);
 
    for (Uint32 i = 0; i < n; i++)
    {
        rgb[0][i] = 5 + rand() % 245;
        rgb[1][i] = 5 + rand() % 245;
        rgb[2][i] = 5 + rand() % 245;
    }
 
    // Initialize known min & max values for validation purposes
    rgb[0][n / 4] = 4;   rgb[1][n / 2] = 1;       rgb[2][3 * n / 4] = 3;
    rgb[0][n / 3] = 254; rgb[1][2 * n / 5] = 251; rgb[2][n - 1] = 252;
 
    Uint8 min_vals1[3], max_vals1[3];
    Uint8 min_vals2[3], max_vals2[3];
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    Avx64CalcRgbMinMaxCpp(rgb, n, min_vals1, max_vals1);
    Avx64CalcRgbMinMax_(rgb, n, min_vals2, max_vals2);
 
    printf("Results for Avx64CalcRgbMinMax\n\n");
    printf("             R   G   B\n");
    printf("----------------------\n");
    printf("min_vals1: %3d %3d %3d\n", min_vals1[0], min_vals1[1],
min_vals1[2]);
    printf("min_vals2: %3d %3d %3d\n", min_vals2[0], min_vals2[1],
min_vals2[2]);
    printf("\n");
    printf("max_vals1: %3d %3d %3d\n", max_vals1[0], max_vals1[1],
max_vals1[2]);
    printf("max_vals2: %3d %3d %3d\n", max_vals2[0], max_vals2[1],
max_vals2[2]);
 
    _aligned_free(rgb[0]);
    _aligned_free(rgb[1]);
    _aligned_free(rgb[2]);
    return 0;
} 

Listing 20-11. Avx64CalcRgbMinMax_.asm

        include <MacrosX86-64.inc>
 
; 256-bit wide constants
ConstVals segment readonly align(32)
InitialPminVal db 32 dup(0ffh)
InitialPmaxVal db 32 dup(00h)
ConstVals ends
        .code
 
; Macro _YmmVpextrMinub
;
; Description:  The following macro generates code that extracts the
;               smallest unsigned byte value from register YmmSrc.
 
_YmmVpextrMinub macro GprDes,YmmSrc,YmmTmp
 
; Make sure YmmSrc and YmmTmp are different
.erridni <YmmSrc>, <YmmTmp>, <Invalid registers>
 
; Construct text strings for the corresponding XMM registers
        YmmSrcSuffix SUBSTR <YmmSrc>,2
        XmmSrc CATSTR <X>,YmmSrcSuffix
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        YmmTmpSuffix SUBSTR <YmmTmp>,2
        XmmTmp CATSTR <X>,YmmTmpSuffix
 
; Reduce the 32 byte values in YmmSrc to the smallest value
        vextracti128 XmmTmp,YmmSrc,1
        vpminub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 16 min values
 
        vpsrldq XmmTmp,XmmSrc,8
        vpminub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 8 min values
 
        vpsrldq XmmTmp,XmmSrc,4
        vpminub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 4 min values
 
        vpsrldq XmmTmp,XmmSrc,2
        vpminub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 2 min values
 
        vpsrldq XmmTmp,XmmSrc,1
        vpminub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 1 min value
 
        vpextrb GprDes,XmmSrc,0             ;mov final min value to Gpr
        endm
 
; Macro _YmmVpextrMaxub
;
; Description:  The following macro generates code that extracts the
;               largest unsigned byte value from register YmmSrc.
 
_YmmVpextrMaxub macro GprDes,YmmSrc,YmmTmp
 
; Make sure YmmSrc and YmmTmp are different
.erridni <YmmSrc>, <YmmTmp>, <Invalid registers>
 
; Construct text strings for the corresponding XMM registers
        YmmSrcSuffix SUBSTR <YmmSrc>,2
        XmmSrc CATSTR <X>,YmmSrcSuffix
 
        YmmTmpSuffix SUBSTR <YmmTmp>,2
        XmmTmp CATSTR <X>,YmmTmpSuffix
 
; Reduce the 32 byte values in YmmSrc to the largest value
        vextracti128 XmmTmp,YmmSrc,1
        vpmaxub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 16 max values
 
        vpsrldq XmmTmp,XmmSrc,8
        vpmaxub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 8 max values
 
        vpsrldq XmmTmp,XmmSrc,4
        vpmaxub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 4 max values
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        vpsrldq XmmTmp,XmmSrc,2
        vpmaxub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 2 max values
 
        vpsrldq XmmTmp,XmmSrc,1
        vpmaxub XmmSrc,XmmSrc,XmmTmp        ;XmmSrc = final 1 max value
 
        vpextrb GprDes,XmmSrc,0             ;mov final max value to Gpr
        endm
 
; extern "C" bool Avx64CalcRgbMinMax_(Uint8* rgb[3], Uint32 num_pixels,
Uint8 min_vals[3], Uint8 max_vals[3]);
;
; Description:  The following function determines the minimum and maximum
;               pixel values of each color plane array.
;
; Requires:     x86-64, AVX2
 
Avx64CalcRgbMinMax_ proc frame
        _CreateFrame CalcMinMax_,0,48,r12
        _SaveXmmRegs xmm6,xmm7,xmm8
        _EndProlog
 
; Make sure num_pixels and the color plane arrays are valid
        test edx,edx
        jz Error                            ;jump if num_pixels == 0
        test edx,01fh
        jnz Error                           ;jump if num_pixels % 32 != 0
 
        xor rax,rax
        mov r10,[rcx]                       ;r10 = R color plane ptr
        or rax,r10
        mov r11,[rcx+8]                     ;r11 = G color plane ptr
        or rax,r11
        mov r12,[rcx+16]                    ;r12 = B color plane ptr
        or rax,r12
        test rax,1fh
        jnz Error                           ;jump if R, G, or B misaligned
 
; Initialize the processing loop registers
        shr edx,5                           ;edx = number of pixel blocks
        xor rcx,rcx                         ;rcx = common array offset
 
        vmovdqa ymm3,ymmword ptr [InitialPminVal]   ;ymm3 = R minimums
        vmovdqa ymm4,ymm3                           ;ymm4 = G minimums
        vmovdqa ymm5,ymm3                           ;ymm5 = B minimums
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        vmovdqa ymm6,ymmword ptr [InitialPmaxVal]   ;ymm6 = R maximums
        vmovdqa ymm7,ymm6                           ;ymm7 = G maximums
        vmovdqa ymm8,ymm6                           ;ymm8 = B maximums
 
; Scan RGB color plane arrays for packed minimums and maximums
@@:     vmovdqa ymm0,ymmword ptr [r10+rcx]  ;ymm0 = R pixels
        vmovdqa ymm1,ymmword ptr [r11+rcx]  ;ymm1 = G pixels
        vmovdqa ymm2,ymmword ptr [r12+rcx]  ;ymm2 = B pixels
 
        vpminub ymm3,ymm3,ymm0              ;update R minimums
        vpminub ymm4,ymm4,ymm1              ;update G minimums
        vpminub ymm5,ymm5,ymm2              ;update B minmums
 
        vpmaxub ymm6,ymm6,ymm0              ;update R maximums
        vpmaxub ymm7,ymm7,ymm1              ;update G maximums
        vpmaxub ymm8,ymm8,ymm2              ;update B maximums
 
        add rcx,32
        sub edx,1
        jnz @B
 
; Calculate the final RGB minimum values
        _YmmVpextrMinub rax,ymm3,ymm0
        mov byte ptr [r8],al                ;save min R
        _YmmVpextrMinub rax,ymm4,ymm0
        mov byte ptr [r8+1],al              ;save min G
        _YmmVpextrMinub rax,ymm5,ymm0
        mov byte ptr [r8+2],al              ;save min B
 
; Calculate the final RGB maximum values
        _YmmVpextrMaxub rax,ymm6,ymm1
        mov byte ptr [r9],al                ;save max R
        _YmmVpextrMaxub rax,ymm7,ymm1
        mov byte ptr [r9+1],al              ;save max G
        _YmmVpextrMaxub rax,ymm8,ymm1
        mov byte ptr [r9+2],al              ;save max B
 
        mov eax,1                           ;set success return code
        vzeroupper
 
Done:   _RestoreXmmRegs xmm6,xmm7,xmm8
        _DeleteFrame r12
        ret
 
Error:  xor eax,eax                         ;set error return code
        jmp Done
Avx64CalcRgbMinMax_ endp
        end
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Near the top of the C++ file Avx64CalcRgbMinMax.cpp (Listing 20-10) is a function 
named Avx64CalcRgbMinMaxCpp. This function contains a simple for loop that 
determines the minimum and maximum RGB values of the input color plane arrays. The 
C++ file additionally includes the function _tmain, which contains code that initializes 
the color plane arrays for test purposes. This function also invokes the C++ and assembly 
language RGB min-max functions and displays the results.

Listing 20-11 shows the source code for the assembly language file 
Avx64CalcRgbMinMax_.asm. Immediately following the ConstVals segment are two 
macro definitions: _YmmVpextrMinub and _YmmVpextrMaxub. These macros generate 
code that extracts the smallest or largest unsigned byte value from a YMM register. The 
source code statements of both macros are the same, except for use of the vpminub or 
vpmaxub instructions. The ensuing paragraphs explain the statements and logic of the 
_YmmVpextrMinub macro in greater detail.

The _YmmVpextrMinub macro requires three parameters: a destination general-
purpose register (GprDes), a source YMM register (YmmSrc), and a temporary YMM 
register (YmmTmp). Note that YmmSrc and YmmTmp must be different registers. If they’re the 
same, the .erridni directive (Error if Text Items are Identical, Case Insensitive) produces 
an error during assembly.

In order to generate the correct assembly language code, the macro _YmmVpextrMinub 
requires an XMM register text string (XmmSrc) that corresponds to the low-order portion 
of the specified YmmSrc register. For example, if YmmSrc equals “YMM0”, the macro text 
string XmmSrc equals “XMM0”. The macro directives substr (Return Substring of Text 
Item) and catstr (Concatenate Text Items) are used to initialize XmmSrc. The statement 
YmmSrcSuffix SUBSTR <YmmSrc>,2 assigns a text string value to YmmSrcSuffix that 
excludes the leading character of macro parameter YmmSrc. The next statement, XmmSrc 
CATSTR <X>,YmmSrcSuffix, adds a leading “X” to the value of YmmSrcSuffix and assigns it 
to XmmSrc. The same set of directives is then used to assign a text string value to XmmTmp.

Following initialization of the required macro text strings are the instructions that 
extract the smallest byte value from the specified YMM register. The vextracti128 
XmmTmp,YmmSrc,1 instruction copies the upper 16 bytes of register YmmSrc to XmmTmp. A 
vpminub XmmSrc,XmmSrc,XmmTmp instruction loads the final 16 minimum values into 
XmmSrc. The vpsrldq XmmTmp,XmmSrc,8 instruction shifts a copy of the value that’s in 
XmmSrc to the right by eight bytes and saves the result to XmmTmp. This facilitates the 
use of another vpminub instruction that reduces the number of minimum byte values 
from 16 to 8. Repeated sets of the vpsrldq and vpminub instructions are then employed 
until the final minimum value resides in the low-order byte of XmmSrc. A vpextrb 
GprDes,XmmSrc,0 instruction copies the final minimum value to the specified general-
purpose register.

The function Avx64CalcRgbMinMax_ uses registers YMM3-YMM5 and YMM6-YMM8 
to maintain the RGB minimum and maximum values, respectively. During each iteration 
of the main processing loop, a series of vpminub and vpmaxub instructions update the 
current RGB minimums and maximums. Upon completion of the main processing loop, 
the aforementioned YMM registers contain the final 32 RGB minimum and maximum 
pixels values. The _YmmVpextrMinub and _YmmVpextrMaxub macros are then exploited to 
extract the final RGB minimum and maximum pixel values. These values are then saved 
to the specified results array.
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Use of the YMM registers by function Avx64CalcRgbMinMax_ means that a 
vzeroupper is required before any epilog code, which begins with the macro statement 
_RestoreXmmRegs. It should be noted that using the alternative vzeroall instruction prior 
to the epilog doesn’t make sense since 64-bit functions must preserve the contents of 
registers XMM6-XMM15. The vzeroall instruction can still be used within the body of 
a 64-bit function provided the contents of the non-volatile XMM registers are preserved. 
Output 20-5 shows the results for sample program Avx64CalcRgbMinMax.

Output 20-5. Sample Program Avx64CalcRgbMinMax

Results for Avx64CalcRgbMinMax
 
             R   G   B
----------------------
min_vals1:   4   1   3
min_vals2:   4   1   3
 
max_vals1: 254 251 252
max_vals2: 254 251 252

Matrix Inverse
In Chapter 9, you learned how to accelerate the multiplication of two single-precision 
floating-point 4×4 matrices using the x86-SSE instruction set. In this section, you study a 
program that calculates the inverse of a 4×4 single-precision floating-point matrix using 
64-bit x86-AVX. Listings 20-12 and 20-13 show the C++ and assembly languages source 
code for sample program Avx64CalcMat4x4Inv.

Listing 20-12. Avx64CalcMat4x4Inv.cpp

#include "stdafx.h"
#include <math.h>
#include "Avx64CalcMat4x4Inv.h"
 
//#define MAT_INV_DEBUG     // Remove comment to enable extra printfs
 
bool Mat4x4InvCpp(Mat4x4 m_inv, Mat4x4 m, float epsilon, bool* is_singular)
{
    __declspec(align(32)) Mat4x4 m2;
    __declspec(align(32)) Mat4x4 m3;
    __declspec(align(32)) Mat4x4 m4;
    float t1, t2, t3, t4;
    float c1, c2, c3, c4;
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    // Make sure matrices are properly aligned
    if (((uintptr_t)m_inv & 0x1f) != 0)
        return false;
    if (((uintptr_t)m & 0x1f) != 0)
        return false;
 
    // Calculate the required matrix trace values
    Mat4x4Mul(m2, m, m);
    Mat4x4Mul(m3, m2, m);
    Mat4x4Mul(m4, m3, m);
    t1 = Mat4x4Trace(m);
    t2 = Mat4x4Trace(m2);
    t3 = Mat4x4Trace(m3);
    t4 = Mat4x4Trace(m4);
 
#ifdef MAT_INV_DEBUG
    printf("t1: %16e\n", t1);
    printf("t2: %16e\n", t2);
    printf("t3: %16e\n", t3);
    printf("t4: %16e\n", t4);
#endif
 
    c1 = -t1;
    c2 = -1.0f / 2.0f * (c1 * t1 + t2);
    c3 = -1.0f / 3.0f * (c2 * t1 + c1 * t2 + t3);
    c4 = -1.0f / 4.0f * (c3 * t1 + c2 * t2 + c1 * t3 + t4);
 
#ifdef MAT_INV_DEBUG
    printf("c1: %16e\n", c1);
    printf("c2: %16e\n", c2);
    printf("c3: %16e\n", c3);
    printf("c4: %16e\n", c4);
#endif
 
    // Make sure matrix is not singular
    if ((*is_singular = (fabs(c4) < epsilon)) != false)
        return false;
 
    // Calculate = -1.0 / c4 * (m3 + c1 * m2 + c2 * m + c3 * I)
    __declspec(align(32)) Mat4x4 I;
    __declspec(align(32)) Mat4x4 tempA, tempB, tempC, tempD;
 
    Mat4x4SetI(I);
    Mat4x4MulScalar(tempA, I, c3);
    Mat4x4MulScalar(tempB, m, c2);
    Mat4x4MulScalar(tempC, m2, c1);
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 20 ■ X86-64 SIMD prograMMIng

604

    Mat4x4Add(tempD, tempA, tempB);
    Mat4x4Add(tempD, tempD, tempC);
    Mat4x4Add(tempD, tempD, m3);
    Mat4x4MulScalar(m_inv, tempD, -1.0f / c4);
    return true;
}
 
void Avx64Mat4x4Inv(Mat4x4 m, const char* s)
{
    Mat4x4Printf(m, s);
 
    for (int i = 0; i <= 1; i++)
    {
        const float epsilon = 1.0e-9f;
        __declspec(align(32)) Mat4x4 m_inv;
        __declspec(align(32)) Mat4x4 m_ver;
        bool rc, is_singular;
 
        if (i == 0)
        {
            printf("\nCalculating inverse matrix - Mat4x4InvCpp\n");
            rc = Mat4x4InvCpp(m_inv, m, epsilon, &is_singular);
        }
        else
        {
            printf("\nCalculating inverse matrix - Mat4x4Inv_\n");
            rc = Mat4x4Inv_(m_inv, m, epsilon, &is_singular);
        }
 
        if (!rc)
        {
            if (is_singular)
                printf("Matrix 'm' is singular\n");
            else
                printf("Error occurred during calculation of matrix
                inverse\n");
        }
        else
        {
          Mat4x4Printf(m_inv, "\nInverse matrix\n");
          Mat4x4Mul(m_ver, m_inv, m);
          Mat4x4Printf(m_ver, "\nInverse matrix verification\n");
        }
    }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 20 ■ X86-64 SIMD prograMMIng

605

void Avx64CalcMat4x4Inv(void)
{
    __declspec(align(32)) Mat4x4 m;
 
    printf("Results for Avx64CalcMat4x4Inv\n");
 
    Mat4x4SetRow(m, 0, 2, 7, 3, 4);
    Mat4x4SetRow(m, 1, 5, 9, 6, 4.75);
    Mat4x4SetRow(m, 2, 6.5, 3, 4, 10);
    Mat4x4SetRow(m, 3, 7, 5.25, 8.125, 6);
    Avx64Mat4x4Inv(m, "\nTest Matrix #1\n");
 
    Mat4x4SetRow(m, 0, 0.5, 12, 17.25, 4);
    Mat4x4SetRow(m, 1, 5, 2, 6.75, 8);
    Mat4x4SetRow(m, 2, 13.125, 1, 3, 9.75);
    Mat4x4SetRow(m, 3, 16, 1.625, 7, 0.25);
    Avx64Mat4x4Inv(m, "\nTest Matrix #2\n");
 
    Mat4x4SetRow(m, 0, 2, 0, 0, 1);
    Mat4x4SetRow(m, 1, 0, 4, 5, 0);
    Mat4x4SetRow(m, 2, 0, 0, 0, 7);
    Mat4x4SetRow(m, 3, 0, 0, 0, 6);
    Avx64Mat4x4Inv(m, "\nTest Matrix #3\n");
}
 
int _tmain(int argc, _TCHAR* argv[])
{
#ifdef _DEBUG
    Avx64CalcMat4x4InvTest();
#endif
    Avx64CalcMat4x4Inv();
    Avx64CalcMat4x4InvTimed();
    return 0;
} 

Listing 20-13. Avx64CalcMat4x4Inv_.asm

        include <MacrosX86-64.inc>
 
ConstVals segment readonly align(32) 'const'
VpermpsTranspose    dword 0,4,1,5,2,6,3,7
VpermsTrace         dword 0,2,5,7,0,0,0,0
 
Mat4x4I         real4 1.0, 0.0, 0.0, 0.0
                real4 0.0, 1.0, 0.0, 0.0
                real4 0.0, 0.0, 1.0, 0.0
                real4 0.0, 0.0, 0.0, 1.0
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r4_SignBitMask  dword 80000000h,80000000h,80000000h,80000000h
r4_AbsMask      dword 7fffffffh,7fffffffh,7fffffffh,7fffffffh
 
r4_1p0          real4 1.0
r4_N1p0         real4 -1.0
r4_N0p5         real4 -0.5
r4_N0p3333      real4 -0.3333333333
r4_N0p25        real4 -0.25
ConstVals ends
        .code
 
; _Mat4x4TraceYmm macro
;
; Description:  The following macro generates code that calculates the
;               trace of a 4x4 SPFP matrix in registers ymm1:ymm0.
 
_Mat4x4TraceYmm macro
        vblendps ymm0,ymm0,ymm1,84h             ;copy diagonals to ymm0
        vmovdqa ymm2,ymmword ptr [VpermsTrace]
        vpermps ymm1,ymm2,ymm0                  ;ymm1[127:0] = diagonals
        vhaddps ymm0,ymm1,ymm1
        vhaddps ymm0,ymm0,ymm0                  ;ymm0[31:0] = trace
        endm
 
; Mat4x4Mul
;
; Description:  The following function computes the product of two
;               4x4 matrices.
;
; Input:        ymm1:ymm0   m1
;               ymm3:ymm2   m2
;
; Output:       ymm1:ymm0   m1 * m2
;
; Notes:        In comments below, m2T denotes the transpose of matrix m2.
 
Mat4x4Mul proc private
 
; Calculate transpose of m2
        vmovdqa ymm6,ymmword ptr [VpermpsTranspose] ;ymm6 = vperms indices
        vunpcklps ymm4,ymm2,ymm3
        vunpckhps ymm5,ymm2,ymm3            ;ymm5:ymm4 = partial transpose
        vpermps ymm2,ymm6,ymm4
        vpermps ymm3,ymm6,ymm5              ;ymm3:ymm2 = m2T
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; Copy rows of m2T to ymm*[255:128] and ymm*[127:0]
        vperm2f128 ymm4,ymm2,ymm2,00000000b     ;ymm4 = m2T.row0
        vperm2f128 ymm5,ymm2,ymm2,00010001b     ;ymm5 = m2T.row1
        vperm2f128 ymm6,ymm3,ymm3,00000000b     ;ymm6 = m2T.row2
        vperm2f128 ymm7,ymm3,ymm3,00010001b     ;ymm7 = m2T.row3
 
; Perform mat4x4 multiplication, rows 0 and 1
; Note that all unused vdpps destination register elements are set to zero
; ymm8[31:0]      = dp(m1.row0, m2T.row0)
; ymm8[159:128]   = dp(m1.row1, m2T.row0)
; ymm9[63:32]     = dp(m1.row0, m2T.row1)
; ymm9[191:160]   = dp(m1.row1, m2T.row1)
; ymm10[95:64]    = dp(m1.row0, m2T.row2)
; ymm10[223:192]  = dp(m1.row1, m2T.row2)
; ymm11[127:96]   = dp(m1.row0, m2T.row3)
; ymm11[255:224]  = dp(m1.row1, m2T.row3)
        vdpps ymm8,ymm0,ymm4,11110001b
        vdpps ymm9,ymm0,ymm5,11110010b
        vdpps ymm10,ymm0,ymm6,11110100b
        vdpps ymm11,ymm0,ymm7,11111000b
        vorps ymm8,ymm8,ymm9
        vorps ymm10,ymm10,ymm11
        vorps ymm0,ymm8,ymm10               ;ymm0 = rows 0 and 1
 
; Perform mat4x4 multiplication, rows 2 and 3
; ymm8[31:0]      = dp(m1.row2, m2T.row0)
; ymm8[159:128]   = dp(m1.row3, m2T.row0)
; ymm9[63:32]     = dp(m1.row2, m2T.row1)
; ymm9[191:160]   = dp(m1.row3, m2T.row1)
; ymm10[95:64]    = dp(m1.row2, m2T.row2)
; ymm10[223:192]  = dp(m1.row3, m2T.row2)
; ymm11[127:96]   = dp(m1.row2, m2T.row3)
; ymm11[255:224]  = dp(m1.row3, m2T.row3)
        vdpps ymm8,ymm1,ymm4,11110001b
        vdpps ymm9,ymm1,ymm5,11110010b
        vdpps ymm10,ymm1,ymm6,11110100b
        vdpps ymm11,ymm1,ymm7,11111000b
        vorps ymm8,ymm8,ymm9
        vorps ymm10,ymm10,ymm11
        vorps ymm1,ymm8,ymm10               ;ymm1 = rows 2 and 3
        ret
Mat4x4Mul endp
 
; extern "C" bool Mat4x4Inv_(Mat4x4 m_inv, Mat4x4 m, float epsilon, bool*
is_singular);
;
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; Description:  The following function computes the inverse of a 4x4
;               matrix.
;
; Requires:     x86-64, AVX2
;
; Notes:        In the comments below, m2 = m * m, m3 = m * m * m, etc.
 
; Offsets of temporary values on the stack
OffsetM2Lo equ 0                            ;m2 rows 0 and 1
OffsetM2Hi equ 32                           ;m2 rows 2 and 3
OffsetM3Lo equ 64                           ;m3 rows 0 and 1
OffsetM3Hi equ 96                           ;m3 rows 2 and 3
 
Mat4x4Inv_ proc frame
        _CreateFrame Minv_,16,160
        _SaveXmmRegs xmm6,xmm7,xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15
        _EndProlog
 
; Perform required initializations and validations
        test rcx,01fh
        jnz Error                           ;jump if m_inv is misaligned
        test rdx,01fh
        jnz Error                           ;jump if m is misaligned
        vmovaps ymm14,[rdx]
        vmovaps ymm15,[rdx+32]              ;ymm15:ymm14 = m
        vmovss real4 ptr [rbp],xmm2         ;save epsilon for later use
 
; Allocate 128 bytes of 32-byte aligned stack space for temp matrices
        and rsp,0ffffffe0h                  ;align rsp to 32-byte boundary
        sub rsp,128                         ;alloc space for temp matrices
 
; Compute m2
        vmovaps ymm0,ymm14
        vmovaps ymm1,ymm15                  ;ymm1:ymm0 = m
        vmovaps ymm2,ymm14
        vmovaps ymm3,ymm15                  ;ymm3:ymm2 = m
        call Mat4x4Mul                      ;ymm1:ymm0 = m2
        vmovaps [rsp+OffsetM2Lo],ymm0
        vmovaps [rsp+OffsetM2Hi],ymm1       ;save m2
 
; Compute m3
        vmovaps ymm2,ymm14
        vmovaps ymm3,ymm15                  ;ymm3:ymm2 = m
        call Mat4x4Mul                      ;ymm1:ymm0 = m3
        vmovaps [rsp+OffsetM3Lo],ymm0
        vmovaps [rsp+OffsetM3Hi],ymm1       ;save m3
        vmovaps ymm12,ymm0
        vmovaps ymm13,ymm1                  ;ymm13:ymm12 = m3
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; Compute m4
        vmovaps ymm2,ymm14
        vmovaps ymm3,ymm15                  ;ymm3:ymm2 = m
        call Mat4x4Mul                      ;ymm1:ymm0 = m4
 
; Compute and save matrix trace values
        _Mat4x4TraceYmm
        vmovss xmm10,xmm0,xmm0              ;xmm10 = t4
 
        vmovaps ymm0,ymm12
        vmovaps ymm1,ymm13
        _Mat4x4TraceYmm
        vmovss xmm9,xmm0,xmm0               ;xmm9 = t3
 
        vmovaps ymm0,[rsp+OffsetM2Lo]
        vmovaps ymm1,[rsp+OffsetM2Hi]
        _Mat4x4TraceYmm
        vmovss xmm8,xmm0,xmm0               ;xmm8 = t2
 
        vmovaps ymm0,ymm14
        vmovaps ymm1,ymm15
        _Mat4x4TraceYmm
        vmovss xmm7,xmm0,xmm0               ;xmm7 = t1
 
; Calculate the required coefficients
; c1 = -t1;
; c2 = -1.0f / 2.0f * (c1 * t1 + t2);
; c3 = -1.0f / 3.0f * (c2 * t1 + c1 * t2 + t3);
; c4 = -1.0f / 4.0f * (c3 * t1 + c2 * t2 + c1 * t3 + t4);
;
; Registers used: t1-t4 = xmm7-xmm10, c1-c4 = xmm12-xmm15
        vxorps xmm12,xmm7,real4 ptr [r4_SignBitMask]    ;xmm12 = c1
 
        vmulss xmm13,xmm12,xmm7         ;c1 * t1
        vaddss xmm13,xmm13,xmm8         ;c1 * t1 + t2
        vmulss xmm13,xmm13,[r4_N0p5]    ;xmm13 = c2
 
        vmulss xmm14,xmm13,xmm7         ;c2 * t1
        vmulss xmm0,xmm12,xmm8          ;c1 * t2
        vaddss xmm14,xmm14,xmm0         ;c2 * t1 + c1 * t2
        vaddss xmm14,xmm14,xmm9         ;c2 * t1 + c1 * t2 + t3
        vmulss xmm14,xmm14,[r4_N0p3333] ;xmm14 = c3
 
        vmulss xmm15,xmm14,xmm7         ;c3 * t1
        vmulss xmm0,xmm13,xmm8          ;c2 * t2
        vmulss xmm1,xmm12,xmm9          ;c1 * t3
        vaddss xmm2,xmm0,xmm1           ;c2 * t2 + c1 * t3
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        vaddss xmm15,xmm15,xmm2         ;c3 * t1 + c2 * t2 + c1 * t3
        vaddss xmm15,xmm15,xmm10        ;c3 * t1 + c2 * t2 + c1 * t3 + t4
        vmulss xmm15,xmm15,[r4_N0p25]   ;xmm15 = c4
 
; Make sure matrix is not singular
        vandps xmm1,xmm15,[r4_AbsMask]  ;compute fabs(c4)
        vcomiss xmm1,real4 ptr [rbp]    ;compare against epsilon
        setp al                         ;set al = if unordered
        setb ah                         ;set ah = if fabs(c4) < epsilon
        or al,ah                        ;al = is_singular
        mov [r9],al                     ;save is_singular state
        jnz Error                       ;jump if singular
 
; Calculate m_inv = -1.0 / c4 * (m3 + c1 * m2 + c2 * m1 + c3 * I)
        vmovaps ymm0,[rsp+OffsetM3Lo]
        vmovaps ymm1,[rsp+OffsetM3Hi]       ;ymm1:ymm0 = m3
 
        vbroadcastss ymm12,xmm12
        vmulps ymm2,ymm12,[rsp+OffsetM2Lo]
        vmulps ymm3,ymm12,[rsp+OffsetM2HI]  ;ymm3:ymm2 = c1 * m2
 
        vbroadcastss ymm13,xmm13
        vmulps ymm4,ymm13,[rdx]
        vmulps ymm5,ymm13,[rdx+32]          ;ymm5:ymm4 = c2 * m
 
        vbroadcastss ymm14,xmm14
        vmulps ymm6,ymm14,[Mat4x4I]
        vmulps ymm7,ymm14,[Mat4x4I+32]      ;ymm7:ymm6 = c3 * I
 
        vaddps ymm0,ymm0,ymm2
        vaddps ymm1,ymm1,ymm3               ;ymm1:ymm0 = m3 + c1*m2
        vaddps ymm8,ymm4,ymm6
        vaddps ymm9,ymm5,ymm7               ;ymm9:ymm8 = c2*m + c3*I
        vaddps ymm0,ymm0,ymm8
        vaddps ymm1,ymm1,ymm9               ;ymm1:ymm0 = matrix sum
 
        vmovss xmm2,[r4_N1p0]
        vdivss xmm2,xmm2,xmm15              ;xmm2 = -1.0 / c4
        vbroadcastss ymm2,xmm2
        vmulps ymm0,ymm0,ymm2
        vmulps ymm1,ymm1,ymm2               ;ymm1:ymm0 = m_inv
 
        vmovaps [rcx],ymm0
        vmovaps [rcx+32],ymm1               ;save m_inv
        mov eax,1                           ;set success return code
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Done:    vzeroupper
        _RestoreXmmRegs xmm6,xmm7,xmm8,xmm9,xmm10,xmm11,xmm12,xmm13, 
xmm14,xmm15
        _DeleteFrame
        ret
 
Error:  xor eax,eax
        jmp Done
Mat4x4Inv_ endp
 
; The following functions are for software test & debug.
Mat4x4Trace_ proc
        _Mat4x4TraceYmm
        ret
Mat4x4Trace_ endp
Mat4x4Mul_ proc
        call Mat4x4Mul
        ret
Mat4x4Mul_ endp
        end
 

The multiplicative inverse of a matrix is defined as follows. Let A and X represent  
n × n matrices. Matrix X is an inverse of A if AX = XA = I is true, where I denotes an n × n 
identity matrix. Figure 20-4 shows an example of an inverse matrix. It should be noted that 
inverses do not exist for all n × n matrices. A matrix that does not have an inverse is called 
a singular matrix.

Figure 20-4. Matrix A and its multiplicative inverse, Matrix X

The inverse of a matrix can be calculated using a variety of mathematical techniques. 
The sample program Avx64CalcMat4x4Inv uses a computational method based on the 
Cayley-Hamilton theorem, which employs common matrix operations that are easy to 
carry out using SIMD arithmetic. Figure 20-5 defines the equations necessary to calculate 
the inverse of a 4×4 matrix. Note that the trace of a matrix is simply the sum of its diagonal 
elements.
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Listing 20-12 shows the C++ code for sample program Avx64CalcMat4x4Inv. 
Toward the top of this listing is a function named Mat4x4InvCpp, which calculates the 
inverse of a 4×4 single-precision floating-point matrix using the equations presented 
in Figure 20-5. Following validation of the Mat4x4 arguments m and m_inv for proper 
alignment, the function Mat4x4InvCpp calculates the values t1-t4 using the helper 
functions Mat4x4Mul and Max4x4Trace (the source code for these helper functions is not 
shown but included as part of the downloadable software package). Values c1-c4 are 
calculated next using simple scalar floating-point arithmetic. If the value of c4 is zero, 
the matrix m is singular and the function Mat4x4InvCpp terminates. Otherwise, the final 
inverse matrix is calculated and saved to m_inv.

The assembly language file Avx64CalcMat4x4Inv_.asm (Listing 20-13) defines a 
macro named _Mat4x4TraceYmm, which computes the trace of a 4×4 matrix of single-
precision floating-point values. This macro requires its source 4×4 matrix to be loaded 
in registers YMM0 (rows 0 and 1) and YMM1 (rows 2 and 3). The macro uses the vblendps, 
vpermps, and vhaddps instructions to calculate the trace value, as illustrated in Figure 20-6.

Figure 20-5. Calculation of a 4 × 4 matrix inverse
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Following definition of the macro _Max4x4TraceYmm is a private function named 
Mat4x4Mul. This function computes the product of two 4×4 single-precision floating-point 
matrices. The technique employed here is similar to the method used in Chapter 10. 
First, the transpose of matrix m2 is calculated using the vunpcklps, vunpckhps, and vperms 
instructions, as shown in Figure 20-7. Each row of the transposed matrix is then copied to 
the lower and upper 128 bits of a YMM register using the vperm2f128 (Permute Floating-
Point Values) instruction. The duplication of each matrix row reduces the number of dot 
product calculations that must be performed from 16 to 8. The final matrix product is 
calculated using a series of vdpps and vorps instructions. Note that the unused elements 
of each vdpps YMM destination operand are set to 0.0, which facilitates use of the vorps 
instruction to calculate the final values.

ymm0

ymm1

ymm0[127:0] = row0, ymm0[255:128] = row1

7.019.08.05.0

vblendps ymm0, ymm0, ymm1, 84h

10.0 6.0 3.0 2.0

22.01.013.09.04.0 25.0 12.0 3.0

# = Don’t Care

ymm07.01.08.05.04.0 6.0 3.0 2.0

vmovdqa ymm2, ymmword ptr [VpermsTrace]

ymm205000 0 7 2

vpermps ymm1, ymm2, ymm0

ymm17.06.0### # 4.0 1.0

vhaddps ymm0, ymm1, ymm1

ymm08#### # # 10

vhaddps ymm0, ymm0, ymm0

ymm018.0#### # # #

ymm1[127:0] = row2, ymm1[255:128] = row3

Figure 20-6. Calculation of a matrix trace value
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The Max4x4Inv_ function computes its inverse using the same logic as its C++ 
counterpart. First, the trace values t1-t4 are calculated using the function Mat4x4Mul 
and macro _Mat4x4TraceYmm. The coefficients c1-c4 are calculated next using x86-AVX 
scalar floating-point arithmetic. The coefficient c4 is then tested to ensure that the source 
matrix is not singular. Finally, the required matrix inverse is computed. Note that all of the 
arithmetic necessary to calculate the inverse matrix is carried out using straightforward 
packed multiplication (vmulps) and addition (vaddps). Output 20-6 shows the results for 
sample program Avx64Mat4x4Inv. Table 20-3 also contains some timing measurements.

ymm2

ymm3

ymm2[127:0] = M.row0, ymm2[255:128] = M.row1

6.03.05.012.011.0 2.0 7.0 10.0

13.03.08.01.02.0 5.0 9.0 4.0

vmovdqa ymm6, ymmword ptr [VpermsTranspose]

ymm601237 6 5 4

vunpcklps ymm4, ymm2, ymm3

ymm46.010.05.02.05.0 8.0 4.0 13.0

vunpckhps ymm5, ymm2, ymm3

ymm53.07.012.011.02.0 1.0 9.0 3.0

vpermps ymm2, ymm6, ymm4    ;ymm2 = M_T rows 0 and 1

ymm26.013.010.04.05.0 2.0 8.0 5.0

ymm3[127:0] = M.row2, ymm3[255:128] = M.row3

vpermps ymm3, ymm6, ymm5    ;ymm3 = M_T rows 2 and 3

ymm33.03.07.09.02.0 11.0 1.0 12.0

Figure 20-7. Calculation of a matrix transpose
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Output 20-6. Sample Program Avx64CalcMat4x4Inv

Results for Avx64CalcMat4x4Inv
 
Test Matrix #1
      2.000000       7.000000       3.000000       4.000000
      5.000000       9.000000       6.000000       4.750000
      6.500000       3.000000       4.000000      10.000000
      7.000000       5.250000       8.125000       6.000000
 
Calculating inverse matrix - Mat4x4InvCpp
 
Inverse matrix
     -0.943926       0.916570       0.197547      -0.425579
     -0.056882       0.251148       0.003028      -0.165952
      0.545399      -0.647656      -0.213597       0.505123
      0.412456      -0.412053       0.056125       0.124363
 
Inverse matrix verification
      1.000000      -0.000000       0.000000      -0.000000
      0.000000       1.000000       0.000000       0.000000
     -0.000000       0.000000       1.000000       0.000000
      0.000000       0.000000       0.000000       1.000000
 
Calculating inverse matrix - Mat4x4Inv_
 
Inverse matrix
     -0.943926       0.916570       0.197547      -0.425579
     -0.056882       0.251148       0.003028      -0.165952
      0.545399      -0.647656      -0.213597       0.505123
      0.412456      -0.412053       0.056125       0.124363
 
Inverse matrix verification
      1.000000      -0.000000       0.000000      -0.000000
      0.000000       1.000000       0.000000       0.000000
     -0.000000       0.000000       1.000000       0.000000
      0.000000       0.000000       0.000000       1.000000
 
Test Matrix #2
      0.500000      12.000000      17.250000       4.000000
      5.000000       2.000000       6.750000       8.000000
     13.125000       1.000000       3.000000       9.750000
     16.000000       1.625000       7.000000       0.250000
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Calculating inverse matrix - Mat4x4InvCpp
 
Inverse matrix
      0.001652      -0.069024       0.054959       0.038935
      0.135369      -0.359846       0.242038      -0.090325
     -0.035010       0.239298      -0.183964       0.077221
     -0.005335       0.056194       0.060361      -0.066908
 
Inverse matrix verification
      1.000001       0.000000       0.000000       0.000000
     -0.000000       1.000000      -0.000000      -0.000000
      0.000000       0.000000       1.000001       0.000000
      0.000000       0.000000       0.000000       1.000001
 
Calculating inverse matrix - Mat4x4Inv_
 
Inverse matrix
      0.001652      -0.069024       0.054959       0.038935
      0.135369      -0.359846       0.242038      -0.090325
     -0.035010       0.239298      -0.183964       0.077221
     -0.005335       0.056194       0.060361      -0.066908
 
Inverse matrix verification
      1.000001       0.000000       0.000000       0.000000
     -0.000000       1.000000      -0.000000      -0.000000
      0.000000       0.000000       1.000001       0.000000
      0.000000       0.000000       0.000000       1.000001
 
Test Matrix #3
      2.000000       0.000000       0.000000       1.000000
      0.000000       4.000000       5.000000       0.000000
      0.000000       0.000000       0.000000       7.000000
      0.000000       0.000000       0.000000       6.000000
 
Calculating inverse matrix - Mat4x4InvCpp
Matrix 'm' is singular
 
Calculating inverse matrix - Mat4x4Inv_
Matrix 'm' is singular
 
Benchmark times saved to file __Avx64CalcMat4x4InvTimed.csv 
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Miscellaneous Instructions
The last sample program in this chapter, which is named Avx64MiscInstructions, 
demonstrates how to exercise select gather and half-precision floating-point instructions 
in a 64-bit assembly language function. Listings 20-14 and 20-15 show the C++ and 
assembly language source code for sample program Avx64MiscInstructions.

Listing 20-14. Avx64MiscInstructions.cpp

#include "stdafx.h"
#include "MiscDefs.h"
#define _USE_MATH_DEFINES
#include <math.h>
 
extern "C" void Avx64GatherFloatIndx32_(float g[8], const float* x, Int32
indices[8]);
extern "C" void Avx64GatherFloatIndx64_(float g[4], const float* x, Int64
indices[4]);
extern "C" void Avx64FloatToHp_(Uint16 x_hp[8], float x1[8]);
extern "C" void Avx64HpToFloat_(float x[8], Uint16 x_hp[8]);
 
void Avx64GatherFloat(void)
{
    const int n = 20;
    float x1[n];
 
    printf("Results for Avx64GatherFloat()\n");
    printf("\nSource array\n");
 
    for (int i = 0; i < n; i++)
    {
        x1[i] = i * 100.0f;
        printf("x1[%02d]: %6.1f\n", i, x1[i]);
    }
    printf("\n");
 
    float g1_32[8], g1_64[4];
    Int32 g1_indices32[8] = {2, 3, 7, 1, 1, 12, 4, 17};
    Int64 g1_indices64[4] = {5, 0, 19, 13};
 

Table 20-3. Mean Execution Times (in Microseconds) for Matrix Inverse Functions  
in Sample Program Avx64CalcMat4x4Inv (10,000 Matrix Inverse Operations)

CPU C++ x86-AVX-64

Intel Core i7-4770 980 420

Intel Core i7-4600U 1194 491
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    Avx64GatherFloatIndx32_(g1_32, x1, g1_indices32);
    for (int i = 0; i < 8; i++)
        printf("g1_32[%02d] = %6.1f (gathered from x[%02d])\n", i, g1_32[i],
g1_indices32[i]);
 
    printf("\n");
 
    Avx64GatherFloatIndx64_(g1_64, x1, g1_indices64);
    for (int i = 0; i < 4; i++)
        printf("g1_64[%02d] = %6.1f (gathered from x[%02lld])\n", i,
g1_64[i], g1_indices64[i]);
}
 
void Avx64HalfPrecision(void)
{
    float x1[8], x2[8];
    Uint16 x_hp[8];
 
    x1[0] = 0.5f;            x1[1] = 1.0f / 512.0f;
    x1[2] = 1004.0625f;      x1[3] = 5003.125f;
    x1[4] = 42000.5f;        x1[5] = 75600.875f;
    x1[6] = -6002.125f;      x1[7] = (float)M_PI;
 
    Avx64FloatToHp_(x_hp, x1);
    Avx64HpToFloat_(x2, x_hp);
 
    printf("\nResults for Avx64HalfPrecision()\n");
 
    for (int i = 0; i < 8; i++)
        printf("%d %16.6f %16.6f\n", i, x1[i], x2[i]);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    Avx64GatherFloat();
    Avx64HalfPrecision();
    return 0;
} 

Listing 20-15. Avx64MiscInstructions_.asm

        include <Macrosx86-64.inc>
 
        .const
MaskVgatherdps  dword 80000000h,80000000h,80000000h,80000000h
                dword 80000000h,80000000h,80000000h,80000000h
MaskVgatherqps  dword 80000000h,80000000h,80000000h,80000000h
        .code
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; extern "C" void Avx64GatherFloatIndx32_(float g[8], const float* x, Int32
indices[8]);
;
; Description:  The following function demonstrates use of the
;               vgatherdps instruction.
;
; Requires      X86-64, AVX2
 
Avx64GatherFloatIndx32_ proc
        vmovdqu ymm0,ymmword ptr [r8]
        vmovdqu ymm1,ymmword ptr [MaskVgatherdps]
 
        vgatherdps ymm2,[rdx+ymm0*4],ymm1   ;ymm2 = gathered SPFP values
 
        vmovups ymmword ptr [rcx],ymm2      ;save result
        vzeroupper
        ret
Avx64GatherFloatIndx32_ endp
 
; extern "C" void Avx64GatherFloatIndx64_(float g[4], const float* x, Int64
indices[4]);
;
; Description:  The following function demonstrates use of the
;               vgatherqps instruction.
;
; Requires      X86-64, AVX2
 
Avx64GatherFloatIndx64_ proc
        vmovdqu ymm0,ymmword ptr [r8]
        vmovdqu xmm1,xmmword ptr [MaskVgatherqps]
 
        vgatherqps xmm2,[rdx+ymm0*4],xmm1   ;xmm2 = gathered SPFP values
 
        vmovups xmmword ptr [rcx],xmm2      ;save result
        vzeroupper
        ret
Avx64GatherFloatIndx64_ endp
 
; extern "C" void Avx64FloatToHp_(Uint16 x_hp[8], float x1[8]);
;
; Desciption:   The following function converts an array of eight
;               SPFP values to HPFP.
;
; Requires      X86-64, AVX, F16C
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Avx64FloatToHp_ proc
        vmovups ymm0,ymmword ptr [rdx]
        vcvtps2ph xmmword ptr [rcx],ymm0,00000100b  ;use round to nearest
        ret
Avx64FloatToHp_ endp
 
; extern "C" void Avx64HpToFloat_(float x[8], Uint16 x_hp[8]);
;
; Desciption:   The following function converts an array of eight
;               HPFP values to SPFP.
;
; Requires      X86-64, AVX, F16C
 
Avx64HpToFloat_ proc
        vcvtph2ps ymm0,xmmword ptr [rdx]
        vmovups ymmword ptr [rcx],ymm0
        ret
Avx64HpToFloat_ endp
        end
 

The C++ file Avx64MiscInstructions.cpp (Listing 20-14) includes a function 
named Avx64GatherFloat. This function initializes the data and index arrays 
that are used by the assembly language functions Avx64GatherFloatIndx32_ and 
Avx64GatherFloatIndx64_. The file Avx64MiscInstructions.cpp also contains a 
function named Avx64HalfPrecision, which exercises the half-precision floating-point 
conversion functions Avx64FloatToHp_ and Avx64HpToFloat_. Note that an array of type 
Uint16 is used to temporarily store the half-precision floating-point values since C++ 
does not natively support a half-precision floating-point data type.

Listing 20-15 shows the assembly language functions for sample program 
Avx64MiscInstructions. The functions Avx64GatherFloatIndx32_ and 
Avx64GatherFloatIndx64_ demonstrate use of the vgatherdps and vgatherqps 
instructions, respectively. (Figure 12-4 illustrates execution of the vgatherdps 
instruction.) Note that the former instruction uses doubleword indices while the latter 
uses quadwords. The use of quadword indices by vgatherqps means that it can gather 
only four single-precision floating-point values instead of eight.

The assembly language file Avx64MiscInstructions_.asm also contains the half-
precision conversion functions Avx64FloatToHp_ and Avx64HpToFloat_. These functions 
use the conversion instructions vcvtps2ph (Convert Single-Precision FP Value to 16-bit 
FP Value) and vcvtph2ps (Convert 16-bit FP Values to Single-Precision FP Values) to 
perform single-precision to half-precision floating-point conversions and vice versa. 
Note that the vcvtps2ph instruction includes an immediate operand that specifies the 
rounding method to use during the conversion. Table 20-4 shows the rounding options 
for the vcvtps2ph instruction.
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Output 20-7 shows the results for sample program Avx64MiscInstructions. Note 
the magnitude of rounding that occurs when a single-precision floating-point value 
is converted to half-precision floating-point. Also note that the value 75600.875 was 
converted to infinity since it’s greater than the largest possible half-precision floating-
point value (the printf function displays the text 1.#INF00 for infinity). The half-
precision floating-point conversion instructions are primarily intended to reduce storage 
requirements, as discussed in Chapter 12.

Output 20-7. Sample Program Avx64MiscInstructions

Results for Avx64GatherFloat()
 
Source array
x1[00]:    0.0
x1[01]:  100.0
x1[02]:  200.0
x1[03]:  300.0
x1[04]:  400.0
x1[05]:  500.0
x1[06]:  600.0
x1[07]:  700.0
x1[08]:  800.0
x1[09]:  900.0
x1[10]: 1000.0
x1[11]: 1100.0
x1[12]: 1200.0
x1[13]: 1300.0
x1[14]: 1400.0
x1[15]: 1500.0
x1[16]: 1600.0

Table 20-4. Rounding Options for vcvtps2ph Instruction

Operand Bits Value Description

1:0 00 Round to nearest

01 Round down

10 Round up

11 Truncate

2 0 Use bits 1:0 for rounding

1 Use bits MXCSR.RC for rounding

7:3 Not used
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x1[17]: 1700.0
x1[18]: 1800.0
x1[19]: 1900.0
 
g1_32[00] =  200.0 (gathered from x[02])
g1_32[01] =  300.0 (gathered from x[03])
g1_32[02] =  700.0 (gathered from x[07])
g1_32[03] =  100.0 (gathered from x[01])
g1_32[04] =  100.0 (gathered from x[01])
g1_32[05] = 1200.0 (gathered from x[12])
g1_32[06] =  400.0 (gathered from x[04])
g1_32[07] = 1700.0 (gathered from x[17])
 
g1_64[00] =  500.0 (gathered from x[05])
g1_64[01] =    0.0 (gathered from x[00])
g1_64[02] = 1900.0 (gathered from x[19])
g1_64[03] = 1300.0 (gathered from x[13])
 
Results for Avx64HalfPrecision()
0         0.500000         0.500000
1         0.001953         0.001953
2      1004.062500      1004.000000
3      5003.125000      5004.000000
4     42000.500000     42016.000000
5     75600.875000         1.#INF00
6     -6002.125000     -6004.000000
7         3.141593         3.140625

Summary
In this chapter, you learned how to use the computational resources of x86-SSE and  
x86-AVX in an x86-64 execution environment. You also discovered that the performance 
of a SIMD algorithm can vary depending on the organization of its data structures. In the 
next two chapters, you learn about some additional programming strategies that can  
be employed to optimize the performance of x86 assembly language functions.
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Chapter 21

Advanced Topics and 
Optimization Techniques

In order to maximize the performance of your assembly language code, you need to 
understand a few pivotal details about the inner workings of an x86 processor. In this 
chapter, you’ll study the internal architecture of a modern x86 multi-core processor and 
its underlying microarchitecture. Boosting assembly language software performance also 
requires appropriate use of certain x86 coding strategies and techniques, which are also 
examined in this chapter.

The content of this chapter should be regarded as an introductory tutorial to 
its topics. A comprehensive examination of x86 microarchitectures and assembly 
language optimization techniques would minimally require several lengthy chapters, or 
conceivably an entire book. The primary reference source for this chapter’s material is the 
Intel 64 and IA-32 Architectures Optimization Reference Manual. You are encouraged to 
consult this important reference guide for additional information and insights regarding 
x86 microarchitectures and assembly language optimization techniques.

Note ■  You can download the Intel 64 and IA-32 Architectures Optimization Reference 
Manual and other important x86 software developer manuals from the following Intel 
website: http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html.

Processor Microarchitecture
The performance capabilities of an x86 processor are principally determined by its 
underlying microarchitecture. A processor’s microarchitecture is characterized by 
the organization and operation of its internal hardware components, which include 
instruction pipelines, decoders, schedulers, execution units, data buses, and caches. 
Developers who understand the basics of a processor’s microarchitecture can often glean 
constructive insights that enable them to develop more efficient code.
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Companies such as AMD and Intel regularly market processors based on enhanced 
or new microarchitectures. In the discussions that follow, I describe the high-level 
organization of Intel’s Haswell microarchitecture, which is used in fourth-generation 
Core i7, i5, and i3 series processors. The structural organization and operation of earlier 
Intel microarchitectures such as Nehalem, Sandy Bridge, and Ivy Bridge (or first, second, 
and third generation Core i7, i5, and i3 series processors) are similar to Haswell, although 
the latter includes significant enhancements in terms of performance and reduced power 
consumption.

Multi-Core Processor Overview
The architectural details of a processor based on Haswell or any other modern 
microarchitecture are best examined using the framework of a multi-core processor. 
Figure 21-1 shows a simplified block diagram of a typical Haswell-based quad-core 
processor. Note that each CPU core includes first-level (L1) instruction and data caches, 
which are labeled I-Cache and D-Cache. As implied by their names, these memory 
caches contain instructions and data that a CPU core can rapidly access. Each CPU core 
also includes a second-level (L2) unified cache, which holds both instructions and data. 
The L1 and L2 caches enable the CPU cores to carry out independent operations in 
parallel without having to access the higher-level L3 shared cache or main memory.
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If a CPU core requires an instruction or data item that is not present in its L1 or L2 
cache, it must be loaded from the L3 cache or main memory. The L3 cache is partitioned 
into multiple “slices.”  Each slice consists of a logic controller and data array. The logic 
controller manages access to its corresponding data array. It also handles cache misses 
and writes to main memory (a cache miss occurs when requested data is not found in 
the cache and must be loaded from main memory). The data array includes the actual 
cache data, which is organized into 64-byte wide packets called cache lines. The Ring 
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Figure 21-1. Simplified block diagram of a Haswell-based quad-core processor
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Interconnect is a high-speed internal bus that facilitates data transfers between the CPU 
cores, L3 cache, graphics unit, and System Agent. The System Agent handles data traffic 
among the processor, its external data buses, and main memory.

Microarchitecture Pipeline Functionality
During program execution, a CPU core performs five elementary instructional 
operations: fetch, decode, dispatch, execute, and retire. The particulars of these 
operations are determined by the functionality of the CPU’s microarchitecture pipeline. 
Figure 21-2 shows a streamlined block diagram of CPU pipeline functionality in a 
Haswell-based processor. In the paragraphs that follow, the operations performed by 
these pipeline units are examined in greater detail.
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Reorder Buffers

Branch Prediction 
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and
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Instruction
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Instruction 
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Figure 21-2. Haswell CPU core pipeline functionality
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The Instruction Fetch and Pre-Decode Unit grabs instructions from the L1 I-Cache 
and begins the process of preparing them for execution. Steps performed by this stage 
include instruction length resolution, decoding of x86 instructional prefixes, and property 
marking to assist the downstream decoders. The Instruction Fetch and Pre-Decode Unit 
is also responsible for feeding a constant stream of instructions to the Instruction Queue, 
which queues up instructions for presentation to the Instruction Decoders.

The Instruction Decoders translate x86 instructions into micro-ops. A micro-op is a 
self-contained low-level instruction that is ultimately executed by one of the Execution 
Engine’s Execution Units, which are discussed in the next section. The number of micro-ops 
generated by the decoders for an x86 instruction varies depending on its complexity. Simple 
register-register instructions such as add eax,edx and pxor xmm0,xmm0 are decoded into a 
single micro-op. Instructions that perform more complex operations, such as idiv rcx and 
vdivpd ymm0,ymm1,ymm2, require multiple micro-ops. The translation of x86 instructions 
into micro-ops facilitates a number of architectural and performance benefits, including 
instruction-level parallelism and out-of-order executions.

The Instruction Decoders also perform two ancillary operations that improve 
utilization of available pipeline bandwidth. The first of these operations is called micro-
fusion, which combines simple micro-ops from the same x86 instruction into a single 
complex micro-op. Examples of micro-fused instructions include memory stores  
(mov [ebx+16],eax) and calculating instructions that reference operands in memory 
(sub r9,qword ptr [rbp+48]). Fused complex micro-ops are dispatched by the 
Execution Engine multiple times (each dispatch executes a simple micro-op from the 
original instruction). The second ancillary operation carried out by the Instruction 
Decoders is called macro-fusion. Macro-fusion combines certain commonly-used x86 
instruction pairs into a single micro-op. Examples of macro-fusible instruction pairs 
include many (but not all) conditional jump instructions that are preceded by an add, 
and, cmp, dec, inc, sub, or test instruction.

Micro-ops from the Instruction Decoders are transferred to the Micro-Op Instruction 
Queue for eventual dispatch by the Scheduler. They’re also cached, when necessary, in 
the Decoded Instruction Cache. The Micro-Op Instruction Queue is also used by the 
Loop Stream Detector, which identifies and locks small program loops in the Micro-Op 
Instruction Queue. This improves performance since a small loop can repeatedly execute 
without requiring any additional instruction fetch, decode, and micro-op cache read 
operations.

The Allocate/Rename block serves as a bridge between the in-order front-end 
pipelines and the out-of-order Scheduler and Execution Engine. It allocates any 
needed internal buffers to the micro-ops. It also eliminates false dependencies between 
micro-ops, which facilitates out-of-order execution. (A false dependency occurs when 
two micro-ops need to simultaneously access distinct versions of the same hardware 
resource.) Micro-ops are then transferred to the Scheduler. This unit queues micro-ops 
until all of the necessary source operands are available. It then dispatches ready-to-execute 
micro-ops to the appropriate Execution Unit in the Execution Engine. The Retire Unit 
removes micro-ops that have completed their execution using the program’s original 
instruction-ordering pattern. It also signals any processor exceptions that may have 
occurred during micro-op execution.

Finally, the Branch Prediction Unit helps select the next set of instructions to execute 
by predicting the branch targets that are most likely to execute based on recent code 
execution patterns. A branch target is simply the destination operand of a transfer control 
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instruction, such as jcc, jmp, call, or ret. The Branch Prediction Unit enables a CPU 
core to speculatively execute the micro-ops of an instruction before the outcome of a 
branch decision is known. When necessary, a CPU core searches (in order) the Decoded 
Instruction Cache, L1 I-Cache, L2 Unified Cache, L3 Cache, and main memory for 
instructions to execute.

Execution Engine
The Execution Engine executes micro-ops passed to it by the Scheduler. Figure 21-3 shows 
a high-level block diagram of a Haswell CPU Core Execution Engine. The rectangular 
blocks beneath each dispatch port denote micro-op Execution Units. Note that four of the 
Scheduler ports facilitate access to Execution Units that carry out calculating functions 
including integer, floating-point, and SIMD arithmetic. The remaining four ports support 
memory load and store operations.
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Figure 21-3. Haswell CPU core Execution Engine and its Execution Units
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Each Execution Unit performs a specific calculation or operation. For example, the 
Integer ALU & Shift Execution Units carry out integer arithmetic and shift operations. 
The SIMD Integer ALU Execution Units are designed to perform SIMD integer arithmetic. 
Note that the Execution Engine contains multiple instances of select Execution Units. 
This allows the Execution Engine to simultaneously execute multiple instances of certain 
micro-ops in parallel. For example, the Execution Engine can concurrently perform three 
separate SIMD logical operations in parallel using the SIMD Logical Execution Units.

A Haswell Scheduler can dispatch a maximum of eight micro-ops per cycle (one per 
port) to the Execution Engine. The out-of-order engine, which includes the Scheduler, 
Execution Engine, and Retire Unit, supports up to 192 “in-flight” (or coexistent) micro-ops. 
Table 21-1 show key buffers sizes for recent Intel microarchitectures.

Table 21-1. Comparison of Key Microarchitecture Buffer Sizes

Parameter Nehalem Sandy Bridge Haswell

Dispatch Ports 6 6 8

In-Flight Micro-Ops 128 168 192

In-Flight Loads 48 64 72

In-Flight Stores 32 36 42

Scheduler Entries 36 54 60

Optimizing Assembly Language Code
This section discusses some straightforward programming techniques that you can 
use to optimize the performance of x86 assembly language code. These techniques are 
recommended for use in code that targets recent Intel microarchitectures, including 
Haswell, Sandy Bridge, and Nehalem. Most of them are also appropriate for use in code 
that will execute on an earlier microarchitecture. The optimization techniques and 
ancillary guidelines are organized into five generic categories:

Basic optimizations•	

Floating-point arithmetic•	

Program branches•	

Data alignment•	

SIMD techniques•	

It is important to keep in mind that all of the ensuing optimization techniques must 
be applied in a prudent manner. For example, it makes little sense to add extra push and 
pop instructions in order to avoid using a non-recommended instruction form only once. 
Moreover, none of the optimization techniques described in this chapter will remedy 
an inappropriate or poorly designed algorithm. The Intel 64 and IA-32 Architectures 
Optimization Reference Manual contains additional information about the optimization 
techniques discussed in this section.
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Basic Optimizations
The following list contains a number of basic optimization techniques that are often used 
to improve the performance of x86 assembly language code:

Use the •	 test instruction instead of the cmp instruction whenever 
possible.

Avoid using the memory-immediate forms of the •	 cmp and test 
instructions (e.g., cmp dword ptr [ebp+16],100 or test byte 
ptr [r12],0fh) whenever possible. Load the memory value into 
a register and use the register-immediate form of the cmp or test 
instruction (e.g., mov eax,dword ptr [ebp+16] followed by  
cmp eax,100).

Use an •	 add or sub instruction instead of an inc or dec instruction, 
especially in performance-critical loops. The latter two instructions 
do not update all of the status flags in EFLAGS, which is often slower.

Use an •	 xor, sub, pxor, xorps, and so on, instruction to zero a 
register instead of a data move instruction. For example, xor eax, 
eax, and xorps xmm0,xmm0 are preferred over mov eax,0 and 
movaps xmm0,xmmword ptr [XmmZero].

Avoid using 16-bit immediate values in instructions that require an •	
operand-size prefix. Use an equivalent 8-bit or 32-bit immediate 
value instead. For example, use mov edx,42 instead of mov dx,42.

Unroll (or partially unroll) small loops that require a constant •	
number of iterations.

Load any memory values that are needed for multiple •	
calculations into a register. If a memory value is needed only 
for a single calculation, use the register-memory form of the 
calculating instruction. Table 21-2 shows several examples.

Table 21-2. Instruction Form Examples for Single and Multiple-Use Memory Values

Register-Memory

(Single-Use Data)

Move and Register-Register Form

(Multiple-Use Data)

add edx,dword ptr [x] mov eax,dword ptr [x]

add edx,eax

and rax,qword ptr [rbx+16] mov rcx,[rbx+16]

and rax,rcx

cmp ecx,dword ptr [n] mov eax,dword ptr [n]

cmp ecx,eax

mulpd xmm0,xmmword ptr [rdx] movapd xmm1,xmmword ptr [rdx]

mulpd xmm0,xmm1
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X86-64 code can benefit from the following optimization techniques:

Use 32-bit general-purpose registers and instruction forms when •	
working with 32-bit wide data values.

Favor use of general-purpose registers EAX, EBX, ECX, EDX, ESI, •	
and EDI before registers R8D-R15D when manipulating 32-bit 
wide data values. The instruction encodings for the latter register 
group require an extra byte.

Exploit the additional general-purpose and SIMD registers •	
in order to minimize data dependencies and register spills (a 
register spill occurs when a program must temporarily save the 
contents of a register to memory in order to free up the register for 
other calculations).

Use the two- or three-operand form of the •	 imul instruction to 
multiply two 64-bit integers if the full 128-bit product is not 
needed.

Floating-Point Arithmetic
The following guidelines should be observed when coding assembly language functions 
that employ floating-point arithmetic:

Use the scalar floating-point instructions of x86-SSE or x86-AVX •	
instead of the x87 FPU in new code.

Avoid arithmetic underflows and denormal values during •	
arithmetic calculations whenever possible.

Avoid using denormalized floating-point constants.•	

If excessive arithmetic underflows are expected, consider enabling •	
the flush-to-zero (MXCSR.FZ) and denormals-are-zero (MXCSR.
DAZ) modes. See Chapter 7, “Streaming SIMD Extensions” for 
more information regarding the proper use of these modes.

Program Branches
Program branch instructions, such as jmp, call, and ret, are potentially time-consuming 
operations to perform since they can affect the contents of the front-end pipelines and 
internal caches. The conditional jump instruction jcc is also a performance concern 
given its frequency of use. The following optimization techniques can be employed 
to minimize the adverse performance effects of branch instructions and improve the 
accuracy of the Branch Prediction Unit:

Organize code to minimize necessary branch instructions.•	

Use the •	 setcc and cmovcc instructions to eliminate unpredictable 
data-dependent branches.
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Align branch targets in performance-critical loops to 16-byte •	
boundaries.

Move conditional code that is unlikely to execute (e.g. error-•	
handling code) to another program section or memory page.

The Branch Prediction Unit employs both static and dynamic techniques when 
predicting the target of a branch instruction. Incorrect branch predictions can be 
minimized if blocks of code containing conditional jump instructions are arranged such 
that they’re consistent with the Branch Prediction Unit’s static prediction algorithm:

Use forward conditional jumps when the fall-through code is •	
likely to be executed.

Use backward conditional jumps when the fall-through code is •	
unlikely to be executed.

The forward conditional jump method is frequently used in blocks of code that 
perform function argument validation. The backward conditional jump technique can be 
employed at the bottom of a program loop code block following a counter update or other 
loop-terminating test decision. Listing 21-1 contains a short assembly language function 
that illustrates these practices in greater detail.

Listing 21-1. Use of conditional jump instructions that correspond to the static branch 
prediction algorithm

        .model flat,c
        .code
 
; extern "C" bool CalcResult_(double* des, const double* src, int n);
 
CalcResult_ proc
        push ebp
        mov ebp,esp
        push esi
        push edi
 
; Forward conditional jumps are used in this code block since
; the fall-through cases are more likely to occur.
        mov edi,[ebp+8]                     ;edi = des
        test edi,0fh
        jnz Error                           ;jump if des is not aligned
        mov esi,[ebp+12]                    ;esi =src
        test esi,0fh
        jnz Error                           ;jump if src is not aligned
        mov ecx,[ebp+16]                    ;ecx = n
        cmp ecx,2
        jl Error                            ;jump if n < 2
        test ecx,1
        jnz Error                           ;jump if n % 2 != 0
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; Simple array processing loop
        xor eax,eax
@@:     movapd xmm0,xmmword ptr [esi+eax]
        mulpd xmm0,xmm0
        movapd xmmword ptr [edi+eax],xmm0
 
; A backward conditional jump is used in this code block since
; the fall-through case is less likely to occur.
        add eax,16
        sub ecx,2
        jnz @B
 
        mov eax,1
        pop edi
        pop esi
        pop ebp
        ret
 
; Error handling code, which is unlikely to execute.
Error:  xor eax,eax
        pop edi
        pop esi
        pop ebp
        ret
CalcResult_ endp
        end

Data Alignment
It’s been mentioned a number of times in this book, but the importance of using properly 
aligned data cannot be over emphasized. Programs that manipulate improperly aligned data 
are likely to trigger the processor into performing additional memory cycles and micro-op 
executions, which can negatively affect overall system performance. The following data 
alignment practices should be considered universal truths and always observed:

Align multi-byte integer and floating-point values to their natural •	
boundaries.

Align 64-, 128-, and 256-bit wide packed data values to their •	
proper boundaries.

Pad data structures if necessary to ensure proper alignment.•	

Use the appropriate compiler directives and library functions •	
to align data items that that are allocated in high-level code. For 
example, the __declspec(align(n)) directive and _aligned_
malloc function can be used to properly align data items 
allocated in a Visual C++ function.

Give preference to aligned stores over aligned loads.•	
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The following data arrangement techniques are also recommended:

Align and position small arrays and short text strings in a data •	
structure to avoid cache line splits.

Evaluate the performance effects of different data layouts such as •	
structure of arrays versus array of structures.

SIMD Techniques
The following techniques should be observed, when appropriate, by any function that 
uses the computational resources of x86-SSE or x86-AVX:

Eliminate register dependencies in order to exploit multiple •	
Execution Units in the Execution Engine.

Use packed single-precision instead double-precision floating-•	
point values.

Load multiple-use memory operands and packed constants into •	
a register.

Perform packed data loads and stores using the aligned move •	
instructions (e.g., movdqa, movaps, movapd, and so on).

Process SIMD arrays using small data blocks in order to maximize •	
reuse of resident cache data.

Use data blends instead of data shuffles in x86-AVX code.•	

Use the •	 vzeroupper instruction when required to avoid x86-AVX 
to x86-SSE state transition penalties.

Use the doubleword forms of the x86-AVX •	 vgather instructions 
instead of the quadword forms. Perform any required gather 
operations well ahead of when the data is needed.

The following practices can be employed to improve the performance of certain 
algorithms that perform SIMD encoding and decoding operations:

Use the non-temporal store instructions (e.g., •	 movntdqa, movntpd, 
movntps, and so on) to minimize cache pollution.

Use the data prefetch instructions (e.g., •	 prefetcht0, prefetchnta, 
and so on) to notify the processor of expected-use data items.

Chapter 22 contains sample code that illustrates use of the non-temporal store and 
data prefetch instructions.
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Summary
In this penultimate chapter, you examined the inner workings of a modern x86 processor, 
including multi-core composition and microarchitecture arrangement. You also learned 
some useful techniques that can be easily employed to improve the performance of x86 
assembly language code. In the final chapter of this book, you’ll study some sample code 
that expounds on the topics presented in this chapter.
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Chapter 22

Advanced Topics 
Programming

This chapter examines a couple of sample programs that illustrate some advanced x86 
assembly language programming techniques. The first sample program explains how to 
accelerate the performance of a SIMD processing algorithm using non-temporal memory 
stores. The second sample program exemplifies use of software data prefetches to speed 
up linked list traversals. Both sample programs implement their respective algorithms 
using x86-32 and x86-64 assembly language functions in order to facilitate performance 
comparisons between the two execution environments.

Non-Temporal Memory Stores
From the perspective of a memory cache, data can be classified as temporal or non-
temporal. Temporal data is any value that is accessed more than once within a short 
period of time. Examples of temporal data include the elements of an array or data 
structure that are referenced multiple times during execution of a program loop. It also 
includes the code bytes of a program. Non-temporal data is any value that is accessed 
once and not immediately reused. The destination arrays of many SIMD processing 
algorithms often contain non-temporal data.

Processor performance degrades if its memory caches contain excessive amounts 
of non-temporal data. This condition is commonly called cache pollution. Ideally, a 
processor’s memory caches contain only temporal data since it makes little sense to cache 
items that are accessed only once. The x86-SSE instruction set includes several non-
temporal memory store instructions that a program can use to minimize cache pollution.

The sample program of this section, which is called NonTemporalStore, illustrates 
use of the non-temporal memory store instruction movntps (Store Packed Single-
Precision Floating-Point Values Using Non-Temporal Hint). It also compares the 
performance of this instruction to the standard movaps instruction. Listings 22-1, 22-2, 
and 22-3 contain the C++ and assembly language source code for the sample program 
NonTemporalStore.
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Listing 22-1. NonTemporalStore.cpp

#include "stdafx.h"
#include "NonTemporalStore.h"
#include <math.h>
#include <malloc.h>
#include <stdlib.h>
#include <stddef.h>
 
bool CalcResultCpp(float* c, const float* a, const float* b, int n)
{
    if ((n <= 0) || ((n & 0x3) != 0))
        return false;
 
    if (((uintptr_t)a & 0xf) != 0)
        return false;
    if (((uintptr_t)b & 0xf) != 0)
        return false;
    if (((uintptr_t)c & 0xf) != 0)
        return false;
 
    for (int i = 0; i < n; i++)
        c[i] = sqrt(a[i] * a[i] + b[i] * b[i]);
 
    return true;
}
 
bool CompareResults(const float* c1, const float* c2a, const float*c2b,
int n, bool pf)
{
    const float epsilon = 1.0e-9f;
    bool compare_ok = true;
 
    for (int i = 0; i < n; i++)
    {
        if (pf)
            printf("%2d - %10.4f %10.4f %10.4f\n", i, c1[i], c2a[i],
c2b[i]);
 
        bool b1 = fabs(c1[i] - c2a[i]) > epsilon;
        bool b2 = fabs(c1[i] - c2b[i]) > epsilon;
 
        if (b1 || b2)
        {
            compare_ok = false;
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            if (pf)
                printf("Compare error at index %2d: %f %f %f\n", i, c1[i],
c2a[i], c2b[i]);
        }
    }
 
    return compare_ok;
}
 
void NonTemporalStore(void)
{
    const int n = 16;
    const int align = 16;
    float* a = (float*)_aligned_malloc(n * sizeof(float), align);
    float* b = (float*)_aligned_malloc(n * sizeof(float), align);
    float* c1 = (float*)_aligned_malloc(n * sizeof(float), align);
    float* c2a = (float*)_aligned_malloc(n * sizeof(float), align);
    float* c2b = (float*)_aligned_malloc(n * sizeof(float), align);
 
    srand(67);
    for (int i = 0; i < n; i++)
    {
        a[i] = (float)(rand() % 100);
        b[i] = (float)(rand() % 100);
    }
 
    CalcResultCpp(c1, a, b, n);
    CalcResultA_(c2a, a, b, n);
    CalcResultB_(c2b, a, b, n);
 
#ifdef _WIN64
    const char* platform = "Win64";
#else
    const char* platform = "Win32";
#endif
 
    printf("Results for LinkedListPrefetch (platform = %s)\n", platform);
    bool rc = CompareResults(c1, c2a, c2b, n, true);
 
    if (rc)
        printf("Array compare OK\n");
    else
        printf("Array compare FAILED\n");
 
    _aligned_free(a);
    _aligned_free(b);
    _aligned_free(c1);
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    _aligned_free(c2a);
    _aligned_free(c2b);
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    NonTemporalStore();
    NonTemporalStoreTimed();
    return 0;
} 

Listing 22-2. NonTemporalStore32_.asm

IFDEF ASMX86_32
        .model flat,c
        .code
 
; _CalcResult32 Macro
;
; The following macro contains a simple calculating loop that is used
; to compare performance of the movaps and movntps instructions.
 
_CalcResult32 macro MovInstr
        push ebp
        mov ebp,esp
        push ebx
        push edi
 
; Load and validate arguments
        mov edi,[ebp+8]                     ;edi = c
        test edi,0fh
        jnz Error                           ;jump if c is not aligned
        mov ebx,[ebp+12]                    ;ebx = a
        test ebx,0fh
        jnz Error                           ;jump if a is not aligned
        mov edx,[ebp+16]                    ;edx = b
        test edx,0fh
        jnz Error                           ;jump if b is not aligned
 
        mov ecx,[ebp+20]                    ;ecx = n
        test ecx,ecx
        jle Error                           ;jump if n <= 0
        test ecx,3
        jnz Error                           ;jump if n % 4 != 0
 
; Calculate c[i] = sqrt(a[i] * a[i] + b[i] * b[i])
        xor eax,eax                         ;eax = common array offset
        align 16
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@@:     movaps xmm0,xmmword ptr [ebx+eax]   ;xmm0 = values from a[]
        movaps xmm1,xmmword ptr [edx+eax]   ;xmm1 = values from b[]
        mulps xmm0,xmm0                     ;xmm0 = a[i] * a[i]
        mulps xmm1,xmm1                     ;xmm1 = b[i] * b[i]
        addps xmm0,xmm1                     ;xmm0 = sum
        sqrtps xmm0,xmm0                    ;xmm0 = final result
        MovInstr xmmword ptr [edi+eax],xmm0 ;save final values to c
 
        add eax,16                          ;update offset
        sub ecx,4                           ;update counter
        jnz @B
 
        mov eax,1                           ;set success return code
        pop edi
        pop ebx
        pop ebp
        ret
 
Error:  xor eax,eax                         ;set error return code
        pop ebx
        pop ebp
        ret
        endm
 
;extern bool CalcResultA_(float* c, const float* a, const float* b, int n)
CalcResultA_ proc
        _CalcResult32 movaps
CalcResultA_ endp
 
;extern bool CalcResultB_(float* c, const float* a, const float* b, int n)
CalcResultB_ proc
        _CalcResult32 movntps
CalcResultB_ endp
ENDIF
        end
 

Listing 22-3. NonTemporalStore64_.asm

IFDEF ASMX86_64
        .code
 
; _CalcResult64 Macro
;
; The following macro contains a simple calculating loop that is used
; to compare performance of the movaps and movntps instructions.
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_CalcResult64 macro MovInstr
 
; Load and validate arguments
        test rcx,0fh
        jnz Error                           ;jump if c is not aligned
        test rdx,0fh
        jnz Error                           ;jump if a is not aligned
        test r8,0fh
        jnz Error                           ;jump if b is not aligned
 
        test r9d,r9d
        jle Error                           ;jump if n <= 0
        test r9d,3
        jnz Error                           ;jump if n % 4 != 0
 
; Calculate c[i] = sqrt(a[i] * a[i] + b[i] * b[i])
        xor eax,eax                         ;eax = common array offset
        align 16
@@:     movaps xmm0,xmmword ptr [rdx+rax]   ;xmm0 = values from a[]
        movaps xmm1,xmmword ptr [r8+rax]    ;xmm1 = values from b[]
        mulps xmm0,xmm0                     ;xmm0 = a[i] * a[i]
        mulps xmm1,xmm1                     ;xmm1 = b[i] * b[i]
        addps xmm0,xmm1                     ;xmm0 = sum
        sqrtps xmm0,xmm0                    ;xmm0 = final result
        MovInstr xmmword ptr [rcx+rax],xmm0 ;save final values to c
 
        add rax,16                          ;update offset
        sub r9d,4                           ;update counter
        jnz @B
 
        mov eax,1                           ;set success return code
        ret
 
Error:  xor eax,eax                         ;set error return code
        ret
        endm
 
;extern bool CalcResultA_(float* c, const float* a, const float* b, int n)
CalcResultA_ proc
        _CalcResult64 movaps
CalcResultA_ endp
 
;extern bool CalcResultB_(float* c, const float* a, const float* b, int n)
CalcResultB_ proc
        _CalcResult64 movntps
CalcResultB_ endp
ENDIF
        end
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Toward the top of the file NonTemporalStore.cpp (Listing 22-1) is a function named 
CalcResultCpp. This function computes a simple arithmetic value using the elements of 
two single-precision floating-point arrays (a and b). It then writes the result to destination 
array c. The assembly language functions used in this sample program compute the 
same result. The next function, CompareResults, is used to confirm equivalence between 
the various C++ and assembly language output arrays. The function NonTemporalStore 
allocates and initializes the test arrays. It then invokes the aforementioned function 
CalcResultCpp. This is followed by calls to the corresponding assembly language functions 
CalcResultA_ and CalcResultB_, which are described later in this section. The output 
arrays of the three calculating functions are then compared for any discrepancies.

The sample program NonTemporalStore includes both x86-32 and x86-64 
implementations of the calculating functions CalcResultA_ and CalcResultB_.  
Listing 22-2 shows the assembly language source code for the x86-32 versions. The 
function definitions for CalcResultA_ and CalcResultB_ are shown near the bottom of 
the NonTemporalStore32_.asm file. These functions use a macro named _CalcResult32, 
which generates the calculating code. Note that each use of the macro _CalcResult32 
uses a different value for the move instruction parameter.

The macro _CalcResult32 is defined near the top of the file  
NonTemporalStore32_.asm. Following argument validation is a simple block of 
instructions that calculates c[i] = sqrt(a[i] * a[i] + b[i] * b[i]) using x86-SSE 
packed single-precision floating-point arithmetic. The statement MovInstr xmmword ptr 
[edi+eax],xmm0 saves the final result to the destination array c using either a movaps or 
movntps instruction depending on the value of macro parameter MovInstr. This means 
that the code executed by functions CalcResultA_ and CalcResultB_ is identical, except 
for the instruction that saves results to the destination array.

Listing 22-3 shows the source code for the assembly language file 
NonTemporalStore64_.asm. The organization and logic of the x86-64 implementations  
of CalcResultA_ and CalcResultB_ are similar to their x86-32 counterparts.  
The macro _CalcResult64 also uses the same x86-SSE calculating instructions as the  
macro _CalcResult32.

Note that except for the end directive, all of the statements in the files 
NonTemporalStore32_.asm and NonTemporalStore64_.asm are grouped inside an 
assembler IFDEF directive. The MASM preprocessor symbols ASMX86_32 and ASMX86_64 
are defined on the appropriate Visual C++ property pages for each execution platform. 
This enables the Visual C++ project for sample program NonTemporalStore to support 
builds of both Win32 and Win64 executables. Appendix A , which you can download from 
http://www.apress.com/9781484200650, contains additional information on how to 
configure a Visual C++ project for multiple executable targets.

Output 22-1 shows the results for the Win32 build sample program 
NonTemporalStore. The output of the Win64 build is identical except for the platform 
name and benchmark filename. Tables 22-1 and 22-2 show timing measurements for 
both execution environments and contain some interesting outcomes. For sample 
program NonTemporalStore, use of the movntps instruction on the Haswell-based i7-4770 
and i7-4600U processors is significantly faster than the corresponding movaps instruction. 
The execution times for the Sandy Bridge-based i3-2310M are the same (keep in mind 
that the movntps instruction merely provides a hint to the processor and is not guaranteed 
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to improve performance). The considerable time differences between the x86-32 and  
x86-64 versions of the function CalcResultCpp are also curious. The reason for these 
numbers is that the 64-bit version of the Visual C++ compiler generated code that 
exploited x86-SSE SIMD floating-point arithmetic, whereas the 32-bit edition produced 
x86-SSE scalar floating-point code.

Output 22-1. Sample Program NonTemporalStore

Results for NonTemporalStore (platform = Win32)
 0 -    87.2066    87.2066    87.2066
 1 -    51.4781    51.4781    51.4781
 2 -    44.1022    44.1022    44.1022
 3 -   112.4144   112.4144   112.4144
 4 -    16.5529    16.5529    16.5529
 5 -    53.1507    53.1507    53.1507
 6 -    96.1769    96.1769    96.1769
 7 -   125.3196   125.3196   125.3196
 8 -    91.5478    91.5478    91.5478
 9 -    85.8021    85.8021    85.8021
10 -    63.6003    63.6003    63.6003
11 -    76.0066    76.0066    76.0066
12 -    67.1863    67.1863    67.1863
13 -    91.2853    91.2853    91.2853
14 -    96.3172    96.3172    96.3172
15 -    27.0185    27.0185    27.0185
Array compare OK
 
Benchmark times saved to file __NonTemporalStore32.csv 

Table 22-1. Mean Execution Times (in Microseconds) for X86-32 Functions 
CalcResultCpp, CalcResultA_, and CalcResultB_ (n = 1,000,000)

CPU CalcResultCpp CalcResultA_(movaps) CalcResultB_(movntps)

Intel Core i7-4770 1864 572 468

Intel Core i7-4600U 2377 812 595

Intel Core i3-2310M 5145 1707 1702
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Data Prefetch
An application program can also use the prefetch (Prefetch Data Into Caches) 
instruction to improve the performance of certain algorithms. This instruction facilitates 
pre-loading of expected-use data into the cache hierarchy of a processor. There are two 
basic forms of the prefetch instruction. The first form (prefetcht0) pre-loads temporal 
data into all levels of the processor’s cache hierarchy. The second form (prefetchnta) 
pre-loads non-temporal data into the L2 cache and is used to help minimize cache 
pollution. It is important to note that both forms of the prefetch instruction only provide 
a hint to the processor about the data that a program expects to use. A processor may 
choose to perform the prefetch operation or ignore the hint.

The prefetch instructions are suitable for use with a variety of data structures, 
including large arrays and linked lists. A linked list is sequentially-organized collection 
of nodes. Each node includes a data section and one or more pointers (or links) to its 
adjacent nodes. Figure 22-1 illustrates a simple linked list. Linked lists are useful since 
their size can grow or shrink (i.e. nodes can be added or deleted) depending on data 
storage requirements. One drawback of a linked list is that the nodes are usually not 
stored in a contiguously-allocated block of memory. This tends to increase access times 
when traversing a list.

Table 22-2. Mean Execution Times (in Microseconds) for X86-64 Functions 
CalcResultCpp, CalcResultA_, and CalcResultB_ (n = 1,000,000)

CPU CalcResultCpp CalcResultA_(movaps) CalcResultB_(movntps)

Intel Core i7-4770 585 572 468

Intel Core i7-4600U 776 768 583

Intel Core i3-2310M 1714 1707 1702

0Data

End-of-List Terminator

Data Data Data

Link to Next Node

Node

Figure 22-1. Simple linked list

The next sample program is named LinkedListPrefetch. This program contains 
x86-32 and x86-64 functions that perform linked list traversals both with and without the 
prefetchnta instruction. Listings 22-4 and 22-5 show the C++ and assembly language 
header files for sample program LinkedListPrefetch. The corresponding source code is 
shown in Listings 22-6 through 22-8.
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Listing 22-4. LinkedListPrefetch.h

#pragma once
#include "MiscDefs.h"
 
// This structure must match the corresponding structure definition
// in LinkedListPrefetch.inc.
typedef struct llnode
{
    double ValA[4];
    double ValB[4];
    double ValC[4];
    double ValD[4];
    Uint8 FreeSpace[376];
 
    llnode* Link;
 
#ifndef _WIN64
    Uint8 Pad[4];
#endif
 
} LlNode;
 
extern void LlTraverseCpp(LlNode* p);
extern LlNode* LlCreate(int num_nodes);
extern bool LlCompare(int num_nodes, LlNode* l1, LlNode* l2, LlNode* l3,
int* node_fail);
 
extern "C" void LlTraverseA_(LlNode* p);
extern "C" void LlTraverseB_(LlNode* p);
 
extern void LinkedListPrefetchTimed(void); 

Listing 22-5. LinkedListPrefetch.inc

; This structure must match the corresponding structure definition
; in LinkedListPrefetch.h
 
LlNode  struct
ValA        real8 4 dup(?)
ValB        real8 4 dup(?)
ValC        real8 4 dup(?)
ValD        real8 4 dup(?)
FreeSpace   byte 376 dup(?)
 
IFDEF ASMX86_32
Link        dword ?
Pad         byte 4 dup(?)
ENDIF
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IFDEF ASMX86_64
Link        qword ?
ENDIF
 
LlNode  ends 

Listing 22-6. LinkedListPrefetch.cpp

#include "stdafx.h"
#include "LinkedListPrefetch.h"
#include <stdlib.h>
#include <math.h>
#include <stddef.h>
 
bool LlCompare(int num_nodes, LlNode* l1, LlNode* l2, LlNode* l3, int*
node_fail)
{
    const double epsilon = 1.0e-9;
 
    for (int i = 0; i < num_nodes; i++)
    {
        *node_fail = i;
 
        if ((l1 == NULL) || (l2 == NULL) || (l3 == NULL))
            return false;
 
        for (int j = 0; j < 4; j++)
        {
            bool b12_c = fabs(l1->ValC[j] - l2->ValC[j]) > epsilon;
            bool b13_c = fabs(l1->ValC[j] - l3->ValC[j]) > epsilon;
            if (b12_c || b13_c)
                return false;
 
            bool b12_d = fabs(l1->ValD[j] - l2->ValD[j]) > epsilon;
            bool b13_d = fabs(l1->ValD[j] - l3->ValD[j]) > epsilon;
            if (b12_d || b13_d)
                return false;
        }
 
        l1 = l1->Link;
        l2 = l2->Link;
        l3 = l3->Link;
    }
 
    *node_fail = -2;
    if ((l1 != NULL) || (l2 != NULL) || (l3 != NULL))
        return false;
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    *node_fail = -1;
    return true;
}
 
void LlPrint(LlNode* p, FILE* fp, const char* msg)
{
    int i = 0;
    const char* fs = "%14.6lf %14.6lf %14.6lf %14.6lf\n";
 
    if (msg != NULL)
        fprintf(fp, "%s\n", msg);
 
    while (p != NULL)
    {
        fprintf(fp, "\nLlNode %d [0x%p]\n", i, p);
        fprintf(fp, "  ValA: ");
        fprintf(fp, fs, p->ValA[0], p->ValA[1], p->ValA[2], p->ValA[3]);
 
        fprintf(fp, "  ValB: ");
        fprintf(fp, fs, p->ValB[0], p->ValB[1], p->ValB[2], p->ValB[3]);
 
        fprintf(fp, "  ValC: ");
        fprintf(fp, fs, p->ValC[0], p->ValC[1], p->ValC[2], p->ValC[3]);
 
        fprintf(fp, "  ValD: ");
        fprintf(fp, fs, p->ValD[0], p->ValD[1], p->ValD[2], p->ValD[3]);
 
        i++;
        p = p->Link;
    }
}
 
LlNode* LlCreate(int num_nodes)
{
    LlNode* first = NULL;
    LlNode* last = NULL;
 
    srand(83);
    for (int i = 0; i < num_nodes; i++)
    {
        LlNode* p = (LlNode*)_aligned_malloc(sizeof(LlNode), 64);
        p->Link = NULL;
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        if (i == 0)
            first = last = p;
        else
        {
            last->Link = p;
            last = p;
        }
 
        for (int i = 0; i < 4; i++)
        {
            p->ValA[i] = rand() % 500 + 1;
            p->ValB[i] = rand() % 500 + 1;
            p->ValC[i] = 0;
            p->ValD[i] = 0;
        }
    }
 
    return first;
}
 
void LlTraverseCpp(LlNode* p)
{
    while (p != NULL)
    {
        for (int i = 0; i < 4; i++)
        {
            p->ValC[i] = sqrt(p->ValA[i] * p->ValA[i] + p->ValB[i] *
p->ValB[i]);
            p->ValD[i] = sqrt(p->ValA[i] / p->ValB[i] + p->ValB[i] /
p->ValA[i]);
        }
        p = p->Link;
    }
}
 
void LinkedListPrefetch(void)
{
    const int num_nodes = 8;
    LlNode* list1 = LlCreate(num_nodes);
    LlNode* list2a = LlCreate(num_nodes);
    LlNode* list2b = LlCreate(num_nodes);
 
#ifdef _WIN64
    const char* platform = "X86-64";
    size_t sizeof_ll_node = sizeof(LlNode);
    const char* fn = "__LinkedListPrefetchResults64.txt";
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#else
    const char* platform = "X86-32";
    size_t sizeof_ll_node = sizeof(LlNode);
    const char* fn = "__LinkedListPrefetchResults32.txt";
#endif
 
    printf("\nResults for LinkedListPrefetch\n");
    printf("Platform target:  %s\n", platform);
    printf("sizeof(LlNode):   %d\n", sizeof_ll_node);
    printf("LlNode member offsets\n");
    printf("  ValA:           %d\n", offsetof(LlNode, ValA));
    printf("  ValB:           %d\n", offsetof(LlNode, ValB));
    printf("  ValC:           %d\n", offsetof(LlNode, ValC));
    printf("  ValD:           %d\n", offsetof(LlNode, ValD));
    printf("  FreeSpace:      %d\n", offsetof(LlNode, FreeSpace));
    printf("  Link:           %d\n", offsetof(LlNode, Link));
    printf("\n");
 
    LlTraverseCpp(list1);
    LlTraverseA_(list2a);
    LlTraverseB_(list2b);
 
    int node_fail;
 
    if (!LlCompare(num_nodes, list1, list2a, list2b, &node_fail))
        printf("\nLinked list compare FAILED - node_fail = %d\n",
node_fail);
    else
        printf("\nLinked list compare OK\n");
 
    FILE* fp;
    if (fopen_s(&fp, fn, "wt") == 0)
    {
        LlPrint(list1, fp, "\n----- list1 -----");
        LlPrint(list2a, fp, "\n ----- list2a -----");
        LlPrint(list2b, fp, "\n ----- list2b -----");
        fclose(fp);
 
        printf("\nLinked list results saved to file %s\n", fn);
    }
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    LinkedListPrefetch();
    LinkedListPrefetchTimed();
    return 0;
}
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Listing 22-7. LinkedListPrefetch32_.asm

IFDEF ASMX86_32
        include <LinkedListPrefetch.inc>
        .model flat,c
        .code
 
; Macro _LlTraverse32
;
; The following macro generates linked list traversal code using the
; prefetchnta instruction if UsePrefetch is equal to 'Y'.
 
_LlTraverse32 macro UsePrefetch
        mov eax,[esp+4]                             ;eax = ptr to 1st node
        test eax,eax
        jz Done                                     ;jump if end-of-list
 
        align 16
@@:     mov ecx,[eax+LlNode.Link]                   ;ecx = next node
        vmovapd ymm0,ymmword ptr [eax+LlNode.ValA]  ;ymm0 = ValA
        vmovapd ymm1,ymmword ptr [eax+LlNode.ValB]  ;ymm1 = ValB
 
IFIDNI <UsePrefetch>,<Y>
        mov edx,ecx
        test edx,edx                        ;is there another node?
        cmovz edx,eax                       ;avoid prefetch of NULL
        prefetchnta [edx]                   ;prefetch start of next node
ENDIF
 
; Calculate ValC[i] = sqrt(ValA[i] * ValA[i] + ValB[i] * ValB[i])
        vmulpd ymm2,ymm0,ymm0                       ;ymm2 = ValA * ValA
        vmulpd ymm3,ymm1,ymm1                       ;ymm3 = ValB * ValB
        vaddpd ymm4,ymm2,ymm3                       ;ymm4 = sums
        vsqrtpd ymm5,ymm4                           ;ymm5 = square roots
        vmovntpd ymmword ptr [eax+LlNode.ValC],ymm5 ;save result
 
; Calculate ValD[i] = sqrt(ValA[i] / ValB[i] + ValB[i] / ValA[i]);
        vdivpd ymm2,ymm0,ymm1                       ;ymm2 = ValA / ValB
        vdivpd ymm3,ymm1,ymm0                       ;ymm3 = ValB / ValA
        vaddpd ymm4,ymm2,ymm3                       ;ymm4 = sums
        vsqrtpd ymm5,ymm4                           ;ymm5 = square roots
        vmovntpd ymmword ptr [eax+LlNode.ValD],ymm5 ;save result
 
        mov eax,ecx                         ;eax = ptr to next node
        test eax,eax
        jnz @B
        vzeroupper
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Done:   ret
        endm
 
; extern "C" void LlTraverseA_(LlNode* first);
LlTraverseA_ proc
        _LlTraverse32 n
LlTraverseA_ endp
 
; extern "C" void LlTraverseB_(LlNode* first);
LlTraverseB_ proc
        _LlTraverse32 y
LlTraverseB_ endp
 
ENDIF
        end 

Listing 22-8. LinkedListPrefetch64_.asm

IFDEF ASMX86_64
        include <LinkedListPrefetch.inc>
        .code
 
; Macro _LlTraverse64
;
; The following macro generates linked list traversal code using the
; prefetchnta instruction if UsePrefetch is equal to 'Y'.
 
_LlTraverse64 macro UsePrefetch
        mov rax,rcx                                 ;rax = ptr to 1st node
        test rax,rax
        jz Done                                     ;jump if end-of-list
 
        align 16
@@::    mov rcx,[rax+LlNode.Link]                   ;rcx = next node
        vmovapd ymm0,ymmword ptr [rax+LlNode.ValA]  ;ymm0 = ValA
        vmovapd ymm1,ymmword ptr [rax+LLNode.ValB]  ;ymm1 = ValB
 
IFIDNI <UsePrefetch>,<Y>
        mov rdx,rcx
        test rdx,rdx                        ;is there another node?
        cmovz rdx,rax                       ;avoid prefetch of NULL
        prefetchnta [rdx]                   ;prefetch start of next node
ENDIF
 
; Calculate ValC[i] = sqrt(ValA[i] * ValA[i] + ValB[i] * ValB[i])
        vmulpd ymm2,ymm0,ymm0                       ;ymm2 = ValA * ValA
        vmulpd ymm3,ymm1,ymm1                       ;ymm3 = ValB * ValB
        vaddpd ymm4,ymm2,ymm3                       ;ymm4 = sums
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        vsqrtpd ymm5,ymm4                           ;ymm5 = square roots
        vmovntpd ymmword ptr [rax+LlNode.ValC],ymm5 ;save result
 
; Calculate ValD[i] = sqrt(ValA[i] / ValB[i] + ValB[i] / ValA[i]);
        vdivpd ymm2,ymm0,ymm1                       ;ymm2 = ValA / ValB
        vdivpd ymm3,ymm1,ymm0                       ;ymm3 = ValB / ValA
        vaddpd ymm4,ymm2,ymm3                       ;ymm4 = sums
        vsqrtpd ymm5,ymm4                           ;ymm5 = square roots
        vmovntpd ymmword ptr [rax+LlNode.ValD],ymm5 ;save result
 
        mov rax,rcx                         ;rax = ptr to next node
        test rax,rax
        jnz @B
        vzeroupper
 
Done:   ret
        endm
 
; extern "C" void LlTraverseA_(LlNode* first);
LlTraverseA_ proc
        _LlTraverse64 n
LlTraverseA_ endp
 
; extern "C" void LlTraverseB_(LlNode* first);
LlTraverseB_ proc
        _LlTraverse64 y
LlTraverseB_ endp
 
ENDIF
        end
 

The header file LinkedListPrefetch.h (Listing 22-4) contains the declaration for 
the C++ structure LlNode. The sample program LinkedListPrefetch uses this structure 
to construct linked lists of test data. Structure members ValA through ValD hold the data 
values that are manipulated by the linked list traversal functions. The member FreeSpace 
is included to increase the size of LlNode for demonstration purposes since prefetching 
works best with large data structures. A real-word implementation of the data structure 
LlNode could use this space for additional data items. The final member of LlNode is a 
pointer named Link, which points to the next LlNode structure in a linked list. Note that 
the Win32 version of LlNode includes an extra four-byte member named Pad in order to 
maintain structure size equivalence between the 32-bit and 64-bit executables. Listing 
22-5 shows the corresponding declaration of the assembly language implementation of 
LlNnode.

Near the top of the file LinkedListPrefetch.cpp (Listing 22-6) is an ancillary 
function named LlCompare that compares linked lists manipulated by the sample 
program for data equivalence. This is followed by another ancillary function named 
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LlPrint that prints the data members of a linked list to the specified FILE stream. The 
function LlCreate constructs a linked list that contains num_nodes instances of the data 
structure LlNode. Note that each LlNode is allocated on a 64-byte boundary in order to 
avoid cache line splits of the data arrays. The function LlTraverse contains code that 
traverses the designated linked list and performs the required calculations using the data 
arrays of each LlNode in a list. Finally, the function LinkedListPrefetch contains code 
that constructs the test linked lists. It then calls the C++ and assembly language traversal 
functions LlTraverseCpp, LlTraverseA_, and LlTraverseB_.

The assembly language files LinkedListPrefetch32_.asm (Listing 22-7) 
and LinkedListPrefetch64_.asm (Listing 22-8) contain the 32-bit and 64-bit 
implementations of the linked list traversal functions LlTraverseA_ and LlTraverseB_. 
These functions, which are defined near the bottom of their respective files, use macros 
named _LlTraverse32 or _LlTraverse64 to generate the necessary code. Both of these 
macros require a single parameter that specifies whether the traversal code should 
include a prefetchnta instruction. Logically and structurally, the macros _LlTraverse32 
and _LlTraverse64 are equivalent except for the pointer sizes. The discussions of the 
next two paragraphs will focus on the macro _LlTraverse32.

At the top of the linked list traversal loop, the data arrays ValA and ValB of the 
current node are loaded into registers YMM0 and YMM1, respectively. A pointer to the 
next node is also loaded into register ECX (and conditionally into EDX). If the macro 
parameter UsePrefetch equals the character Y, a prefetchnta [edx] is instruction is 
generated. This instruction non-temporally prefetches the start bytes of the next node, 
which includes data arrays ValA and ValB, into the L2 cache. Prior to execution of the 
prefetchnta [edx] instruction, EDX is tested in order to avoid performing a prefetch 
operation using a NULL memory address, which can degrade processor performance. 
It is also important to note that a program should never attempt to execute a prefetch 
instruction using a memory address that is owned by another program.

A prefetch instruction works best if the processor can carry out the requested 
memory operation in the background while the CPU core continues to execute 
instructions. The calculating portion of _LlTraverse32 employs some irrelevant packed 
double-precision float-point arithmetic to simulate a time-consuming operation. The 
computed results are saved to the destination arrays ValC and ValD using vmovntpd 
instructions since these arrays are referenced only once.

Output 22-2 shows the results for sample program LinkedListPrefetch. Timing 
measurements for the Win32 and Win64 builds are shown in Tables 22-3 and 22-4, 
respectively. For sample program LinkedListPrefetch, use of the prefetchnta instruction 
yielded better performance on the Haswell-based processors, especially the i7-4770. It 
should be noted that any performance benefits provided by the prefetch instructions are 
highly dependent on data usage patterns and the underlying microarchitecture. According 
to the Intel 64 and IA-32 Architectures Optimization Reference Manual, the data prefetch 
instructions are “implementation specific.” This means that in order to maximize prefetch 
performance, an algorithm must be “tuned to each implementation” or microarchitecture. 
The aforementioned reference manual contains addition information regarding use of the 
data prefetch instructions.
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Output 22-2. Sample Program LinkedListPrefetch

Results for LinkedListPrefetch
Platform target:  X86-32
sizeof(LlNode):   512
LlNode member offsets
  ValA:           0
  ValB:           32
  ValC:           64
  ValD:           96
  FreeSpace:      128
  Link:           504
 
 
Linked list compare OK
 
Linked list results saved to file __LinkedListPrefetchResults32.txt
 
Benchmark times saved to file __LinkedListPrefetch32.csv 

Table 22-3. Mean Execution Times (in Microseconds) for X86-32 Functions 
LlTraverseCpp, LlTraverseA_ and LlTraverseB_ (num_nodes = 20,000)

CPU LlTraverseCpp LlTraverseA_ LlTraverseB_(prefetchnta)

Intel Core i7-4770 1912 867 799

Intel Core i7-4600U 1911 969 955

Intel Core i3-2310M 3601 1676 1669

Table 22-4. Mean Execution Times (in Microseconds) for X86-64 Functions 
LlTraverseCpp, LlTraverseA_, and LlTravserseB_ (num_nodes = 20,000)

CPU LlTraverseCpp LlTraverseA_ LlTraverseB_(prefetchnta)

Intel Core i7-4770 1660 843 793

Intel Core i7-4600U 1645 902 879

Intel Core i3-2310M 3391 1676 1669
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Summary
In this chapter, you learned a few details about the basics of non-temporal memory 
stores and the types of algorithms that may benefit from their use. You also learned how 
to use the x86’s data prefetch instructions. The sample programs of this chapter should 
be regarded as mere primers to advanced x86 assembly language programming. You are 
encouraged to consult the references listed in Appendix C, which is available online at 
http://www.apress.com/9781484200650, for additional information regarding advanced 
x86 assembly language programming topics.
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polar coordinate, 122
PolarToRect_, 123
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Correlation coefficient, 394
Correlation coefficient program
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CorrCoef_.asm, 391

AvxPackedFloatingPoint 
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Cpuid instruction

AvxCpuid_.asm, 444
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cvtps2pd instruction, 335

Index

657

www.it-ebooks.info

http://www.it-ebooks.info/


■ index

658

D���������
Data blend, 453

AvxBlend_.asm, 455
AvxBlend.cpp, 453, 456
program output, 457
vblendvps instruction, 457
vpblendvb instruction, 457
vpblendw and vpblendd  

instructions, 457
Data broadcast, 447

AvxBroadcast_.asm, 449, 452
AvxBroadcast.cpp, 448, 452
program output, 452

Data gather, 463
AvxGather_.asm, 467–469
AvxGather.cpp, 464, 468

Data-manipulation  
instructions, 447

data blend
AvxBlend_.asm, 455
AvxBlend.cpp, 453, 456
program output, 457
vpblendvb instruction, 457
vpblendw and vpblendd 

instructions, 457
data broadcast, 447

AvxBroadcast_.asm, 449, 452
AvxBroadcast.cpp, 448, 452
program output, 452

data gather, 463
AvxGather_.asm, 467–469
AvxGather.cpp, 464, 468

data permute
AvxPermute_.asm, 460, 462
AvxPermute.cpp, 458, 462
program output, 463

Data permute
AvxPermute_.asm, 460, 462
AvxPermute.cpp, 458, 462
program output, 463

Data prefetch, 645
Data types, x86-32, 4

BCD values, 8
bit fields, 7
bit strings, 8
fundamental, 4
numerical, 5
packed, 6
strings, 7

E���������
End-of-string (EOS) character, 303
Extract and insert instructions, 338

F���������
Feature extension instructions

fused-multiply-add group, 343
VFMADD subgroup, 344
VFMADDSUB  

subgroup, 345
VFMSUBADD subgroup, 345
VFMSUB subgroup, 344
VFNMADD subgroup, 346
VFNMSUB subgroup, 346

general-purpose  
register group, 346

half-precision floating-point  
group, 342

Floating-point shuffle and word  
unpack operations, 334

Fused-multiply-add (FMA)  
instructions, 343

VFMADD subgroup, 344
VFMADDSUB subgroup, 345
VFMSUBADD subgroup, 345
VFMSUB subgroup, 344
VFNMADD subgroup, 346
VFNMSUB subgroup, 346

Fused-multiply-add  
programming, 470

AvxFma_.asm, 474
AvxFma.cpp, 471

G���������
Gather instructions, 340
General-purpose register  

instructions, 346, 482
enhanced bit manipulation

AvxGprBitManip.cpp, 486, 488
AvxGrpBitManip_.asm, 487, 489
program output, 489
stack contents, 489

flagless multiplication and  
bit shifts

AvxGprMulxShiftx_.asm, 483–484
AvxGprMulxShiftx.cpp, 482, 484
program output, 485
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Half-precision floating-point  

instructions, 342
Haswell-based quad-core processor, 625

Execution Engine, 628
pipeline functionality, 626

allocate/rename block, 627
Branch Prediction Unit, 627
Instruction Decoders, 627
Instruction Fetch, 627
micro-fusion, 627
micro-ops, 627
Pre-Decode Unit, 627

Haswell microarchitecture, 3
Haswell processors, 328

I, J, K���������
Image-processing

image-thresholding program, 425
AvxPackedInteger 

Threshold_.asm, 429
AvxPackedInteger 

Threshold.h, 426
pixel clipping

AvxPackedInteger 
PixelClip_.asm, 420

AvxPackedInteger 
PixelClip.cpp, 418, 423

AvxPackedInteger 
PixelClip.h, 418, 422

definition, 417
instructions sequence, 423
mean execution times, 425
program output, 425

Image-thresholding program, 425
AvxPackedInteger 

Threshold_.asm, 429
AvxPackedIntegerThreshold.h, 426

Instruction pointer register (EIP), 13
Instruction set

MMX technology
arithmetic group, 140
comparison group, 142
conversion group, 142
data transfer group, 139
insertion and extraction group, 144
local and shift group, 143
state and cache  

control group, 145
unpack and shuffle group, 144

x86-32
binary arithmetic group, 18
byte set and bit string  

instruction group, 22
conditional codes, 16
control transfer group, 24
data comparison group, 20
data conversion group, 20
data transfer group, 18
flag manipulation group, 23
functional categories, 17
logical group, 21
miscellaneous group, 25
mnemonic suffixes, 16
purposes of, 15
rotate and shift group, 21
string instruction group, 22
test conditions, 16

x87 floating-point unit (FPU), 95
arithmetic group, 96
constants group, 101
control group, 101
data-comparison group, 98
data transfer group, 95
transcendental group, 100

IntegerMulDiv program, 32
epilog, 36
InvalidDivisior instruction, 35
push ebx instruction, 33
signed-integer division, 36
source code implementation, 32

Intel 80386 microprocessor, 1
Internal architecture, x86-32, 8

EFLAGS register, 11
EIP register, 13
general-purpose registers, 9
instruction operands, 13
memory addressing modes, 14
segment registers, 9

L���������
lzcnt instruction, 348

M���������
Masked move instructions, 339
4 × 4 Matrices

definition, 260
formula, 260
SsePackedFloatingPointMatrix4x4 

program, 260
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Matrix column means
AvxPackedFloatingPoint 

ColMeans_.asm, 398
AvxPackedFloatingPoint 

ColMeans.cpp, 396, 400
col_means array updation, 401
program output, 402

Microarchitectures, 2
MmxAddition program

AddOpTable, 153
cmp instruction, 154
coding implementation, 149–153
emms instruction, 155
enumerators, 153
MmxAddBytes function, 153
MmxAddOp parameter, 153
MmxAddWords function, 153
MmxVal parameter, 153
movq instruction, 154
pshufw instruction, 154
test cases, 155–156
Visual C++, 154

MmxCalcMean program, 172, 178
array element, 177
coding implementation, 173–176
MmxCalcMeanTimed, 176
pshufw instruction, 177
punpcklbw and punpckhbw 

instructions, 176
MmxCalcMinMax program

C++ counterpart, 168
coding implementation, 164–168
MmxCalcMinMax.exe, 172
MmxCalcMinMax 

Timed.cpp file, 170–171
pmaxub instruction, 169
pminub instruction, 168
pointer, 168
pshufw/pminub instruction, 169
restrictions, 168
standard library function, 168

MmxMultiplication
coding implementation, 160–161
MmxMulSignedWord, 162–163
pmullw and pmulhw  

instructions, 162
punpcklwd and punpckhwd 

instructions, 163
MmxShift program, 160

coding implementation, 156–159
enumerators, 159
jmp instruction, 159

movq instruction, 159
pshufw instruction, 159

MMX technology, 2, 133, 147
and x87 FPU, 172
data types, 137
instruction set, 138

arithmetic group, 139
comparison group, 142
conversion group, 142
data transfer group, 139
insertion and extraction group, 144
local and shift group, 142
state and cache control group, 145
unpack and shuffle group, 143

integer array processing, 164
MiscDefs.h, 148
MmxVal.h, 148
packed integer addition, 147, 149, 164
packed integer multiplication, 147, 160
packed integer shifts, 156
register set, 137
SIMD processing, 133

arithmetic operations, 134
bit patterns, 134
pmaxub instruction, 135

wraparound vs. saturated  
arithmetic, 135

mulps instruction, 333
mulx instruction, 348

N���������
Nehalem microarchitecture, 2
Netburst, 2
New instructions

blend group, 337
broadcast group, 336
extract and insert group, 338
gather group, 340
masked move group, 339
permute group, 337
variable bit shift group, 340

Non-temporal memory stores, 637

O���������
Optimization techniques, 623, 629

basic optimizations, 630
Branch Prediction Unit, 631
data alignment, 633
floating-point arithmetic, 631
SMID techniques, 634
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P���������
Packed floating-point arithmetic

AvxPackedFloatingPoint 
Arithmetic_.asm, 381, 383

AvxPackedFloatingPoint 
Arithmetic.cpp, 379, 383

compare instruction, 244
conversions, 249
correlation coefficient

AvxPackedFloatingPoint 
CorrCoef_.asm, 391

AvxPackedFloatingPoint 
CorrCoef.cpp, 389, 394

program output, 396
least squares, 254
matrix column means

AvxPackedFloatingPoint 
ColMeans_.asm, 398

AvxPackedFloatingPointCol 
Means.cpp, 396, 400

col_means array updation, 401
program output, 402

operations, 238
program output, 384
ToString_ formatting  

functions, 237
YmmVal.h, 378

Packed floating-point compares
AvxPackedFloatingPoint 

Compare_.asm, 386, 388
AvxPackedFloatingPoint 

Compare.cpp, 385, 387
program output, 388–389

Packed integers
arithmetic operations, 405

AvxPackedInteger 
Arithmetic_.asm, 408

AvxPackedInteger 
Arithmetic.cpp, 406

program output, 411
vpsllvd and vpsravd  

instructions, 410
fundamentals, 273
histogram, 279
threshold, 288
unpack operations, 412

AvxPackedInteger 
Unpack_.asm, 414–415

AvxPackedInteger 
Unpack.cpp, 412, 415

program output, 417
vpackssdw instruction, 416
vpunpckldq and vpunpckhdq 

instructions, 415–416
paddb instruction, 333
pdep instruction, 348
Permute instructions, 337
pext instruction, 348
Pixel clipping algorithm

AvxPackedInteger 
PixelClip_.asm, 420

AvxPackedInteger 
PixelClip.cpp, 418, 423

AvxPackedInteger 
PixelClip.h, 418, 422

definition, 417
instructions sequence, 423
mean execution times, 425
sample program, 425

Q���������
Quark microarchitecture, 3

R���������
rdrand instruction, 348
Roots of quadratic equation, 360

AvxScalarFloatingPoint 
QuadEqu_.asm, 363

AvxScalarFloatingPoint 
QuadEqu.cpp, 361

program output, 367
root computation equations, 367
solution forms, 365

roxr instruction, 348

S���������
Sandy Bridge, 2
sarx instruction, 349
Scalar floating-point arithmetic, 351

AvxScalarFloatingPoint 
Arithmetic_.asm, 352–353

AvxScalarFloatingPoint 
Arithmetic.cpp, 352–353

compare instructions, 212
conversions, 217
operation, 207
parallelograms, 228
program output, 354
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roots of quadratic equation, 360
AvxScalarFloatingPoint 

QuadEqu_.asm, 363
AvxScalarFloatingPoint 

QuadEqu.cpp, 361
program output, 367
root computation equations, 367
solution forms, 365

spheres, 225
spherical coordinates

acos function, 374
AvxScalarFloatingPoint 

Spherical_.asm, 369, 374
AvxScalarFloatingPoint 

Spherical.cpp, 368, 373
call sin and call cos  

instructions, 375
program output, 375
rectangular coordinates, 373
three-dimensional  

coordinate system, 372
Scalar floating-point compares

AvxScalarFloatingPoint 
Compare_.asm, 356

AvxScalarFloatingPoint 
Compare.cpp, 355, 357

program output, 359–360
vcmpsd and vcmpss instructions, 358

shlx instruction, 349
shrx instruction, 349
Silvermont microarchitecture, 3
Silvermont System on a Chip (SoC) 

microarchitecture, 3
Single instruction multiple  

data (SIMD), 133, 563
AVX-64 execution environment

data types, 561
instruction set, 562
register set, 560

AVX-64 programming
ellipsoid calculations, 590
matrix inverse, 602
miscellaneous instructions, 617
RGB image processing, 595

processing algorithm
data prefetch, 645
non-temporal memory stores, 637

SSE-64 execution environment
data types, 559
instruction set, 559
register set, 557

SSE-64 programming
image conversion, 571
image histogram, 563
vector arrays, 580

Spherical coordinates program
acos function, 374
AvxScalarFloatingPoint 

Spherical_.asm, 369, 374
AvxScalarFloatingPoint 

Spherical.cpp, 368, 373
call sin and call cos instructions, 375
program output, 375
rectangular coordinates, 373
three-dimensional coordinate  

system, 372
SsePackedFloatingPoint 

Arithmetic.program
coding implementation, 238
movaps and movapd, 243
SsePackedFpMath32_ and 

SsePackedFp 
Math64_functions, 243

XmmVal instances, 243
SsePackedFloatingPointCompare  

program, 248
cmpps and cmppd instructions, 244
coding implementation, 245–247

SsePackedFloatingPointConversions 
program

coding implementation, 249–252
cvtps2pd instruction, 253

SsePackedFloatingPointLeastSquares 
program

coding implementation, 254
_tmain function, 258
xorpd instruction, 259

SsePackedFloatingPointMatrix4x4 
program, 260

SsePackedIntegerFundamentals program
coding implementation, 273
pmulld instruction, 278
SsePiSubI32 function, 277

SsePackedIntegerHistogram program
coding implementation, 279
grayscale image, 279

SsePackedIntegerThreshold program, 288
SseScalarFloatingPointArithmetic 

program
andps instruction, 212
caller-supplied array, 211
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